A NOTE ON QUADRATIC FIELDS IN WHICH A FIXED PRIME NUMBER SPLITS COMPLETELY

HUMIO ICHIMURA

§1. Introduction

Throughout this note, p denotes a fixed prime number and f denotes a fixed natural number prime to p.

It is easy to see and more or less known that (*) for any natural number n, there exists an elliptic curve over \bar{F}_p whose j-invariant is of degree n over F_p and whose endomorphism ring is isomorphic to an order of an imaginary quadratic field. In this note, we consider a more precise problem: for any natural number n, decide whether or not there exists an elliptic curve over \bar{F}_p whose j-invariant is of degree n over F_p and whose endomorphism ring is isomorphic to an order of an imaginary quadratic field with conductor f.

To state our results, we introduce some notations. For an order \mathfrak{o} of a quadratic field K, we write $(\mathfrak{o}/p) = 1$ when (K/p) = 1 and the conductor of \mathfrak{o} is prime to p, where (K/p) denotes the Legendre symbol. Let \mathfrak{P} be a prime divisor of p in \overline{Q} . For an order \mathfrak{o} of a quadratic field with $(\mathfrak{o}/p) = 1$, we set $\mathfrak{p}_{\mathfrak{o}} = \mathfrak{P} \cap \mathfrak{o}$ and we denote by $n_{\mathfrak{o}}$ the number of elements of the cyclic subgroup of the proper \mathfrak{o} -ideal class group generated by the proper \mathfrak{o} -ideal class $\{\mathfrak{p}_{\mathfrak{o}}\}$. Clearly, $n_{\mathfrak{o}}$ does not depend on the choice of \mathfrak{P} .

Set $M(p,f)=\{\mathfrak{o}; \text{ orders of imaginary quadratic fields with } (\mathfrak{o}/p)=1$ and conductor $f\}$. Let N(p,f) be the image of the map $M(p,f)\ni\mathfrak{o}\to n_{\mathfrak{o}}\in N$.

By some results of Deuring on elliptic curves (see e.g. Lang [6]; Chap. 13, Theorem 11, 12, and Chap. 14, Theorem 1), the preceding problem is equivalent to a problem: decide the image N(p, f).

Our results are as follows.

Theorem 1. (i) When (p|l) = 1 for any odd prime divisor l of f, and

Received March 26, 1984.

^(*) We give a simple proof in Remark 1 of § 4.

 $8 \nmid f \text{ (resp. } 4 \nmid f \text{) in the case } p \equiv 5 \pmod{8} \text{ (resp. } p \equiv 3 \pmod{4}), \text{ the complement } N - N(p,f) \text{ is a finite set, (ii) otherwise, } N(p,f) \subset 2N, \text{ and the complement } 2N - N(p,f) \text{ is a finite set.}$

Theorem 2. N(p, 1) = N.

Further, for real quadratic fields, we show a fact similar to (but not as sharp as) Theorem 1, 2.

Ankeny and Chowla [1] proved $|N-N(3,1)| < \infty$ (a special case of Theorem 1). For a fixed natural number n, set $m(p,n) = |\{ \mathfrak{o} \in M(p,1); n_{\mathfrak{o}} = n \}|$. Humbert [4] and Kuroda [5] proved that $m(p,n) \to \infty$ as $p \to \infty$. By these facts, they showed the existence of infinitely many imaginary quadratic fields with class number divisible by a given integer. Theorem 1 is proved by using the method of [4], [1] and [5]. To prove Theorem 2, we first calculate a number n_p such that $n \in N(p,1)$ if $n \geq n_p$, with the help of an approximation formula of Rosser and Schoenfeld [8] for $\pi(x)$, the number of prime numbers $\leq x$. Next, we construct orders $\mathfrak{o} \in M(p,1)$ with $n_{\mathfrak{o}} = n$ for "small" n explicitly.

NOTATIONS. N, Z, Q and F_p denote, respectively, the set of natural numbers, the ring of rational integers, the field of rational numbers and the finite field with p elements. For a field K, \overline{K} denotes the algebraic closure of K. For an element a of a quadratic field, a' and N(a) denotes its conjugate and its norm respectively.

§ 2. Proof of Theorem 1

Let p be a fixed prime number and f a fixed natural number prime to p. There are two possible cases.

