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1. Introduction

Throughout this paper D denotes a division ring with centre F and n a positive
integer. A subgroup G of GL(n,D) is absolutely irreducible if the F-subalgebra F[G]
generated by G is the full matrix ring D""". It is completely reducible (resp. irreducible) if
row n-space D" over D is completely reducible (resp. irreducible), as D-G bimodule in
the obvious way. Absolutely irreducible skew linear groups have a more restricted
structure than irreducible skew linear groups, see for example [7], [8], [9] and [10].
Here we make a start on elucidating the structure of locally nilpotent such groups.

1.1 Theorem. Let H be a locally nilpotent normal subgroup of the absolutely
irreducible skew linear group G. If H is either hypercentral or poly abelian-by-periodic
then G/CG(H) is periodic. In particular H is centre by locally-finite.

1.2. Theorem. Let H be a locally nilpotent normal subgroup of the completely
reducible subgroup G of GL(n,D) and let S be a right Noetherian subring of D"Xn

normalized by G. Suppose that either G is irreducible or S = F, the centre of D. Then for
every subgroup K of H the subring S[K] of D"*n generated by S and K is semiprime and
right Goldie.

Note that although any subring of a division ring is semiprime with the maximal
condition on annihilators it need not be right Goldie; it could be a free ring for
example.

Let G be an absolutely irreducible subgroup of GL(n, D) and H a locally nilpotent
normal subgroup of G. In Section 5 below we analyze in some detail the structure of G
and H. In view of 1.1 we speculate of course that H is always centre by locally-finite.
Our analysis is sufficient to read off immediately that it would suffice to prove this
speculation in the special case where

(*)

n = 1, so G is a subgroup of the multiplicative group D* of D;

D = F[G~] is the ring of quotients of F[H~\;

H = H/(HnF) is torsion-free and F\_H~\ is crossed product of F by H.

Crossed products are defined in Section 2. Section 5 is the main part of this paper. It
makes use of both 1.1 and 1.2.
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102 B. A. F. WEHRFRITZ

The following is an easy consequence of 1.1; it also can be derived from the results of
[9].

1.3. A hyperabelian absolutely irreducible skew linear group is abelian by locally-finite.
In fact 3.8 below is slightly stronger than 1.3. The following is of a similar nature. Its

proof is in Section 6.

1.4. Let G be an absolutely irreducible skew linear group and let H be a normal
subgroup of G with an ascending series whose factors are locally nilpotent-or-finite (e.g. if
H is radical). Suppose that the Hirsch-Plotkin radical of H is centre by periodic. Then H
and G/CG(H) are both abelian by periodic.

Of course our speculation above asserts that in 1.4 the hypothesis on the Hirsch-
Plotkin radical is redundant. The examples in [9] already show that there are no
obvious ways of strengthening the conclusions of 1.3 and 1.4. Also if G is a torsion-free
locally nilpotent group then G is isomorphic to a (necessarily irreducible) subgroup of
the multiplicative group of a division ring (e.g. [5], 13.2.11). This indicates that there is
not much scope in weakening the absolute irreducibility in 1.1. Easy examples show that
if G is reducible and S=fcF in 1.2 than the conclusion of 1.2 can be false.

Suppose G and H are as in 1.1. Then much information about H can be read off
from the results of [11]. For let Z be the centre of H. Then F[Z] is reduced by 1.2 and
its ring Q of quotients is a direct sum of a finite number of fields. Also by 4.4 below Q is
naturally embedded in F[G] and Q[H] by 1.1 is a locally finite-dimensional g-algebra.
If x is a regular element of QX.H] then xeg[X] for some finitely generated subgroup X
of H. Then Q[X] is semisimple Artinian by 1.2 and thus x is a unit of 6 [^] £(?[#] .
Since Q[H~\ is semiprime and Goldie by 1.2 it folows that Q[H~\ is a semisimple Artinian
locally finite-dimensional Q-algebra. This is the situation considered in [11]. For
example it follows that

1.5. H contains normal subgroups A^K with H/K finite, K/A torsion-free abelian and
A periodic abelian with finite rank at most n and no non-trivial elements of order charf.

All rings in this paper, except when the term nilring is used, have an identity, and ring
homomorphisms preserve identities. If X is a subset of a ring R then lR(X) denotes the
left annihilator and rR(X) the right annihilator of X in R. We use P. Hall's calculus of
group classes as given in [6], except that we denote the quotient operator by Q and not
H. For example the group H of 1.4 lies in the class PL(9tug).

