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ON THE INVARIANT DIFFERENTIAL METRICS NEAR
PSEUDOCONVEX BOUNDARY POINTS
WHERE THE LEVI FORM HAS CORANK ONE

GREGOR HERBORT

0. Introduction

Let D be a bounded domain in C* in the space L’(D) of functions on D
which are square-integrable with respect to the Lebesgue measure d”z the holo-
morphic functions form a closed subspace H?(D). Therefore there exists a
well-defined orthogonal projection Pp: L*(D) — H*(D) with an integral kernel
K,: D X D— C, the Bergman kernel function of D. An explicit computation of
this function directly from the definition is possible only in very few cases, as for
instance the unit ball, the complex “ellipsoids” E,, = {(z, w) € Cc?: | z |2 + | w lzm
< 1}, or the annulus in the plane. Also, there is no hope of getting information
about the function K, in the interior of a general domain. Therefore the question
for an asymptotic formula for the Bergman kernel near the boundary of D arises.
Bergman [Be] was the first to study the behavior of the function K, (2) := K,(z, 2)
near the boundary for certain classes of domains in C?. After the Lz—theory for
the @-operator, [Hor], and the 0-Neumann problem, [K 1], was developed a first
precise description of the singularity of K,(2) and its derivatives became possible
in case that D is a strongly pseudoconvex domain with smooth boundary, [Hor],
[Di 1], [Di 2]. Since the work of Fefferman, [F], and Boutet de Monvel-Sjostrand,
[B-S], the asympotic behavior of K, at the boundary of strongly pseudoconvex
domains is completely understood.

The methods which worked well on strongly pseudoconvex domains cannot be
extended to the weakly pseudoconvex case. A formula for the complete description
of the singular behavior of K,(z) for general weakly pseudoconvex domains is un-
known. Only partial results in this direction have been obtained, see for instance
[Oh], [He 1], [He 2], [D-H-O]. In |C 1], however, Catlin gave a complete description
of the singularity of K,(z) when D is a smooth bounded pseudoconvex
domain of finite type in C? His work contains also precise estimates from above
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and below for the invariant differential metrics of Caratheodory, Bergman and
Kobayashi. It is by no means clear how to generalize these estimates to domains of
finite type in the sense of d’Angelo, [A], in higher dimension. Here, similar as in
the case of the Bergman kernel, a precise estimate for these metrics is known only
in the strongly pseudoconvex case, [H], [Gr], [Di 1}, [Di 2].

In the present article we investigate the behavior of Kg(z) and the invariant
metrics of Caratheodory, Bergman, and Kobayashi on a smooth bounded pseudo-
convex domain 2 € C C” near a point ¢ € 98 of finite type where the Levi form
of 082 has at least # — 2 positive eigenvalues. This extends the circle of ideas of
[C 1] and, in a sense, also will complete it. Our main tool is a precise bumping
theorem for £ near the point ¢ which is obtained from the bumping theorem of
[F-S]. It allows us to simplyfy the techniques of [C 1] and to dispense with the
estimates for the 0-Neumann operator when discussing the growth of the
Caratheodory metric of £2 near q. The plan of the paper is as follows. In section 1
we set up the necessary notations and state the results. In sections 2 and 3 we
will analyze the geometric properties of the boundary 08 near a point g of finite
type and introduce the appropriate local holomorphic coordinates. Contrary to the
case # = 2 one has to deal with those terms in the Taylor series expansion of a
defining function for £ at g which reflect coupling effects between the variables in
the “strongly pseudoconvex” directions and the “weakly pseudoconvex direction”,
see Theorems 3 and 4. Section 4 contains the analytic part of the proof of
Theorems 1 and 2. In Main Lemma 4.2 the necessary holomorphic auxiliary func-
tions are constructed by solving the 5—equation with weights, see Theorem 5. The
desired precise estimates for the Bergman kernel on the diagonal and the invariant
metrics are given in the normalized coordinates constructed in section 3. Finally,
in section 5 we describe how to express the estimates obtained in section 4 in
terms of the initial coordinates.

Note added in proof. The methods of this paper are also successful on a cer-
tain class of domains with Levi form of higher corank, (cf [He 3]).

1. Statement of the results

Let 2 € € C”" be a smooth bounded pseudoconvex domain with a defining
function 7. Suppose 0 € 082, and for a small ball B with centre 0 we have

l% (@ l > 1/2, for all ¢ € B. On B we define the vector fields
1
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(1.1) L= =
for 2 < a < u, and by ]:,, its conjugate, 2 < b < n, where we abbreviate 7, = g_zt
foralla=1,...,n. The L,, a=2,...,n form a basis for the holomorphic tan-
gent bundle T'°9R restricted to B. By L, we denote the normal field
1 Z or o
(1.2) L = rE Ela—z_ba—zb
Let us further write
(1.3) L= or([L,, LD,
for 2 < a, b < n, and denote by A, the Levi function
(1.4) Aog = det(€5), s
Analogously to the definition in [C 1] we introduce the functions
(1.5) A@ i=max{{ LTI ,,@ e, 821, a+ 8= 1.
For a vector X € C" there are uniquely determined functions s,(X), ...,

5, (X) satisfying X = 3}, s;(X)L,.

With these notations we can state our result in the following

THEOREM 1. Assume that the submatvix (£,5)n,e, is strictly positive definite on
B, and 0 is a point of finite type 2k in the sense of Kohn, [K 2|, (this means A,, > 0
on B, after shrinking B, if necessary). If we write

6n@ = § (A @)

1. =3 (fr @),

(1.6) x(@ = 2 (1@

then the Bergman kernel function K, of £ can be estimated on 2 N B by

’

C™ |62, (2)

where C is a universal constant.
We can also estimate the invariant pseudodifferential metrics of Caratheodory

and Kobayashi, as well as the Bergman metric. In order to state the precise esti-
mates for these metrics we define the pseudodifferential metric
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_ sl S L@, (X5, X

lr) F anee (72| + 4,15, L.