[I] (p/l) = 1 for any odd prime divisor l of f, and $8 \nmid f$ (resp. $4 \nmid f$) in the case $p \equiv 5 \pmod 8$ (resp. $p \equiv 3 \pmod 4$),

[II] otherwise.

First, we show the following

LEMMA 1. In case [II], $N(p, f) \subset 2N$.

Proof. The condition [II] means that (p/l) = -1 for some odd prime divisor l of f, or 8|f and $p \equiv 5 \pmod 8$, or 4|f and $p \equiv 3 \pmod 4$. Let $\mathfrak o$ be an order of an imaginary quadratic field with $(\mathfrak o/p) = 1$ and conductor f. Let d be the discriminant of the imaginary quadratic field $\mathfrak o \otimes_z \mathbf Q$. First, assume that (p/l) = -1 for some odd prime divisor l of f and $d \equiv 0$

(mod 4). Then, $o = [1, f\sqrt{d/4}]$. By the definition of n_o , $\mathfrak{p}_o^{n_o} = (a+bf\sqrt{d/4})$ for some $a, b \in \mathbb{Z}$. Taking norms of both sides, $p^{n_o} = a^2 - b^2 f^2(d/4)$. Therefore, if n_o is odd, (p/l) = 1 for any odd prime divisor l of f, which is a contradiction. So, n_o must be even. It is proved similarly in the other cases.

Now, we prove that N - N(p, f) (resp. 2N - N(p, f)) is a finite set in case [I] (resp. [II]). First, we deal with the case where f is odd and satisfying the condition [I].

The following lemma is easily proved.

Lemma 2. Assume f is odd. Let n be a natural number, and let x be a rational integer, prime to 2p and satisfying the following conditions:

- (i) $x^2 \equiv 4p^n \pmod{f^2}$,
- (ii) $\frac{x^2-4p^n}{f^2}$ is square free,
- (iii) $0 < x < 2\sqrt{p^n p^{n/2}}$.

Let o be the order the imaginary quadratic field $K = Q(\sqrt{x^2 - 4p^n})$ with conductor f. Then, (0/p) = 1 and $n_0 = n$.

Let $f=\prod_i l_i^{e_i}$ be the prime decomposition of f, and set $f_0=\prod_i l_i$. Since f is odd and satisfies the condition [I], there exists an odd integer x(n) such that $x(n)^2\equiv 4p^n\pmod{f^2}$ and $x(n)^2\equiv 4p^n\pmod{l^2f^2}$ for any prime divisor l of f. Set $A(n)=\{x(n)+2f_0^2f^2k;\,k\in Z\}$ and $B(n)=\{x\in A(n);\,x$ is prime to $p,\,x^2\not\equiv 4p^n\pmod{l^2}$ for any odd prime number l with $l\not\nmid f$, and $0< x<2\sqrt{p^n-p^{n/2}}\}$. By Lemma 2, it suffices to show that $|B(n)|\to\infty$ as $n\to\infty$. The number of $x\in A(n)$ such that x is prime to p and $0< x<2\sqrt{p^n-p^{n/2}}$ is at least $[(1-1/p)((\sqrt{p^n-p^{n/2}})/f_0^2f^2)]-2$ if $p\ne 2$, and $[(\sqrt{p^n-p^{n/2}})/f_0^2f^2]$ if p=2, where [a] denotes the largest integer $\le a$.

Let l be an odd prime number with $l \not\mid pf$. Since the congruence $x^2 \equiv 4p^n \pmod{l^2}$ has at most two solutions, the number of $x \in A(n)$ such that $x^2 \equiv 4p^n \pmod{l^2}$ and $0 < x < 2\sqrt{p^n - p^{n/2}}$ is at most $2\{[(\sqrt{p^n - p^{n/2}})/f_0^2f^2l^2] + 1\}$ if $l < 2p^{n/2}$, and is zero if $l \ge 2p^{n/2}$.