2. Ring theoretical lemmas

2.1. Let G be an irreducible subgroup of GL(n, D) and let S be a subring of Dn*n

normalized by G. Then S is semiprime.

Proof. Let n be the lower nilradical of S and assume that n =/= {0}. Note that n is
nilpotent ([1] 1.35) and normalized by G. Suppose n r >n r + 1 = {0}. Then with V=Dn

regarded as a D-G bimodule in the usual way, Vnr is a non-zero D-G submodule of V,
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which is irreducible. Thus Vn'=V and so Kn = {0}. This implies that n = {0}, a
contradiction that completes the proof.

In 2.1 we have only proved what we need. In fact much more is true. If G is an
irreducible subgroup of GL(n, D) then F[G] is always prime. If G is completely reducible
then F[iV] is semiprime for every subnormal subgroup N of G. In 2.1 easy examples
show that S need not be prime and that if G is only completely reducible then S need
not be semiprime.

Say that an absolutely irreducible subgroup G of GL(n,D) is persistent (short for
persistently of simple Artinian type) if the F-subalgebra F\H~\ of D"*" generated by H is
simple Artinian for every subnormal subgroup H of finite index. Say that G is prime if

is a prime ring for every normal subgroup N of G.

2.2. Let G be an absolutely irreducible subgroup of GL{n, D). Then G has a normal
subgroup H of finite index such that H is a subdirect product of groups Hh where for each
i, H( is a persistent subgroup of GL(nhI),-) for some integers n{ satisfying Yjni = n and
division F-algebras Dt.

Proof. Pick a subnormal subgroup Ho of G of finite index such that the composition
length of row n-space V=D" as D-Ho bimodule is maximal and set H = f]geGH9

0. By
Clifford's theorem V is completely reducible as D-Ho bimodule, so let V= © V{ where
each Vf is D-Ho irreducible. Let 7ci:/

r[//0]->EndDI^ be the restriction map and set H—Hiii.
Let K be any subnormal subgroup of Ht of finite index. By the choice of Ho we have

that Vt is D-K irreducible. In particular V{ is D-// , irreducible. But F[H] is Artinian by
[2] Point 4 and semiprime by 2.1. Thus F[H] and hence also F[//;] = F[H]7i,- is
semisimple. Let [/; be an irreducible F[H,] submodule of Vt. Then ^ = Z)l/, and
dUi-F^jUi for every deD*. Therefore F[JJ,.] is simple Artinian and hence is a matrix
ring of degree nt say over some division F-algebra Dt. Thus H( is an absolutely
irreducible subgroup of GL(nh £);) in the obvious way. Also n; ̂  dimo Vh so £ n{ ̂  n.

Let F; denote the centre of D(. We have to prove that F,[K] is simple Artinian. By
[2] Point 4 and 2.1 again Ft[K] is semisimple Artinian. If U{ is now an irreducible
F;[/C]-submodule of Vt then again V^DUt and dU^Ui for deD*. Therefore F,[K] is
simple Artinian.

2.3. Let G be an absolutely irreducible subgroup of GL(n, D). Then the following are
equivalent

(a) G is prime

{b) F[/TJ is prime for every normal subgroup H of G of finite index

(c) F[H] is simple Artinian for all H as in (b).

Proof. Trivially (a) implies (b). For every normal subgroup H of G of finite index
F[/TJ is semisimple Artinian by [2] and 2.1. Thus (b) implies (c). Assume (c) holds and
let N be any normal subgroup of G. Then F[AT] is semiprime by 2.1 and satisfies the
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maximal condition on right annihilators (since F[G~\ dpes). Hence F[N] has only a
finite number of minimal prime ideals pu..., pr by [1] 1.16 and each p, is an annihilator
ideal. Clearly G permutes the p;, so H=p\gsGNG(p%)e is a normal subgroup of G of
finite index. By hypothesis F[ff] is simple, and ptH is an ideal of F[H]. If plH = F[H]
then /F[iv](Pi) = {0} a n d Pi=rFmlFm(Pi) = F\_N~\. This is false and therefore p! = {0}.
Thus (a) holds.

2.4. Corollary. / / G is a persistent subgroup of GL(n, D) then G is prime.

This follows at once from 2.3. Apart from being useful in the context here 2.2 and 2.4
give a much better approach to 4.3.1 of [7] and to 3.2 and 3.3 of [9]. An obvious
question in view of 2.4 is whether a prime absolutely irreducible subgroup of GL[n, D) is
always persistent. Presumably the answer is no.