(1.8) M,(z, X)
With this notation we have

THEOREM 2. Let the hypotheses be the same as in Theorem 1. If then H, denotes
one of the differential metrics of Caratheodory, Bergman or Kobayashi, we have on a
small ball B, avound 0 € 082

(19) & Molz, 0F < Hy(, X0 < C My, 0,

where again C is a universal positive constant.

2. Normalization of the defining function

Assume q € 082 N B, where B is a ball around 0 which lies relatively com-
pact in B. By the transformation

& 0
W' =22 55 @) (e~ 0)

w'=2z—¢,2<1<n

we absorb the linear term in the Taylor expansion of 7 around ¢. In the

w' —coordinates the equation for 02 will be of the form

2.1) Rew” + RV w?", @) ;q) =0,

where R(D('; @) is a smooth function which is defined on a ball B C C B, with
centre 0 and a radius independent of ¢, (and w’ = (w,, .. .,w,) for all w € C"). It
vanishes of second order at O, and, after multiplication with a positive affine

linear function of the form 2 =1+ 2Re X}_, a'iu);l) we can even achieve that
2

Rl(,l—)(O; @ =0for1=1,...,n Here ;= % for any differentiable function
za zb

@, and 1 < a, b < n Obviously we can solve equation (2.1) for Re w{l), and
obtain

(2.2) Re w” + R" Um w”, w™)’; ¢) =0,

where again R”(-; ¢) has the same properties as R (-; ¢). The Levi form of
R(-; ¢ is described by a certain matrix A = (a;(g))},_,, the entries of which
depend continuously on g, and for which the submatrix (@;{g))} ., is positive de-
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finite. Thus we can choose a matrix B € GL(#n — 2, C), and continuous functions
& @,....c, (@, d,:() on B N 82 such that

(B(q) o)TA<m o>=<En_z c—<q>’>
0 1 0 1 @) a,:q /)

where ¢(q) = (¢,(@),...,c,_1(@). If we therefore set

2) __ 1

W, = w ,

(2) 1)

2 -1 2

: = (B(q) 0 :

: : s

@) 0 1 1)
w, w,

then 82 will in the w” -coordinates be described by the equation
(2.3) Rew” + R®(Im w.”, w?®)’; ¢) = 0.

Here the function R® is smooth on a certain ball around 0, which we denote again
by B. The following couple of steps is inspired by the method of section 1 in
[F-S], where a precise bumping lemma of two-dimensional domains of finite type
was established. At first we write (with v” := (v,,...,0,_,) for v € C"):

(2.4) R?(Im wa), (wm)’; q = Refqm(wl,. . W)

+ Im w,” (é Q7 (w,; g + a,m(w,(f)))

+ Im w,” (0,((w?)") + 0,(Im w,?))

FE P 2R S 0 g w5 0

+ 0,(w®)") + a,(w?)") 0,0, w?) + 6,((wW?)") o, (w,")

+ %PJ‘(Z)(W;Z) /) 02k+1(w:12))‘
i=
Here, ﬁ,m is a holomorphic polynomial which vanishes at 0, the Pj(Z), le are
real-valued homogeneous polynomials of degree j, the g,,(2) are complex polynomials
of degree at most k, which do not contain holomorphic terms. The symbol o,
stands for smooth functions which vanish at 0 of order 7. By means of another
2k-1 steps we eliminate by transformations of the form

i _
w,—w, +aw, w,—w, a=2,...n
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all the harmonic terms from the P,(+)’s. During this procedure the functions P,”,
Q,-('), g;'), and fq(') will change at each step. After that we let in another k steps all
the harmonic terms in the Qj(')'s be absorbed by Re w,. The function R® will be
changed at each step, but we can arrange that it retains the form (2.4). We will in
the (3k + 2)™ step obtain a coordinate system (w***), with respect to which 9
is given by the equation

(3k+2) (Bk+2) (3k+2) (3k+2)
Re w, +R (Im w,”™; (R ) ;@ =0,

where the function R (+; @) has the form (2.4) with fqm, Pj(Z), Q,-(Z), and gf) re-

(3k+2) (3k+2) (3k+2) (3k+2) . . .
placed by f, , P; , Q; ,and g, , respectively. We now will normalize

(3k+2)

the functions g;sk”). For this we write

(3k+2) ~(3k+2) (3k+2) ~(3k+2) (3k+2)
g (w, @ =h, (w s+ g, (w, ;9

n ’ n

7 (3k+2)

where h, (*; @) is a holomorphic polynomial and the polynomial 223“2)('; Q

has no longer harmonic terms. Now we can write

n-1 n—1

(3k+2) |2 (3k+2) 7Gk+2) ,  (Bk+2)
w4+ 2Re 2w, " b (w5 @)
a=2 a=2

n—1
. (3k+2) ~(3k+2) (3k+2) . 2
=X |w "+ h, (w5 ) |
a=2
n—1
~(3k+2) , (3k+2) 2
= Zlh, w9l
a=2
~(3k+2) . i
and all the i, (*; @) vanish at 0. Thus, if we set
(3k+3) __ (3k+2)
1 = w )
(3k+3) (3k+2) ~(3k+2) (3k+2)
w, = w, +hn, (w, ;9,2<a<n-—1
(Bk+3) _ (3k+2)
n = w, y

we obtain new holomorphic coordinates with respect to which 92 is described by
equation (2.5), and no harmonic terms appear in the P;, @, or g,-polynomials.
Finally we let all the Taylor terms of the form

7, Gk+3) .
0'f, 0; @ . (w(3k+3))r,

a(w(3k+3))7’
n _ 1 <n-1 1 < . . (3k+3)
where y €N, and 7, =0, B} 22Tt ok S 1, appearing in f, , be
absorbed by w;skw. This will neither introduce new harmonic terms in the P;, @,,

or g,'s nor change the form of (2.4) or (2.5). The result of our transformations can
now be summarized in
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THEOREM 3. There exists an open neighborhood U of the origin and a mapping
F:C" x (02 N U) — C" with the following properties:

(1) For any ¢ € 02 N U the mapping F(-; q) : C"— C" is biholomorphic, and
F(g;q = 0.

