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1. Introduction. Let G by any given group. A homomorphic mappings of a subgroup A
of G onto a second subgroup B of G, where A and B need not be distinct, is called a partial
endomorphism of G. When /x is defined on the whole of G, that is when A = G, we call /x a
total endomorphism of G ; or simply an endomorphism of G.

A partial (or total) endomorphism fx* of a supergroup 6* of G is said to extend (or con-
tinue) fx if fi* is defined on a supergroup A* of A, that is, fx* is defined for at least the elements
for which /u. is defined, and moreover /x* coincides with n on A.

In [2] B. H. Neumann and Hanna Neumann derived necessary and sufficient conditions
for a partial endomorphism of a group to be extendable to a total endomorphism of a super-
group. These conditions were then generalised by the author [1], to give necessary and suffi-
cient conditions for the simultaneous extension of two partial endomorphisms to total endo-
morphisms of one and the same supergroup. The conditions there obtained were then genera-
lised using transfmite induction to any well-ordered set of partial endomorphisms.

In this paper, I derive the necessary and sufficient conditions that a partial endomorphism
fx of a group G can be extended to a total endomorphism n* of a supergroup G*, with the con-
dition that (x* acts as an isomorphism on G* (/x*)m, for some given positive m, imposed on fx*.

2. Necessary conditions. Let /x be a partial endomorphism of G mapping the subgroup
A c 0 onto the subgroup B ^ G.

To obtain necessary conditions for /x to be extendable to a total endomorphism fx* of a
supergroup G* => G such that fx* is an isomorphism on G((x*)m, where m is a positive integer
we assume that the extension is already established.

Denote the kernel of /x by K and that of (/x*)n by K(fx*n). The canonic mapping of G*
onto G*jK(fx*) induces the canonic mapping of A onto AjK ; but it also induces the canonic
mapping of A onto Aj{K{ix*)r\A) ; thus

K = K(fx*)nA = kernel of fx.

If we put
Lt = K(vL«)nG,

then, as in [1] or [2], we can prove that K(fx**) are normal subgroups of G such that

Kip**) c K{p**) for»<j,

and thus Lt are also normal subgroups for G for which

and LxnA is the kernel of /x,

{Li+1nA)p = LfnB (» = 1,2,...).

Now we have

*1) (I)
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If xeK(p*m+1), then

Xfj*m+1 = 1, o r (#ju.*m)fi* = 1,

where 1 denotes the unit element of G* ; since fx* is an isomorphism on G (f.*)m, then

Xfl*m = 1,

i.e. x e K(fj.*m) ;

thus Kdj.*^1) E K{ix*m) (II)

(I) and (II) together give

from which follows that

Lm = Lm+1.
Similarly we can show that

Thus we have the following theorem :
= L m + 1 = L m + 2 = ...

THEOBEM 1. For the partial endomorphism fi of the group G which maps A onto B, A and B
being subgroups of G, to be extendable to a total endomorphism fj.* of a supergroup G* 2 G such
that /x* is an isomorphism on G (/x*)m, it is necessary that there exists in G a sequence of normal
subgroups

Lx £ L2 c ... c Lm = Lm+1 = (1)
siich that

L^A is the kernel of ft, (2)

{LMnA)jx = L{nB (i = 1, 2, ..., m) (3)

From Theorem 1 follow immediately the following two corollaries.

COROLLARY 1. / / a;̂ < is defined, then x^* = 1 if and only if x e L(nA.

Proof. If x e LiCsA, then
x\x e (L(nA)fj. = i ,+ 1nj8,

by relation (3); and since cc/n2 is defined, then

xp e L^nBnA E L^nA,

and x/x2 e (Lt^nA)^ - Li_2nB.

Applying this a finite number of times, we get

x\t>-x e Lxc\A,

from which, because of relation (2), it follows that

XfX* = 1 .

Conversely, if xfj = 1, then x^-1 e L^nA.

But also XJX*-1 G B ;

thus xy}-1 eL^AnB £ Lxr\B = (Lz
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i.e. a;/x*~2 e L2nA.

The result follows by induction.

COEOLLAEY 2.f / / X(j,m+1 is defined, then

Xfxm+1 = 1 implies that Xfj™ = 1 (4)

Proof: a;/xm+1 = 1 implies, by Corollary 1, tha t

a 6 Lm+1nA = LmnA,

and thus x/xm = 1.

3. Sufficient conditions. To prove that the conditions of Theorem 1 are also sufficient,
we assume that the conditions there stated are satisfied and put

H = G/Lv

Then M contains a subgroup
B' = (AuLj)/^ ~ A/iAnLj) ~ B.

An isomorphism between B' and B is defined by letting aLx e B' correspond to ap e B, where
a e A. We then define the group Gj to be the free product of G and H, amalgamating B and B'
according to the above isomorphism :

GX={G*H; B = (AuLJILJ ;

and we let /zx be the canonic mapping of G onto H. The mapping ^ extends /n.
We then define in G± the normal groups

Mt = ( ( i ^ l u i , ) " . ,
where Xr denotes the normal closure of X in Y. Then, if i < j ,

Mt = ((Iwf t)ul,)«. s ((£,+i/h)uL,)<?« = Jf,,

since i,- s iy, Li+1 £ -̂ j+n by relations (1). Moreover,

-M'm+i = ({Lm+2H-i)^K+i)Gl = ((im+iftlui,,,)5' = Mm,
since Lm = Lm+1 = Lm+2, by relations (1). Thus

Mx £ M2 c ... c Jfm = Jfm+1 = . . . ; (5)

i.e., in Gx the normal subgroups Mt satisfy (1) when the {L,} are replaced by {if J .
The proof that conditions (2) and (3) are satisfied when M(, G, H, ^ replace Lit A, B, p

respectively, is the same as in [1] or [2]. Thus

M-^nG is the kernel of ftj, (6)

( J f m n ( ? K = MtnH (i = 1, 2, .... m) (7)

Conditions (5), (6) and (7) give, as in Corollary 2, the following

COROLLARY 3. In Gv if x ^ 1 is defined, then a;/x™+1 = 1 implies that xtf = 1.

Thus we can repeat the process, embedding G1 in G2, in which a partial endomorphism fi2

extends \ix with the conditions corresponding to (l)-(3) satisfied, and hence the condition
corresponding to (4) also holds.

11 am indebted to Dr B. H. Neumann for drawing ray attention to the fact that relation (4) follows
from the remaining conditions.

https://doi.org/10.1017/S2040618500034055 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034055


AN EMBEDDING THEOREM FOR GROUPS 143

Then we carry on inductively.
Finally we form

G* = U Gn,
n=0

with Go = G.
Define the mapping p* of G* as follows : For any g e G*, g eGn for some suitable n, and

we put

Thus /x* defines a total endomorphism of G* which extends /x. Also if g e G* and g/x*m+1 = 1,
then

<7/%+1 = 1, for some suitable n,

which implies, because of corollaries corresponding to Corollaries 2 and 3, that

<7/C = l-

Thus /x* is an isomorphism on <7(/x*)m, and we get

THEOREM 2. Conditions (l)-(3) of Theorem 1 are also sufficient for the partial endomorphism
li of the group G to be extendable to a total endomorphism of a supergroup G* 2 G such that n* is
an isomorphism on G(fi*)m.
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