We conclude this section with two conditions for a ring to be a crossed product. If S
is a subring of a ring R and if G is a subgroup of the units of R normalizing S such that
R = S[G], SnG is a subgroup of G and R is a free right S-module on a transversal of
S n G to G, then we say that R is a crossed product of S by G/(S n G).

2.5. Let R = F\_G] be an F-algebra, where F is afield and G is a locally nilpotent
group of units of R, such that for every finite subset X of R there is a finitely generated
subgroup Y of G with F [7] prime and containing X. Let T be the torsion subgroup of G
and Z/T the centre of G/T. Then R is a crossed product ofF[Z] by G/Z.

Proof. Let YA=I fy*i = 0 where the t{ are distinct elements of a transversal of Z to G
and the a; are non-zero elements of F\Z\. If i=j=j then t^tj^Z and so there is some
gijsG with tjj—rjj"1 £,-,£,•,] of infinite order. There exists a finitely generated subgroup Y
of G with F[7] prime such that F[7] contains all the th t,"

1 and gtj and F[YnZ]
contains the a;.

By a theorem of Zalesskii ([5] 11.4.5) F[7] is a crossed product of F[A(7)] by
Y/A(Y), where A(Y) = {ye F: | / |<oo}. Clearly TnY is finite and YnZ^A(Y). Thus
tj"1tjeA(y) for some i^j. Since Y is finitely generated nilpotent, A(Y) is finite by
central-in-K Also g^eY. Thus tfj has finite order, a contradiction that completes the
proof.

2.6. Let R be a ring, E a division subring of R and G a group of units of R normalizing
E such that E*^G and R = £[G]. Set C = CR(E). Then R is a crossed product of E[_C]
over G/E*(CnG).

Proof. Let T be a transversal of E*(CnG) to G and let B be a basis of C over the
centre F of E. Clearly £[C] = ̂ j,EBfe£. If the conclusion of 2.5 is false then we can
choose a relation YJ=I t ;V;=0 with r minimal, where the (£;,bj) are distinct elements of
TxB and the e,e£*. By multiplying on the right by ej"1 we may assume that el = l.
Since tx is a unit and ^ f 0 we have r> 1.
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Let xeE*. Then

= 1
i = 2

where we have used that [G, £*] g E* commutes with B.
By the minimal choice of r we have that \t~[lthx]e* = et for all xeE* and all i>l .

Then ((1"
1£Ie1)* = t1"

1r1ei for all xe£* and £J~ 1tieieC. Hence ^et^CE and this is for all
i> l . Thus t; = tx and so e^eCnE^F for all i> l . But we now have that £fc,e,- = 0 and
this contradicts the choice of B. The proof is complete.

3. Hypercentral and hyperabelian groups

3.1. Let G be a locally nilpotent group and suppose that G is a finite extension of a
centre by periodic group. Then G is centre by periodic.

Proof. By hypothesis there are subgroups A^C of G with A central in C, C/A
periodic and C normal in G with G/C finite. We can replace A by one of its free abelian
subgroups of maximal rank. Now A has at most (G:C) conjugates in G and therefore
AG — (~\geGA9 is normal in G with G/AG periodic. Thus we may also choose A normal in
G.

Since G is locally nilpotent it has a periodic normal subgroup T with G/T torsion-
free. Clearly G/T is the isolator of ATT in G/T. Since centralizers in G/T are isolated
([3] 4.8) it follows that G/T is abelian. Consequently,

since A is torsion-free. That is A lies in the centre of G.

3.2. Let H be a normal subgroup of the absolutely irreducible subgroup G of GL(n, D)
such that H is hypercentral. Then H is centre by locally-finite.

Proof. In view of 2.2, 2.4 and 3.1 we may assume that G is prime. Set

Now A(J/) is locally nilpotent and so is locally finite by torsion-free. It is also an FC-
group and so is centre by periodic. Hence by [7] 4.3.2 the kernel a of the natural map
of the group algebra FG onto F{_C] is annihilator free in FG over A(H). Consequently
anFN is annihilator free in FN over KnN^A(H). But then a is annihilator free in FG
over K by [7] 3.2 and F[G] is a crossed product of F[N] by G/N. Consequently G/N is
periodic ([8] 2.2).
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We now have that HnN = A(H) is an FC-group and H/A(H) is periodic. Let A be the
centre of A(H) and set Z = CA(H). Clearly A is normal in H and H/A is periodic. In
particular ([3] 4.8 again) H' lies in the torsion subgroup of H. Let a e A. Then <aH> is
finitely generated abelian and its torsion subgroup has finite order m say. Hence <aw>m

is torsion-free and normal in H, so [<aH>m, H~\ <; <a">m n T=<1>. It follows that a m e Z
and consequently A/Z is periodic. The result follows.