(2) The Jacobi matrix of F(+; q) is of the form

Q&( 2 @(z o - i, %(z 2

a‘Zn—l
0 ﬂ“(z qQ gL(Z;q) h,(z, — q,; @
F’(z;q)= n—1
0 inl(z qQ - %L*(z QD h iz~ g, 9
n—1
0 0 0 1

with certain holomorphic polynomials h,(z, — q, ; q).
(3) For each ¢ € 82 N U we have 2, = F(2 ; q) = {#, < 0}, where
7,=r° F(; Q" has the following form
k
7, (w) = Re(w, + f(w; @) +Imw, X Q,w,; g
1=2
+ Im w, [0,,,(w,) + o,(w")0o,(w,)] + 0,(dm w,)
n—1 n—1
+ X |w,”+ 2Re X w,g,(w, ; 9 + o,(w")
a=2 a=2
+o,w" o, (w,) + 0,w") o, (w,)

2k
+ 2 P,(wn ;) + 02k+1(wn)'
j=2

In this formula, w” = (w,, ... ,w, ) for all w< C", f(+ ;q) is a holomorphic
TE(Q) -

polynomial satisfying 9 a(OT’ ) = 0, whenever 7, =0, % ZZ;; 1.+ ZLIC 1, <1,
w

further, P; and Q; are real-valued polynomials of degree j without harmonic terms, and
the g, ave complex polynomials without holomorphic or anti- holomorphic terms. The 0,
are ervor functions which vanish at of i.th order at 0.

3. [Estimation of the coupling terms

Let us agree upon the following notation: For a homogeneous polynomial p we
denote by || p | the quantity
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Ipl= max |p1.

fel—n,m
We have to adapt Lemma (1.5) and Proposition (1.6) from [F-S] to our situation.

This is done in

LEmMma 3.1. There exist positive constants C,, p,, such that for any 2 < a
< m, and any q € 082 N U the following all hold

(@) If for a radius 0 < p < p, and any numbers 1 € {2,...,2k}, j € {2,...,k}
one has

1Q,¢;lo > COIIllil_X lQC; e,

and

I12,C; 0 ll0" 2 Comax [ P,C5 9 |0,

then it must be that

Q¢ ld < CloVIPG o'

(b) If for a radius 0 < p < p, and any numbers i € {2,...,2k},j € {2,...,k)

one has
lg.,C; 0’ = C, max eIy
and
IG5 llo" 2 Comax | P59 | 0,
then

lga, ;o 10" < CooVlPC5 0

Here we denote by g,.; the homogeneous part of g, of degree 7.

Proof. The proof of (a) goes in complete analogy to that of Lemma (1.5) in
[F-S]. We only need to apply their arguments to the complex two-dimensional sec-
tion {# <0} N {w,= ...w,_, = 0}. (Here #:= 7,). We will even obtain the fol-
lowing statement: There exists a radius 7, > O with the property:

(a’) If for a radius 0 < p < 7, and a number j € {2,...,k} one has
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1Q,¢5 010 2 Cmax]| Q59 10,
7
then
j 2 2k .
1QC;lo <Cjo Zz\IP,»(';q) o'
-
Let us now pass to (b). For a, b € {2,...,n} we set
(3.1) Liz = 5| 1 [ — Fiahi7, — it 7, + P77,

For a fixed number @ € {2,...,n} we choose arbitrary complex numbers w,, w,
close to 0 and additionally a real @, = w,(w,, w,), such that

dw,, w,) = (@, 0,...,w,, 0,...,w,)
becomes a boundary point of £. Then, by the pseudoconvexity of £ one has
(3.2) @, (Gw,, w)) = 0.

Furthermore, one has
k
(3.3) 7=Re(w, + f(w; @) + Imuw, [Z Qiw,; p + oy(w)o,(w,) + ok+1(w,,)]
j=2
n—1 n-1
+ o,(Imw) + X | w,|” + 2Re X w,g,(w, ; q)
b=2 a=2
2k
+ > P(w,;q + Ew),
=2

where (w’) denotes the error term
Ew) = o,(w”) + oy(w o, w,) + o,(w)o,(w,) + 0,,,(w,).

From this we can see that
- 2 el i k i
@5l < Clw,l + ZIPC @ 1wl g (14 &) g | G0 lw, 1),

with some universal positive constant C. If we substitute (3.3) into the formula
(3.1) for £,(G(w,, w,)), we obtain

(36) "@nﬁ((i(war wn)) —2 I i’l (q(war wn)) '2 Re wa(ga;j)nﬁ(wn ) q) , <
2 I fl(q(wa’ wn)) |2 | Re W, IZ: (ga;l)nﬁ(wn ; q) |

+ @legll 7+ 1 72:1172,D 17,1 @@, w,))
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2k
+ 4k2 Z "P[(, (1) " | w, |[—2 + | gnﬁ .
=2
We can find a positive constant C; independent of C, such that
2 ELd 1
(8] < Gl + ZIPC5 0w, 1),
and for | w, | = o,
7,0, w) | < C 1w, o1+ &) gy 010
2k
+ §I| PC;llo™ + 1wl + ka].