Therefore,

$$egin{aligned} ig(1) & |B(n)| > iggl\{ iggl[iggl(1-rac{1}{p}iggr) rac{\sqrt{p^n-p^{n/2}}}{f_0^2f^2} iggr] - 2 - \sum_l' iggl\{ 2 iggl[rac{\sqrt{p^n-p^{n/2}}}{f_0^2f^2l^2} iggr] + 2 iggr\} & ext{if } p
eq 2 \ iggl[iggl(rac{\sqrt{p^n-p^{n/2}}}{f_0^2f^2} iggr] - \sum_l' iggl\{ 2 iggl[rac{\sqrt{p^n-p^{n/2}}}{f_0^2f^2l^2} iggr] + 2 iggr\} & ext{if } p = 2 \end{aligned}$$

$$> egin{dcases} rac{1}{f_0^2 f^2} \Big\{ \Big(1 - rac{1}{p}\Big) - 2\sum' rac{1}{l^2} \Big\} \sqrt{p^n - p^{n/2}} - 3 - 2\sum_l '' 1 & ext{if } p
eq 2 \ rac{1}{f_0^2 f^2} \Big\{ 1 - 2\sum_l ' \Big\} \sqrt{p^n - p^{n/2}} - 1 & - 2\sum_l '' 1 & ext{if } p = 2 \; , \end{cases}$$

where the sum \sum_{l}' is taken over all prime numbers l prime to 2pf with $0 < l < 2p^{n/2}$, and the sum \sum_{l}'' is taken over all prime numbers l with $0 < l < 2p^{n/2}$.

Note that $\sum_{l}' 1/l^2 < \log \zeta(2) - 1/4 - 1/p^2$ (resp. $\log \zeta(2) - 1/4$) when $p \neq 2$ (resp. p = 2), where $\zeta(s)$ is the Riemann zeta function. Therefore, by $\zeta(2) = \pi^2/6$, we see that the coefficient of $\sqrt{p^n - p^{n/2}}$ is larger than the positive constant $c_p/f_0^2f^2$, where c_p is the positive constant given as follows:

		(Ta	able 1)		
p	$p \geq 11$	7	5	3	2
c_p	0.429	0.401	0.384	0.392	0.504

On the other hand, by the prime number theorem,

$$\sum_{l} "1 = O\left(\frac{2p^{n/2}}{(n/2)\log p}\right).$$

Therefore, $|B(n)| \to \infty$ as $n \to \infty$. This completes the proof of Theorem 1 when f is odd and satisfies the condition [I].

It is proved similarly in the other cases.

§3. Proof of Theorem 2

Let $\pi(x)$ be the number of prime numbers $\leq x$. Rosser and Schoenfeld [8] (Theorem 2) showed

(2)
$$\pi(x) < \frac{x}{\log x - 3/2}$$
 for $x > e^{3/2}$.

By a simple calculation using (1), (2) and Table 1, we obtain

Lemma 3. The set N(p, 1) contains all natural numbers n with $n \ge n_p$, where n_p is the natural number given in the following table.

p	$p \geq 11$	7	5	3	2
$\overline{n_p}$	10	12	16	21	26

By this lemma, it suffices to construct orders $o \in M(p, 1)$ with $n_o = n$ for "small" n.

Lemma 4. The set N(p, 1) contains all natural numbers of the form $n = 2^{\lambda}3^{\mu}5^{\nu}7^{\chi}$ with $\lambda, \mu, \nu, \chi \geq 0$.

Proof. First, we prove our lemma when $p \neq 3$. Fix a natural number k and set $m = p^k$. Set $K_{1,l} = \mathbf{Q}(\sqrt{1-4m^l})$ and $K_{2,l} = \mathbf{Q}(\sqrt{9-4m^l})$ for l = 1, 2, 3, 5, 7. When $p \neq 3$, $(K_{i,l}/p) = 1$ and we denote by $\mathfrak{p}_{i,l}$ a prime ideal^(*) of $K_{i,l}$ over p (i = 1, 2, l = 1, 2, 3, 5, 7). We show

CLAIM 1. Assume $p \neq 3$. The ideal class^(*) of $\mathfrak{P}_{1,2}^k$ (in $K_{1,2}$) or that of $\mathfrak{P}_{2,2}^k$ (in $K_{2,2}$) is of order 2.