3.3 Corollary. Let H and G be as in 3.2. Then G/GG(H) is periodic.

This is an immediate consequence of 3.2 and [9] Theorem A(ii). The discerning reader
will have seen that we have apparently not used the full force of the hypercentrality of
H. We used in fact that H is hyper FC-central. The following result shows in particular
that this is not the case.

3.4. Let G be a locally nilpotent group, unipotent-free when skew linear.

(a) If G is skew linear then the torsion subgroup T of G lies in the hypercentre of G.

(b) G is hypercentral if either G is hyper FC-central or G is skew linear and abelian
by periodic.

Proof, (a) Since G is skew linear T satisfies Min-p for every prime p. It follows that
T has an ascending series of normal subgroups of G with finite factors. Each of these
finite factors is G-hypercentral, so T is too.

(b) Suppose G is hyper FC-central. If aeAT(G) then <aG> is finite. Thus again T has
an ascending series of normal subgroups of G with finite factors and T is G-
hypercentral. Hence we may assume that r = < l > , and then centralizers in G are isolated
([3] 4.8). Thus A(G) is the centre of G and G/A(G) is torsion-free. Clearly the union of
an ascending series of isolated subgroups of G is isolated. An elementary transfinite
induction completes the proof.

Suppose now that G is skew linear and abelian by periodic. By [3] 4.8 again G/T is
abelian. Thus the result follows from part (a).

3.5. Let H be a locally nilpotent normal subgroup of the absolutely irreducible
subgroup G of GL(n, D) and suppose that H e P(9l u Lg). Then H is centre by periodic and
G/CG(H) is periodic.

Proof. Now H is abelian by periodic by [9] Theorem A(i). Hence H is hypercentral
by 3.4. Consequently H is centre by periodic by 3.2 and G/CG(H) is periodic by 3.3.

Note that 1.1 is an immediate consequence of 3.2, 3.3 and 3.5. Also 1.3 is an
immediate consequence of 3.3 and 1.A.8 of [4]. By generalizing the latter result, which
we now proceed to do, we can prove a little more.

3.6. Let X be an (N, P, Q, Sn}-closed class of groups. Let H be a normal subgroup of a
group G such that H has an ascending series of normal subgroups of G with factors in

https://doi.org/10.1017/S0013091500017466 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017466


LOCALLY NILPOTENT SKEW LINEAR GROUPS 107

9lu3E. Then H contains normal subgroups A^T^B of G with A = CH(B), T/AeX and
B/Te'H.

In the only application that we make of 3.6 we take X to be the class of locally finite
groups.

Proof. Let A be maximal among the abelian normal subgroups of G contained in H
(possibly X = <1» and set C = CH(A). Let T/A be the unique maximal normal X-
subgroup of C/A; this exists since NX = X. Trivially T is normal in G. If T=C set B = T.
Then CH{B) ^ CH(A) = B and the maximality of A yields that A = CH(B).

Now assume that T=/= C. Since X is P-closed, the choice of T ensures that there is no
non-trivial normal ^-subgroup of C/T, and since X is Q-closed H/T has an ascending G-
normal series with factors in 91 u 3E. Hence the Sn-closure of X ensures the existence of a
non-trivial abelian normal subgroup of G/T in C/T, and we choose B/T to be maximal
among such. The maximal choice of A yields that A = BnCH(B). It remains only to
show that CH(B) ^ B, and clearly CH(B) g C.

Suppose CH(B) ^ B, so A < CH{B). Then there is a non-trivial normal subgroup K/A of
G/A in CH(B)/A with K/A in either U or X. Since A = Bn CH(B) we have K£B. If X//1
is abelian, then so is BK/T and the maximal choice of B would yield K^B. If K/A is an
X-group the maximal choice of T would yield K^T^B. These contradictions complete
the proof.