For small enough p, < 1 it follows from (3.2) that
(3.7) — 2| 7,(qw,, w,) I Re w, (g,,),5(w, ; g) <
. 2k
Cf((kéo- +200) L w, | gay 5 @) 0™ + L, I* + ) IPCs 107,

After enlarging the constant C, if necessary, we obtain from (3.7)
(3.8)
1 kC; . 2 -
2¢, | @il — A+ 0067 Sl (50 o™ < ZIPCi ) 1670,

0

But neither Re g,; nor Im g, ; contains any harmonic terms. Therefore, with a cer-
tain constant C(j), depending only on j, one has

sup 1(g,.) (W, @ | = CU) g, (50 110"

lwyl=p

As p, we may choose p, = 1/C; here we enlarged C, such that for any
j: C(j) > 2kC:/C,. This will imply

DO

050 167 < VAC7CH) (S PG5 0 167)

a1
< @kIP,C; 072

The proof of the lemma is now complete.
The following lemma contains the crucial estimates for the coupling terms

ij ga;j :
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LeEMMA 3.2.  Let all the notations be as so far. Then we have
(@) If we write jo, = minle < k|| Q(; ¢ | >0}, j,, = min{j| g,;(-; 9 # 0},

and i, = min{e| | P.C59) | > O}, thenjo, 2 4 + 1, jpy 2 3 + 1.

(b) There exist positive 0,, Cy, such that for any | w, | < o

k , 2k 1
(39 21QCi0 Nl < ¢ w,| (1200l w,l)
and

k ; 2k [%
(3.10) 2l g0y s @) M w, [ < C, | w, | (:ZZIIP,(';q) |||wn|> :

(c) If o, is as in (b) and h,(*; @) are the functions appearing in the last column of
the Jacobi matrix of the mapping F(-; q) of Theorem 3, then for any 0 < p < p,/2,
all | w, | < o, and all positive integers m we have the estimate

(m) . L] . 1% g mHl
(3.11) 1w 0| <mic, (S1pC0l0) (B)

Proof. (a) Obviously we have for 0 < p < p,:

" Qio.q('; 9 " pjo’q 2 Co max " Qt('; (I) " pl,
1#iq,4
1P,C5 9 N0 = Cymax | PG5 )]0,
#i,

and

| g0, DN 0™ 2 Cymax g, (5 0) 1.
This, combined with Lemma (3.1) gives (a).

(b) For = = 2, (3.9) is just Proposition (1.6) of [F-S], which is stated there
without proof. Our statements (3.9) and (3.10) are generalizations of that proposi-
tion. Therefore we give a sketch of proof for reader’s convenience. Let o, be the
radius from Lemma 3.1 and 0 < p; < p,. We denote by M; one of the quantities
I Q,(; 9 | or | ga;j(' ;@ | Also fix a point w, € C, |w,| < p,, and let T = C(:z.
It M,|w,|* > Cymax,,, M,|w,|" then everything will follow from Lemma 3.1,
when we choose C, = CZ If not, let I, be the largest number less than k, such that
M, | w, | < CoM,, | w, I It is easy to show that

M, (T w, D" > C, max M,(T| w,])".

I>1,
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If now even

M, (T | w, )" = max M,(T| w, ],

1#1,

we will be done by virtue of Lemma (3.1), otherwise let [, be the largest number
less than [,, such that M,I(Tl w, D" > C, M,Z(T| w, D)’z Then we can prove

M, (T*| w, D" = C,max M(T*| w, )",
I>1,

We continue in this way and obtain after a finite number of steps a number
I, < k, m < k, for which

M, (T"| w, "™ > C,max M,(T" | w, ])".
1,

. . __ 4k%+2
By Lemma 3.1 the claim follows with C, = C;" .

(c) In order to prove (3.11), we work in the coordinate system (w,...,w,) =
(w3k+2 (3k+2)
1

.. ..,w, ) of section 1. The domain £ is described with respect to this

coordinate system by a defining function 7 which has the form (2.4) but the
g,-functions, which we denote here by g;(-;¢q), still contain antiholomorphic
terms.
We have

2w, ;@ = hy(w,; 9 + g,w,; q

with a holomorphic polynomial %,(-; g) of degree at most k, while in the second
member there are no holomorphic or anti-holomorphic terms. Let for a, b €
{2,...,n):

Cs = rgl il = rigrin, — v v + vy
For 0 < | w,| < p, we choose a real q,(w,), such that
q w,) = (¢1(w,), 0,...,w,)
is a boundary point of £2. Then, given a fixed index a@ € {2,...,n}, we have
(3.12) | 5 < 8
at the point ¢’(w,). On the other hand

2

1|k, g

Lalqg w) [ 25 . 105 D

Combining this with (3.12) we arrive at
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2

< Clsw, s @) + F,,

0h,

where C, is a universal constant (independent of w,), and ¥,, ¥, are remainder
terms, which can, as also £;;(¢"(w,)), be controlled, with some universal constant
C4v by
Zk i—2
C, Z:;“Pi(';Q) "Iwnl .
i-

Altogether we obtain

T i | < [S1pciallu,l iy
awn no - 5 = [N n wn .
But the functions %, in Theorem 3 are just given by
oh
. — g .
ha (wn ’ q) awn (wn ’ q)'

So (c¢) will now follow from the Cauchy inequalities.
We are going to prove the appropriate analogue of the bumping lemma, cf.
Theorem A in [F-S].

ProprosiTION 3.3 (cf. [F-S], Lemma 3.3.2k). There exist positive constants A,
B, 0, < p, and for each point ¢ € 02 N B(0, 20,) a continuous function P(; ) :
C — R with the following properties:

(1) With a positive universal constant Cq one has for each w,, w, € C, R > 0,
such that

—2k
lw, | < (1+|—’2L|) ‘R,

the estimate
- _ 2k j
P(w, +w,;q) <Pw,; 9 + CZIP,(;9 R
j=2
holds.
(2) The function P(-; @) is subharmonic on the disc D = {| w,| < 4p,}.

(3) On D the estimates

2k ) N 2% 2k )
-BXPC; 9wl <Pw,;q9 — X Pw,;9) <—AX|P,(;9llw,l
j=2 j=2 j=2
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are satisfied.