This is proved as follows. Write $1 - 4m^2 = f_1^2 d_1$ and $9 - 4m^2 = f_2^2 d_2$ with natural numbers f_1, f_2 and square free integers d_1, d_2 . Then, $d_i \equiv 1$ (mod 4) and 1, $(1+\sqrt{d_i})/2$ is an integral basis of $K_{i,2}$. Note that $K_{i,2}\neq$ $Q(\sqrt{-1})$ because $d_i \equiv 1 \pmod{4}$. Set $\alpha_1 = (1 + \sqrt{1 - 4m^2})/2$ and $\alpha_2 = (1 + \sqrt{1 - 4m^2})/2$ $(3+\sqrt{9-4m^2})/2$. Then, we easily see that α_i is an integer of $K_{i,2}$, (α_i, α_i') = 1 and $N(\alpha_i) = p^{2k}$. Hence, we may assume, without loss of generality, that $\mathfrak{p}_{i,2}^{2k!} = (\alpha_i)$. Assume that $\mathfrak{p}_{1,2}^k$ is principal. Then, since $K_{1,2} \neq Q(\sqrt{-1})$, $\alpha_1 = \pm ((a + b\sqrt{d_1})/2)^2$ for some $a, b \in \mathbb{Z}$. Therefore, $1 = \pm (a^2 + b^2d_1)/2$ and $f_1 = \pm ab$. Hence, $1 - 4m^2 = f_1^2 d_1 = a^2 (\pm 2 - a^2)$, from which we obtain $2m = a^2 \pm 1$. By considering both sides modulo 4, we see that a is odd and $2m = a^2 + 1$ (resp. $2m = a^2 - 1$) when m is odd (resp. even). Next, assume that $\mathfrak{p}_{2,2}^k$ is principal. Then, similarly, for some odd integer c, 2m $=c^2-3$ (resp. $2m=c^2+3$) when m is odd (resp. even). Therefore, if both of $\mathfrak{p}_{1,2}^k$ and $\mathfrak{p}_{2,2}^k$ are principal, $c^2 = a^2 + 4$ for some odd integers a and c. But this is impossible because the square of an odd integer is congruent to 1 modulo 8. Hence, we obtain our claim. Similarly and more easily, we can prove

Claim $2^{(***)}$. Assume $p \neq 3$. For l = 1, 3, 5, 7, the ideal class of $\mathfrak{p}_{i,l}^k$ is of order l (i = 1, 2).

Now, set $n = 2^{\lambda} 3^{\mu} 5^{\nu} 7^{\chi}$ with $\lambda, \mu, \nu, \chi \geq 0$. By the above claims, we see that for the maximal order 0 of the imaginary quadratic field $\mathbf{Q}(\sqrt{1-4p^n})$

^(*) In this section, an ideal (class) is one with respect to the maximal order of an imaginary quadratic field.

^{***)} Further, we can show that for any prime number $l \geq 7$, the ideal class of $p_{i,l}^k$ is of order l for sufficiently large p.

or that of $Q(\sqrt{9-4p^n})$, (o/p)=1 and $n_o=n$. This proves our lemma when $p \neq 3$. When p=3, we can prove our lemma similarly by considering imaginary quadratic fields of type $K'_{2,l}=Q(\sqrt{25-4m^l})$ in place of $K_{2,l}$.

Lemma 5. Assume p is odd. Then, the set N(p, 1) contains all odd natural numbers prime to p.

Proof. Let n be an odd natural number prime to p. Let n_1 be the largest square free integer |n|. Note that $n_1^2 < p^n$. We easily see that for the maximal order 0 of the imaginary quadratic field $Q(\sqrt{n_1^2 - p^n})$, (0/p) = 1 and $n_0 = n$, by the following

THEOREM (Nagel [7], Satz V). Let n be an odd natural number. Let x and z be natural numbers such that (x, z) = 1, $x^2 < z^n$, $2 \nmid z$, and $q \parallel x$ for any prime divisor q of n. Let $z = \prod_i q_i^{e_i}$ be the prime decomposition of z. Set $K = Q(\sqrt{x^2 - z^n})$. Then, $(K/q_i) = 1$ and $q_i = (q_i, x + \sqrt{x^2 - z^n})$ is a prime ideal of K over q_i . Set $\alpha = \prod_i q_i^{e_i}$. Then, the ideal class of α is of order n.

Hence, we obtain our assertion.

By Lemmas 3, 4, 5, it remains to construct orders $0 \in M(p, 1)$ with $n_0 = n$ when (p, n) = (2, 11), (2, 13), (2, 17), (2, 19), (2, 22), (2, 23).

Using the table of Wada [9], we see, by a simple calculation, that the maximal order of the following imaginary quadratic field K(p, n) is an example of such an order for the above (p, n).