3.7. Let H be a normal subgroup of the absolutely irreducible skew linear group G and
suppose that H has an ascending series of normal subgroups of G with factors in
P(2tuLg). Then H and G/CG(H) are abelian by periodic.

Proof. Any P(5I u L<5)-group has a characteristic series of finite length with factors
in $1 u Lg by [9] 3.4. Hence we can apply 3.6 and find a normal P(9I u Lg)-subgroup B
of G with CH(B)^B^H. By [9] Theorem A the factor G/CG(B) is abelian by periodic.
Thus H is metabelian by periodic and the same theorem, but applied now to H, yields
that H and G/CG(H) are abelian by periodic.

If we choose H = G in 3.7 we obtain the following generalization of 1.3.

3.8. Corollary. Let G be an absolutely irreducible skew linear group such that
G e PnP(U u Lg). Then G is abelian by locally-finite.

4. Locally nilpotent groups and rings of quotients

4.1. Let R = S[G] be a ring, where G is a locally nilpotent subgroup of the group of
units of R and S is a subring of R normalized by G. Suppose that every nilsubring of R is
nilpotent. For any subgroup H of G denote the nilpotent radical of S[ i / ] by n[H). Then

where X ranges over the finitely generated subgroups of G and H over all subgroups of G.
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Proof. If xen(G) there is a finitely generated subgroup X of G with xeS[.Y]. Then
and so

n(G)<={Jn(X), =JVsay.

Let X and Y be finitely generated subgroups of G and set Z = (X, Y}. Then Z is
nilpotent and there is a series X = X 0 < Z 1 < " < X , = Z of finite length. Now n(Jf) is
nilpotent and normalized by Xu so n(X)Xl is a nilpotent ideal of S^X^. Thus
n(Z)cn(JY1). An elementary induction shows that n(X) u rt( Y) c rt(Z). It follows that AT
is a locally nilpotent ideal of S[G] and therefore iV£n(G), n(G) = \Jx(X) and then

(Jn(tf) = (J U n(X) = 7V = n(G)
H H XZH,Xe(&

as claimed.

4.2. Assume t/ie notation of 4.1. / / in addition R is semiprime then S[H~\ is semiprime
for every subgroup H of G.

For S[H] is semiprime if and only if n(H) = {0}. Thus 4.2 follows from 4.1.

4.3. Corollary. Let H be a locally nilpotent normal subgroup of the completely
reducible subgroup G of GL(n, D) and let S be a subring of D"*n normalized by G. Suppose
that G is irreducible or S = F. Then the subring S[/C] of DnX" is semiprime for every
subgroup K of TJ.

For any nilsubring of a simple Artinian ring is nilpotent by [1] 1.35. Thus the
irreducible case of 4.3 follows from 4.2 and 2.1. The case S = F follows from applying the
previous case to the irreducible constituents of G.

There is no need in 4.3 for S\_FT\ to be a domain, even if S = F and G is irreducible;
for example D = F, n = 2, H the 2x2 diagonal group over F and

then F[If] = F©F. An important step in Section 5 in the reduction to the case where
F[R] is a domain. (In fact F[H] need not be a semidomain either.)

4.4. Let G be an irreducible subgroup of GL(n, D) and let S be a right Ore subring of
Dnxn normalized by G. Then the ring Q of right quotients of S is naturally embedded in
Dn*n

If G is reducible (e.g. G = <1» this is false, even if D is a field.

Proof. Let V=D" be row space, regarding as a D — D"*" bimodule in the obvious way
and let C = #s(0), the set of regular elements of S. Since S is right Ore the C-torsion
subset Z = {ve V:vc = 0 for some ceC} is a D-S submodule of V. But G normalizes C, so
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in fact Z is a D-G submodule of V. By hypothesis V is a D-G irreducible, so Z = V or
Z = {0}.

If Z=V then again by the Ore property there exists c e C killing a left D-basis of V.
But then Fc = {0} and yet c^O. Therefore Z = {0} and each element of C is injective on
V. It follows that C^GUn,D). Clearly the subring S [ C - 1 ] of DnXn is S-isomorphic to Q.

4.5. Let S be semiprime right Ore subring of D"*". Then for some integer m^n the
ring Q of right quotients of S is isomorphic to a subring of Dm x m. If also S is right Goldie
then dim Ss ^ n.