Remark. In [F-S] the function P is constructed only on a disc and in case
n = 2. Also, property (1) is not discussed. If we pursue step by step all the con-
structions made in that paper, we can see that all of them just so go through in
our situation. One can also obtain property (1), which is crucial for the estimation
of the Caratheodory metric, since one can show it for all the functions constructed
in Lemmas (3.3.i) of [F-S]. All the constants which appear during the single steps
of construction can be chosen uniformly with respect to g.

The proposition enables us to write down a precise bumping function for £,
at the origin of the (w)-system.

THEOREM 4. For sufficiently large numbers K, L > 1 the function
ow;q =Re(w, + Luw’ + f(w; ) + %| w I+ PGo, ; @)

is plurisubharmonic on the ball B0, 20,), for ¢ € 092 N B(0, 2p,), and it satisfies
the estimate

(313)  #w) — L' — K V,w) < o(w; q) < — % V,(w) + % 7(w),
2k .
where v, = Im w,, and V,w) = |w" >+ 2 | P,(:; @ Il w, I, and # = 7,
j=2
Proof. 1f we write #, = Re w;, we get
2k
(3.14) u, = #(w) —Ref(w;q — Rw) — | w' |’ — R,(w) — > P,(w, ; @),
j=2
where
k
R,(w) = v, (Z Qw,;q + o, (w,) + a,(w”)ol(w,,)) + 0,(v)
j=2
and

n—1

R,(w) = 2Re 2 w,g,(w, ; ¢ + o,(w”) + o,(w")0,,,w,)
a=2
+ o,(w") o, (w,) + 0,1 (w,).

Substitution into the definiton of ¢ gives us
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(3.15) ow ;g = ?(w) — R, (w) —%t w” > — R,(w)
j=2

Because of Lemma 3.2 and the normalization of f we can estimate
2 2 % j 2 |2
(R | < G (o + 1, P 212,50 N, 1+ Ll ),
=
1, ., 2 & i
| R < {5l +Clu, P SIPC; 9l w,
=
and
2 4 4 2 2 ") 2 2k A\’
|Re fw; ) < C [uf +of + 31w, 'S L, P+ (Z1PCi ) [, ),
1=2 j=1 j=2

with a universal positive constant C,. Now, for large enough L, the right inequal-
ity in (3.13) is obtained by substituting these estimates into (3.15) and taking care
of proposition (3.3). The left side of (3.13) follows in a similar way.

4. Estimations for the necessary domain functionals in the normalized
coordinates

Throughout this section let us fix a boundary point ¢ of 3£ close to 0 and
a positive number £ We denote by p, the point (— ¢, 0,...,0). Furthermore,
let 2,=F(-;¢)(Q) ={#<0}. For a bounded domain D C C" we denote by
K, (z, 2z) the Bergman kernel function of D, by B,(z, X), C,(z, X), and Kob,
(z, X) its Bergman metric, Caratheodory metric, and Kobayashi metric, respective-
ly. We also will need the functional blz,(z, X) = K,(z, Z’)Blz,(z, X). The following

relations are well-known:

Ky(z,2 =max {| f@ ’| fe H*D), | fl =1}

by(z, X) = max {| (3f(2), X) | f € H*D), f =0, | fl =1}

Cplz, X) =max {| 0f(2), X) | f€ H" D), /(&) =0, | fl.. = 1}
K—ObD%Z—’XT=sup{R>0| 3f:{lc|<R—D,

holomorphic, f(0) = z, f(0) = X}

for (z, X) € D X C". Here we abbreviate H (D) = 6(D) N L'(D), for j = 2, oo,
and | || = || ||Lz. We will at first give upper estimates for the functionals defined
above. In order to do so, we introduce (analogously to [C 1]) for any s > O the
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radius

2k .
R,(s) = solution to the equation X || P;(+; @) || (R(s))" = s.
j=2

Then we have the estimates

1 1 NV AGTIIE 1
(4.1) Cs R,(s) — sz [ s ] <G R,(s)’

and for any ¢ > 0

1% + R,(s) <R, (cs) <1+ oR,(s)

with a positive Cg independent of ¢ and s.

LEMMA 4.1. There exists a constant Cy > 0, such that for all t >0, Y € C”
the following estimates all hold

(4.2) Ko, (00 B) < Cit 2 R,

(4.3) B,y V) < Ct F R, (D7 [I ’:;' z; 'Yt|2 e ]
(4.4) Copw 1 < G, [H0 4 b Lhly Lol

(4.5) Kobg (0, V) < C, [I_I;LI + i‘; %—,’i + %’%

forany Y € C".

Proof. All the domain functionals under consideration will increase, if the .Qq
are replaced by a domain which is contained in £2,. For a sufficiently small e the
polydisc

A() = A= t, &) x T A, Vb) x A, R, (D)
j=
will be a subset of £,. This is apparent from the considerations of section 3. So
(4.2) through (4.5) will follow immediately, since the right-hand sides of these
estimates are just the respective domain functionals for the polydisc.
Because of the well-known inequalities C,, < B, and C,, < Kob,, for any do-
main D, we only have to estimate the Bergman kernel and the Caratheodory metric
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of £, from below. This will be done by constructing certain holomorphic functions

on £, using the 0-technique with plurisubharmonic weight functions.

MAIN Lemva 4.2, There exist holomorphic functions Fy, € H(2), F,, . . . ,F,

€ H™(R,) with the following properties:

(1) Fyp) = £ 2R,
(2) Framl=1,...,n

t forl =1
OF, > 12 <1<
awl(p,) =1t , f01’2—l_7’l—1
R0, forl=mn

Foralll,j € {1,...,n}, | # j one has
oF,
‘a;ﬂ—f(‘b,) = 0.

(3) There exists a constant C,, independent of t, q such that

I F, | < Cior I F, [, < Co foramyl=1,.. . ,n.