(p, n)	(2, 11)	(2, 13)	(2, 17)
K(p, n)	$Q(\sqrt{-167})$	$Q(\sqrt{-263})$	$Q(\sqrt{-383})$
h(p, n)	11	13	17
(p, n)	(2, 19)	(2, 22)	(2, 23)
K(p, n)	$Q(\sqrt{-311})$	$Q(\sqrt{-591})$	$Q(\sqrt{-647})$
h(p, n)	19	22	25

(h(p, n) denotes the class number of K(p, n).)

This completes the proof of Theorem 2.

§4. Real quadratic fields

Set M(p) (resp. $M(p)_+) = \{0$; orders of imaginary (resp. real) quadratic fields with $(0/p) = 1\}$. Let N(p) (resp. $N(p)_+$) be the image of the map $\partial(p)$ (resp. $\partial(p)_+$):

$$M(p)$$
 (resp. $M(p)_+$) $\ni \mathfrak{o} \longrightarrow n_{\mathfrak{o}} \in N$.

By Theorem 2, N(p) = N. In this section, we prove the following

Proposition. $N(p)_+ = N$.

First, we give a definition.

DEFINITION. Let d(>1) be a square free integer, and let m(>1) and g be natural numbers. Let (X, Y) = (u, v) be a rational integral solution of the diophantine equation

$$(3) X^2 - dg^2 Y^2 = +4m.$$

We say that (u, v) is a trivial solution if $m = n^2$ is a square and $n \mid u$, $n \mid vg$.

LEMMA 6. Let d(>1) be a square free integer and g a natural number. Set $K = Q(\sqrt{d})$. Let $\varepsilon = (1/2)(s + tg\sqrt{d})$ be a nontrivial unit of the order of K with conductor g such that $\varepsilon > 1$ and $N(\varepsilon) = -1$ (resp. $N(\varepsilon) = 1$). For a natural number m(>1), if the diophantine equation (3) has a nontrivial solution, an inequality $m \ge s/t^2$ (resp. $m \ge (s-2)/t^2$) holds.

When m is not a square and g = 1, this lemma was proved in Ankeny, Chowla and Hasse [2] and Hasse [3]. The proof of the general case goes through similarly and we shall not give the proof.

Now, we shall prove our proposition. Let n be a natural number. We see easily that $p^{2n}+4$ is not a square. Let $K=Q(\sqrt{p^{2n}+4})$. First, we deal with the case $p\neq 2$. Write $p^{2n}+4=g^2d$ with a natural number g and a square free integer d. Let o be the order of K with conductor g. We claim that (o/p)=1 and $n_o=n$. We easily see that (o/p)=1, $o=[1, (1+\sqrt{p^{2n}+4})/2]$ and $\varepsilon=(1/2)(p^n+\sqrt{p^{2n}+4})$ is a nontrivial unit of o with $N(\varepsilon)=-1$. Set $\alpha=1-\varepsilon$. Then, $\alpha\in o$, $N(a)=-p^n$ and $(\alpha,\alpha')=1$. Therefore, $\mathfrak{p}_o^n=(\alpha)$ or $\mathfrak{p}_o^n=(\alpha')$, hence by the definition of n_o , $n_o|n$. On the other hand, $\mathfrak{p}_o^{n_o}=(a+b(1+\sqrt{p^{2n}+4})/2)$ for some $a,b\in Z$. Taking norms of both sides, we obtain $\pm 4p^{n_o}=(2a+b)^2-b^2(p^{2n}+4)=(2a+b)^2-dg^2b^2$. Since $(\mathfrak{p}_o,\mathfrak{p}_o')=1$, (X,Y)=(2a+b,b) is a nontrivial solution of

the diophantine equation $X^2-dg^2Y^2=\pm 4p^{n_0}$. Therefore, by Lemma 6 and the fact that ε is a unit of $\mathfrak o$ with $N(\varepsilon)=-1$, we get $p^{n_0}\geq p^n$, i.e. $n_0\geq n$. Hence $n_0=n$, which proves our claim. Next, we deal with the case p=2. Assume $n\geq 3$ and set m=n-2 (≥ 1). Then, $p^{2n}+4=4g^2d$ for an odd natural number g and a square free integer d with $d\equiv 1\pmod 8$. We claim that for the order $\mathfrak o$ of K with conductor g, $(\mathfrak o/2)=1$ and $n_0=m$. Since g is odd and $d\equiv 1\pmod 8$, $(\mathfrak o/p)=1$. Set $\alpha=(1/2)(2^{n-1}+1+\sqrt{2^{2n-2}+1})$. Then, $a\in \mathfrak o$, $N(\alpha)=2^m$ and $(\alpha,\alpha')=1$. Therefore, $\mathfrak p^m_0=(\alpha)$ or $\mathfrak p^m_0=(\alpha')$, hence $n_0|m$. Then, similarly to the case $p\neq 2$, we see that $n_0=m$ by Lemma 6 and the fact that $\varepsilon=(1/2)(2^n+2\sqrt{2^{2n-2}+1})$ is a unit of $\mathfrak o$ with $N(\varepsilon)=-1$.