The dimension here is the uniform or Goldie dimension of S as right S-module. The
result is a generalization from prime to semiprime of an unpublished lemma of J. C.
Robson and J. T. Stafford. In 4.5 we cannot necessarily extend the given embedding of S
in D"x" to one of Q, even if Q is in fact isomorphic to a subring of D"x". For example let
D = E(x) where E is any field and x is an indeterminate, let X = diag(x,o) and set
S = £ [X] g D2 x 2. Clearly S projects onto £[x] via the (1,1) entries, so S ̂  £[x] is a domain
and Q exists and is isomorphic to D. But X is clearly a zero-divisor of D2 x 2 so the given
embedding of S in D2 x 2 does not extend to Q.

Proof. Regard V=D" as a D-S bimodule in the usual way and let Vu V2,..., Vr be a
full set of non-isomorphic D-S composition factors of V. Let p, be the annihilator of Vt

in S. If a is an ideal of S then ^a is a D-S submodule of Vh which is irreducible. It
follows that each p, is prime. Also f] pt acts nilpotently on V and S is semiprime and
faithful on V. Therefore Qp , = {0}. It follows that every prime ideal contains at least one
of the p,. Suppose p t ,p s are distinct and are all the minimal prime ideals of S. Then
fyi= 1 Pi = {0} and we have ring embeddings

_)EndD V, c, E n d J 0 V, \^D
iS /

where m = £,• g s dimD Vt ̂  n.
Let C = #5(0) be the set of regular elements of S; by hypothesis C is a right divisor set

in S. Trivially Ct = C + Pf/p, is a multiplicative submonoid of S, = S/pt and St is right Ore
with respect to Cf. Let i^s. Then p, = /s''s(Pi) since D"x" and hence S satisfies the
maximal condition on annihilators ([1] 1.16). Let ceC and aeS and suppose that
cflGp,-. Then ca • rs(p,) = {0} and yet ce#s(0). Thus a • rs(p,) = {0} and so a e/Srs(p,) = p(.
Also p.- = rsls(Pi) and the same argument shows that if ac e p( then a e pf. This proves that
C, is a set of regular elements of S( and so C, is a right divisor set in Sf. Thus we can
form the ring S.Cj"1 of right quotients. Clearly the natural embedding of S into © j ^ S ;
extends to one of Q = SC~1 into @i^sSiCi'1.

By definition -̂ is an S.-faithful D-S, bimodule. Let

Zi = {ve VJ:DC=0 for some c e C j

be the C,-torsion submodule of V. If Z,- = Vt then some element of C, kills a left D-basis
of Vi and so kills Vt. This impossibility shows that Z; = {0} and so C,- is a set of D-
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automorphisms of V(. Therefore the natural embedding of S, in EndD Vt extends to one
of SjC;"i and we have ring embeddings

Qu ©Sfir1 Q. 0EndD^c» £>"""".

Always dim Ss = dim QQ. Suppose S is right Goldie. Then Q is semisimple Artinian, so
dim QQ is the maximal number of orthogonal idempotents in Q. The maximal number of
orthogonal idempotents in Dm * m is m. Therefore

dimSc=di

4.6. Proof of 1.2.

By 4.3 the ring S[X] is semiprime for every subgroup K of H. Trivially SHK] has the
maximal condition on right annihilators. Suppose ^^J"=1 t/;sSrjiC], where the Ut are
non-zero right ideals of S[X]. There exists a finitely generated subgroup X of K such
that each UtnS[X]j:{0}. Now S[X] is right Noetherian by a theorem of P. Hall ([5]
10.2.7) and hence S[X] is right Goldie and, as remarked above, semiprime. Hence
m ̂  dim S p f ] s m , ^n by 4.5. It follows that dim S[K~\S[K]^n and consequently S[/C] is
right Goldie.

5. The structure of locally nilpotent groups

Let H be a locally nilpotent normal subgroup of the absolutely irreducible subgroup
G of GL(n, D). In this section we show how to break H and G into a number of pieces.
Although this is not strong enough to decide whether H is centre by periodic, it does
give quite a good description of how G and H are built up. Our notation in this section
is accumulative.

Set R = F[G~\ = DnXn and S = F[H~\. By 2.2 there is a normal subgroup Go of G of
finite index and persistent groups G1,G2,--,Gr such that Go is a subdirect product of
the G;. Let //, be the natural image of H n Go in Gt. Then H is a finite extension of a
subgroup of the direct product of the Hj. In particular H is centre by periodic whenever
each H( is centre by periodic by 3.1. Thus in view of 2.4 we make the following extra
hypothesis.