Proof. We write ¢ (w'; q) = ¢(0, w' ; q), where ¢ denotes the bumping
function from Theorem 4. Further let G be the tube G = C"™ X 4(0, 4p,), and

L [* | lw, [

(W) = .
@l et eR, ()

Then the function

o, w) =log + | w ) +logQ + Q,(w")
+ nlog Q,(w") + lt oWw';q

is plurisubharmonic on G. Furthermore, we define the functions
n
&=t 2{R,®») ", onC"
g =100 C""

ﬁ, for{=2,....n—1,on C""

g&w) = Jt

and finally

g, (w) = R_wgﬁ also on C*".
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We first want to construct the functions Fy, .. .,F,. For this we will solve on G
the Cauchy-Riemann equation

(4.6) 5“1 == é[glx A
=&x° Q:'éQr

Here, x is a smooth cut-off function on the real line, such that | x| < 2, x (@) =
1, forx <1/4, x(x) =0, if x > 1.1If € and t are small enough, then

supp(v,) C {% <@, < 1] cc{Q, <2 cca.

In sections (4.2) and (4.4), in particular Lemma (4.4.1) of Hérmander’s book, [Hor]
the following theorem is contained

THEOREM 5. Let N be a positive integer and D € C" a pseudoconvex domain, @
a plurisubharmonic function, and v be a 0-closed (0.1) form with locally square-
mtegrable coefficients on D. Suppose we are given a strictly plurisubharmonic function
U of class €* on D, such that ® — ¥ is plurisubharmonic on the support of v, and the
mtegral

Iw) = j;I v|3spe” " d™z

is fintte. Then there exists a solution u for the equation

ou=v

which is locally square-integrable on D, and satisfies
fl ul’e?d™ 2 < 21(v).
D

In our context D=G, N=n—1,v=v, for [=1, ®= ¢, and ¥ = log(1
+ @,). Next we estimate the integral /(v,). From

T | 50, > 9Q,0Q,
1 +)* Q1+ Q)

it follows that
2
| v l55r < 4Eupp oy

where &,, denotes the characteristic function of a set M. The left half of (3.13)
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implies, that on supp v,
¢ = =B+t
and in particular
¢, > —nlogd — B+ 1).
This gives us
I(v) < Cyvol({Q, < 1)) < Cpt" 'R, (D).

Let now %, € €~ (G) be a solution to 0u, = v,, according to Theorem 5, such that
[l e e w < 210).

Since ¢ * becomes as singular as | w’ |_2" near 0, all the %, must vanish to at least
second order at 0. Furthermore, the #, are all holomorphic on G\ {Q, = 1}. As in
section 2 of [F-S] we now apply the mean value inequality in order to gain an up-
per estimate for the holomorphic function

fw) = x(Qw))g,(w) — u,(w),

defined on G" = C"? X A(0, 3p,). Let w’ € G’, such that Q,(w") < 5; for small
0 < a < ¢/, the polydisc P(w’) around w’ with the radii

S ayt

Ro= o= Ry =—9L—
1+ Q,w")
E — Can(t)

n

1+ Q,wN™

is contained in G’ as a relatively compact subset. From the inequality | @ — b > >
lal’72 — | b|* we obtain for any {’ € P(w’), that Q,({’) = 5 Q,(w’) Q,(w —
£) =5/2— (a/n)®e > 2. Thus u, is holomorphic near P(w) If we denote by
P the polydisc around O with the same radii as P(w’), we obtain by the mean
value inequality

“4.7) |, @) < Ry R [ (@) [dG,....d"C,

< 2(R,...R) max """ I(v).

&ep

From property (1) for the bumping function ¢ of Theorem 4 we get for & € y 2
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¢ + &) < Cpy+ ¢, (w).

Thus the right-hand side of (4.7) can be estimated by
AN 2m 1 ., .,
C..(1+ Q,(w)) exp(—t— oW ; q)),

with universal constants Cy;, C,,, and m = k(n — 1) + n + 2. It is easy to see
that

7.,

(4.8) | 7w | < C,(1 + Qt(w/))meﬂ(_g/t.:ﬂ_

Since on {Q,(w) < 5} the right-hand side is bounded from below uniformly with
respect to ?, this estimate is also satisfied for w’ with @,(w") < 5. This follows
from the maximum principle. The functions f, all vanish at 0, and

af o0g .
I — i
3u),- ) = awj(O),for2 <j<n, 1L [< .

We are now ready to define near 0 € 02 holomorphic functions with the prop-
erties required in the Main Lemma. Let

. 2 -
(4.9) fi(w) = exp (wl + f(wz,tq) + LQ‘)f,(w’)

for w€ C X G’, 1 £ < n Finally we have to replace the f; by functions F, €
HW(Qq), with the same behavior at the point p,, We proceed in a similar way as
Bedford-Fornzess did in section 2 of [BF], or Range in [R, proof of Theorem 2.2}
By [C 2] the domain £, is regular in the sense of [D-F 1], such that we can choose
a Stein neighborhood basis (£2,),,, for £, with 2,°\, 2,. Let us choose another
cut-off function &, with values between O and 1, and which is zero on
[25/40%, o), and 1 on (— %, 4p5]. For I = 1,...,n we define

a, = olE( w ") f,(w)].
Further, let W, = 2log(1 + | w|) + (n + Dlog( w, + t|* + | w’|).
Our claim is: For a sufficiently small number s > 0 one has

(4.10) f |, %" 'd™w < Cyq(s)
9.

where C,4 depends only on s, but not on ¢, and | a, |2 denotes the sum of squares
of the absolute values of the coefficients of «;.
To prove this we choose for a positive number § € 1 an $(d) > 0, such that
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2.7 n B(0, 3p,) C {r < &}. This implies
2,7 Nsuppa, € 30,72 <|w| < 5p,/2)} = S.