This completes the proof of our proposition.

Remark 1. The fact that N(p) = N is also proved as follows. Let n be a natural number. Set $K = Q(\sqrt{1-4p^n})$. Write $1-4p^n = g^2d$ for a natural number g and a square free integer d. Then, by Lemma 2, (0/p) = 1 and $n_0 = n$, for the order 0 of K with conductor g.

Remark 2. We have seen that the maps $\partial(p)$, $\partial(p)_+$ are surjective. For any $n \in \mathbb{N}$, the inverse image $\partial(p)^{-1}(n)$ is a finite set, but $\partial(p)_+^{-1}(n)$ is an infinite set. This is shown as follows.

The imaginary quadratic case: Obvious.

The real quadratic case: (The notations being as in the proof of Proposition.) First, we deal with the case $p \neq 2$. Let $(1/2)(s + tg\sqrt{d})$ be a nontrivial unit of $\mathfrak o$ with s, t > 0. Let $\mathfrak o_1$ be the order of K with conductor $(((p^n - 2)t + s)/2)g$. Then, we easily see that $(\mathfrak o_1/p) = 1$ and $n_{\mathfrak o_1} = n$. Since there are infinitely many units of $\mathfrak o$, there exist infinitely many $\mathfrak o_1$'s with $(\mathfrak o_1/p) = 1$ and $n_{\mathfrak o_1} = n$. It is proved similarly when p = 2.

Remark 3. Set $M(p, 1)_+ = \{0\}$; maximal orders of real quadratic fields with $(0/p) = 1\}$. Let $N(p, 1)_+$ be the image of the map $\partial(p, 1)_+ \colon M(p, 1)_+$ $\ni 0 \to n_0 \in N$. We see that $n = 1, 2 \in N(p, 1)_+$ and the inverse images $\partial(p, 1)_+^{-1}(1)$, $\partial(p, 1)_+^{-1}(2)$ are infinite sets by considering the following real quadratic fields:

n=1; $K=Q(\sqrt{x^2+4p})$ where x is a rational integer prime to 2p. (Fields of this type were considered in Yamamoto [10].)

n=2; $K=Q(\sqrt{q(q-4p)})$ where q is a prime number such that q>4p, (-1/q)=1 and (p/q)=-1.

In view of this, we can raise questions: (1) for any $n \in N(p, 1)_+$, is

the inverse image $\partial(p, 1)^{-1}_+(n)$ an infinite set? (2) does $N(p, 1)_+$ coincide with N?

REFERENCES

- [1] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math., 5 (1955), 321-324.
- [2] N. C. Ankeny, S. Chowla and H. Hasse, On the class number of the maximal real subfields of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
- [3] H. Hasse, Über die mehrklassige, aber einegeschlechtige reell-quadratische Zahklkörper, Elem. Math., 20 (1965), 49-58.
- [4] P. Humbert, Sur les nombres de classes de certains corps quadratiques, Comment. Math. Helv., 12 (1939/40), 233-245.
- [5] S.-N. Kuroda, On the class number of imaginary quadratic number fields, Proc. Japan Acad., 40 (1964), 365-367.
- [6] S. Lang, Elliptic functions, Addison Wesley (1973).
- [7] T. Nagel, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Humburg, 1 (1922), 140-150.
- [8] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.
- [9] H. Wada, The table of the class number of the quadratic field $Q(\sqrt{-m})$, $1 \le m < 24000$, RIMS Kokyuroku, **89** (1970), 90-114.
- [10] Y. Yamamoto, Real quadratic number fields with large fundamental units, Osaka J. Math., 8 (1971), 261-270.

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo, 113 Japan