5.1. Assume that G is prime.

Thus S is now prime as well as Goldie by 1.2. Then by 4.4 the ring Q of quotients of
S is embedded naturally in R and is simple Artinian ([1] 1.28). Thus Q = EU for some
division ring E and set U of matrix units centralizing E. There exists a regular element s
of S with Us^S. Let Y be any finitely generated subgroup of H with seF[Y] and

F[Y~\ is semiprime and Goldie by 1.2 (in fact it is even Noetherian). Let QY be its ring
of quotients. Since l /s£F[Y] it follows that Y is an irreducible subgroup of the group
of units of Q. Hence we can choose Qr in Q by 4.4 again. Now s is regular in F[Y]
since it is in S, so s~l eQY. Thus U^QY and QY is a matrix ring over EnQY with U as
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a set of matrix units ([5] 6.1.5). But EnQY is a domain, so QY is a prime and yet QY is
semisimple Artinian ([1] 1.27). Consequently QY is simple and F [ 7 ] is prime by [1]
1.28.

Let T denote the torsion subgroup of H and Z/T the centre of H/T. Then 2.5 yields
the following.

5.2. F[FT\ is a crossed product of F[Z] by the torsion-free locally nilpotent group
H/Z.

The torsion-freeness of H/Z is yet another application of [3] 4.8(a). Set K = CH(Z)
and A = KnZ.

5.3. H/K is periodic. H is centre by periodic if (and trivially only if) K is centre by
periodic.

For G/CG(Z) is periodic by 1.1. Thus H/K is periodic. The second part of 5.3 then
also follows from 1.1.

5.4. A is the centre of K.

Trivially A lies in the centre of K. By [3] 4.8(a) the centralizer of the centre of KT/T
in H/T is isolated and hence is H/T. Consequently the centre of KT/T is (KTnZ)/T=
AT/T and the centre of K lies in

AT n K = A(Tn K) <= A{Z n K) = A.

By 5.2 we have the following.

5.5. F[K] is a crossed product of F\_A~\ by the torsion-free locally nilpotent group
K/A.

But F[/4] is a domain by 5.1, so F[K] is also a domain by Higman's zerodivisor
theorem. It is also Ore by 1.2 and therefore the ring L of quotients of F[/C] is a division
ring. By 4.4 the ring L is embedded naturally in R, and hence in Q. Set

2 K.

By 2.6 applied with L and IfG for E and G the ring R is a crossed product of L[Cii(K)]
by G/X. But R = F\G], so using [8] 2.2 to obtain the periodicity of G/X we have the
following.

5.6. R is a crossed product of F[X]=L[CR(K)]sKCG(K) by the periodic group G/X.

Let C be the centre of L. Since L is a central simple C-algebra, F[.Y] = L[CR(/C)] is
the tensor product over C of L and CR(K). But F[X] by the definition of X is generated
by CrjVj,.(/Q] and CR(K). Therefore

5.7. L=C[NL.(K)l Also KnC = A.
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We have now completed our analysis of G and H. Notice that (L, C, NL.(K), K) in
place of (D, F, G, H) satisfies Condition (*) of Section 1. If in the special case of (*) the
group H is centre by periodic, then the group K above is also centre by periodic and
consequently in general H is too by 5.3.

6. Radical groups

6.1. Proof of 1.4.
We are assuming here that #ePL($Rug). If X e L(9t u g) is not locally nilpotent, it is

easily seen that X is locally finite. Thus by the Hirsch-Plotkin theorem

Let K be the Hirsch-Plotkin radical of H and let T/K be the maximal locally finite
normal subgroup of H/K. By hypothesis K is centre by periodic, so the group G/CG(T)
is abelian by periodic. Let C be the centre of T. If C = CH(T) then H is abelian by
periodic and Theorem A of [9] shows that G/CG(H) is too.

Suppose C^CH(T). Then there is a non-trivial normal subgroup L/C- of H/C in
CH(T)/C that is either locally nilpotent or locally finite. If L/C is locally nilpotent then
so is L and L^KnCH{T)^C. If L/C is locally finite then C^K and L^,TnCH(T) = C.
Thus neither case is possible and the proof is complete.

6.2. Remark. Free groups lie in both Pn9l and Png. Thus there is no hope of
comparable results if one works with series that are not ascending. It would be
interesting if one could say something about the class of locally soluble skew linear
groups.
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