By means of the bumping lemma, Theorem 4, we see that on S:
)< 9 _ 2% _ 1 2
¢(w ’ (]) ) .sz ZK(I wll + Vq(W)),
where B8 does not depend on (¢, q, 8). For § < ,Bp;k it now follows that
1
.Qqsm N suppa, C {ow; q) + 270 w "+ V,(w) <0} = M.

We show that s; = s(0) satisfies (4.8). On supp v, we have for small enough ¢:

e—W, SPZ—ZM—Z,
and, by virtue of (4.8), (4.9)
f I a, |ze«W,d2nw < pz—Zn f lfz(w) |2d2nw
2,51 2,51nsupp @,
—2n m Y (w'3g) "
<0, Cy 1+ QN " d™w
MNB(0,30,)

But the last integral is bounded uniformly in f and ¢ by a constant C,4, since the
integrand is less than a constant times

1+ Q)™ exp(— (Q,(w))P).

By Theorem 4.4.2 of [Hor] we find a smooth solution #, to the equation 9%, = a,,
satisfying

f!}sl | 1'21 Ize_w' = C17
q

uniformly in ¢, { Obviously the functions #, are all uniformly (in (g, {)) bounded
on £,. Now let

R =3 &0wP @) — @ — £,6),

Fw) =&(wl fw) —#,w), 2 <1< n.

These functions are holomorphic on £, and behave at p, like the f;, and because of
(4.8), (4.9) they satisfy all the requirements of the Main Lemma.
We now construct the function F,. To do this we apply Theorem 5 with
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N=n,D=20,Nn (C X G) to the 0-data
= (w +t]
v, = 0X (I_Jtz—l + Q:) &o-
€

Next we choose the right plurisubharmonic weight functions. First let j, be an in-
dex for which

ct iy
’

Rn(t) > (m

and

1, P, (-: q) [\
W, (w) =7|w l2+<“—‘“8t—q|—') | w, |%.

Then the function
, _ 1
X = 1+ W,w) exp(E pw; 9)

is plurisubharmonic and bounded on D, and, for small enough &, € 1 also the
function

2; - 50Qt

is plurisubharmonic on the polydisc 4(p,) used in the proof of Lemma 4.1. From
the properties of ¢ it follows that A, is bounded from above uniformly in (g, 9.
By the results of [D-F 2] we can choose a small number b > 0 and a large number
M, such that 7 := — (—7exp(— M| w|*))’ becomes a strictly plurisubharmonic
function on D. We set

r — T

; — exp (T)

t

Then we have, with a small positive constant ¢:

2
06A > ¢ (IJ%I_ - Laaq,).
2
So Theorem 5 applies with ¥'= c4(|—w1;—t| + Q,) and

O =ccA + X)) 2nlog ™ W)
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with a cut-off function & such that &) = x, for x < 7/8, and &(x) = 1, for
x > 1. What we obtain, is a smooth function #,, such that

w2
Fo=x ;2 + Q) & T u,
&

lies in Hz(.Qq) and has all the desired properties. The proof of the Main Lemma is
complete.

As a corollary we get, using the defining formulas for the domain functionals
Ky, bg,, Cq, and Kobg .

THEOREM 6. With a universal positive constant C,, the following estimates all
hold:

(4.11) %” < "(R,(0)" Ko (p0P) < Cy

BIDANR AN A CYNE B (h, -
(4.12) - [—t;— EZ ; +R(t)2]s(cgq(p,,Y)),ng(p,,Y),

ARSI AN Ak
(Kob,)?(,; V) < C B4 + > =i+
o 2, (pt 17 [ tz = t Rn(t)z]

for all vectors Y € C".

Proof. By means of the function F, we can estimate the Bergman kernel func-
tion of D= 0, N (C X G) in the desired way from below. Replacing D by £, is
allowed because of the localization lemma in [Oh].

5. Transformation to the original coordinates

Suppose z € £ N B,, where B, is a small ball centered at the origin, which is
contained in the ball B which was introduced at the beginning of this paper. After
shrinking B, we can find a boundary point ¢ € £ N B and a positive number £,
such that z=gq — te,, Here t=|7(z)|. We will have finished the proof of
Theorems 1 and 2, if we have shown

(5.1) lzgkz (”P ('t? 2 ")T ~ 4,

(Here we write f = g for two functions f, g, to indicate that there is a uniform

constant ¢ > 0, satisfying %fé g < ¢f). Because of the coupling between the
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weakly pseudoconvex direction L, and the strongly pseudoconvex ones, which is
. . oF,

reflected in the appearence of the functions 5-% 9z in Theorem 3, 2 < a < #m, it is
n

quite tedious to convert from the normalized coordinates w,, .. .,w, to the initial

ones. We agree upon the following

Notations. By I:n we will denote the vector field
L,=F,(L,,
where we abbreviate F = F(-; q). For 2 < a < n we set

0 or/ow, 0
0w, 67’/ Ow, ow,"

L=
Then we obtain, with the functions #,(-; ¢) from Theorem 3
(5.2) L,=2h,(w,; L,
a=2

where we define &, = 1. Furthermore,

_ 2 5 ¢, pOF OF,
(5.3) La=In@l % Lz F515m

Q)

Here, @ - = 97([L,, £, 1),

LEMMA 5.1. Let a be a positive integer. We denote by B, the set of all p-tuples
A= (ay,...,a,), withp < a, such that 2 < a; < n for all entries a; of A, and not
all a; ave equal to n. Then we have

HereLy,=1L,...L, fon A= (a,...,a,), and
1 1 b
b = cAh”‘ O

ipr

with integers Cay P/ Sp, il, P ,ip' S {2, N 1}, #1’ . .,,up' 1 Z] 1/11 -
a— #li|la,=n.

Proof. The proof can be given by induction on @, using (5.2). It consists in a
somewhat long but elementary computation. So we omit the details here.
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If we set A = det (£,D},_,, then for any a, b > 1:
(La lLb 12) F

LEMMA 5.2.
1 b~ 1
La Ln B.Q
18 a sum of products of the form
W R
where g is a smooth function, pt,, f;, and p + p = 2. Furthermore, Zf t,<a-—1,
E<b—1.

Proof. By the definition of Lj, we have
—~1 7b—1 -~ ~g—1 ~p— ~
LD @y =W 07 8D F

The definition of 4,4 gives us immediately

,~1 Fb,—1 =1 Fby—1
. L‘:z Ln 22 L:Iz Ln "(gn?

a-1 yb— . .

L, L, A,,= (A,)?:B) det .. :

! 2—1 ))2 1 n—1 7by—1
La fnz_r ot sz Ln ‘fnﬁ'
Here, the sum is extended over all multiindices A = (a,,.. .,a,,) of length @ and B
= (by,...,b,) of length b. Next we substitute (5.3) and (5.4) into this and apply

the Leibniz rule.

For any positive integers a, b one has

LEmMMA 5.3.
— a+b-2
ca—1 75-1 0
Lf, L =—+
a a—1 a_b—l
wn wn
av+u+p+a
where

a sum of terms of the form A, ,,———————,
"7 ow' owt dw’ ow’

WDovt+tut+p+o<a+b—2 and
(2) each of the functions A,,,, is a product of derivatives of 7, /7, with respect to

(wy, w,) which contains at least one factor

(c+d) =
07T Ay

cA-d ¥
ow, 0w, "1

withc+d=<a-+ b—3.
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Proof. Induction over @ + b, ¢f. [K 2], or formula (1.20) in [C 1]. Finally we
will need also

LEmMMA 5.4, The function:l can be represented as
La = Lom

2 = ’@nﬁ det
’(gn—li’ Qn—ln_—l

n—1 ~ =
+ Z 8»/1’(51»5 Zuﬁ Dw(,

vu=2

where ¢,, E{—1, 1}, and D,, dewotes the determinant of the matrix which arises from
(Lo F) by deleting the v'** row and the p'* column.
Proof. Apply the Laplace expansion theorem.

We are now ready for the

Proof of estimate (5.1). Let a, b be positive integers and [ = a + b. Then
L:_l [—13:1 Aog = (I::_l I:;—l A F+ F s
8" "2

= aw,‘:‘l awi“ F+Fent Fisa

P
= PP cF+Fent Foant Foy

3' P, ,
= | n (g lz P W, ;) +Fs T Fs T Fsuy T F 50

Here % s, F5.3, and F 54 are the error terms described in Lemmas (5.2) through
(5.4), and the error term %, can be estimated by %,,(2)'™"" < const - %8, (2).
By the choice of the redii we have on 4(p.):

3 la+8| 7 tl—-;—:gaﬁﬁ,

O Ty < BT
ow” o’ R,()%*P

for all multiindices a, 8 such that a; = §, = 0, and %(Z:«: a,+B) + g”;_Tﬂi

< 1. In order to estimate the derivatives of the functions 4,(w, ; ¢), we apply part
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(c) of Lemma 3.2 with p = R,(f). This gives

| By (w,; q) | < const

a

¢
R,(®"
for m < 2k. This enables us to control all the error terms F,), ...,F s, by

@(#) The above estimate can now be completed by
(¢

(5.4)
2'P, ©: 0
a~ b ’
ow, 0w
t

1 1
1
P / Budiid / B
< const |

a-1y7b-1
Ll an@. LG, + OR,®TY

< const [(”ﬁ(t—‘p”)’ +17C, @) | + 0 R, BT

L)

< C18 Rn (t)

In this estimate we used

LemMa 5.6 If P is a real-valued homogeneous polynomial of degree N in the

plane, then there exists a constant ¢y, depending only on N, such that

CL [Pl < 2| coefficients of P| < ¢ || P].
N

We take the maximum over all a, b, satisfying @ + b =1 in (5.4) and sum
over all l = 2,...,2k. This yields
2
2k .. T
Z("P (t’ 9 ")I > const Cy, (2)°.

1=2

The inequality is obtained in a similar way.

The expression for the invariant metrics. Finally we check that the
pseudometric My(z ; X) introduced before the statement of Theorem 2 satisfies

M0~ F@XLT S IF@XLF | IF @X], [
e £ i= t R,(®*

This will conclude the proof of Theorem 2, since if F,, denotes one of the invariant

metrics under consideration, then
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Fo(z; X) = F (0,; F' (9 X).
Theorem 2 therefore follows from Theorem 6. Now we have

(or(g), X)
(5.5) F@X=|B@ X"+ cX,
X,

Here, the matrices A = (£,;(g))},_, and B(¢g) (€ GL(n — 2, C)), and the vector

C"? are related by
~1 _ ~1
A= (BT o) (B2 ¢ \[Bo
0 1 & a;/\0 1)

From (5.5) we see that for 0 < n £ %:

i)zl LF(@X],[P= X" (B B'X +2Red’ B”'X" + ||| X, I’

} > (&) (BYBE - 2n eI X, I
Now the functions s;(X) satisfy the relation
(5.6) 50 =X, — 5,(Xr,(q)
for 1 = 2,...,n. Furthermore

(BB")' = (L),
and
[F'(pX], =X, = s5,X + 5,(X)7,(qg.

This implies

S ILF (X1, " _ ZZ;=2££’a;(zt)sa(X)sb()O . lctl |5, (0 [F — Cwls,(ff)l .

=2 t
Keeping in mind that for @ = 2,...,# — 1 one has ¢, = h,(0; q), we can estimate

| [ < const ———— Together with (5.5) we now obtain

R,(®)

——‘—l[F,(i)ZX] | + n§ “Fl(qt)X]’I + I[F;nggz]”‘ 2 const My(z; X).

The opposite estimate is shown in similar way. Obviously we may replace
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(& @)L, by (£,52)) 5L, The proof of Theorem 2 is now complete.
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