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This paper investigates the linear and nonlinear evolution of radiating modes in supersonic
boundary layers under the influence of impinging sound waves. It is found that the ensuing
boundary-layer response is extraordinarily large for a subset of the sound frequency and
incident angle, and the resonant over-reflection, corresponding to the reflection coefficient
becoming infinite, occurs at a particular pairing of frequency and incident angle. At this
point, the reflected wave coincides with a locally neutral radiating mode, which emits
spontaneously sound in the form of Mach waves. A fundamental resonance takes place
between the incident wave and the radiating mode. Viewed in a developing boundary
layer, the response is rendered finite by introducing non-parallelism and nonlinear effects
near the neutral location of the radiating mode, where the sound wave directly excites the
radiating mode and/or acts on the pre-existing radiating mode. Inhomogeneous amplitude
equations are derived to describe the excitation as well as the nonlinear development of
the radiating mode in the two regimes where non-equilibrium and non-parallelism play
a leading-order role, respectively. A composite amplitude equation is then constructed
to take into account both non-parallelism and non-equilibrium effects. This amplitude
equation is, with an appropriate initial condition, solved to quantify the impact of the
impinging sound wave on the linear and nonlinear instability characteristics of the
radiating mode. The far-field analysis shows that the Mach wave field of the radiating
mode is changed significantly due to the incident sound.
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1. Introduction

There has been considerable interest in laminar–turbulent transition of super- and
hypersonic boundary-layer flows due to their key role in the development of high-speed
vehicles (Kimmel 2003). An adequate understanding of this physical process is crucial
to their design as aerodynamic drag and thermal loading differ drastically depending on
whether the flow is laminar or turbulent (Fedorov 2011; Zhong & Wang 2012).

Transition is characterised by a high degree of spatial and temporal complexity
(Kachanov 1994). It often starts with amplification of small-amplitude instability waves,
which are triggered, via the so-called receptivity (Morkovin 1969; Goldstein & Hultgren
1989), by external perturbations, including acoustic, vortical or entropy waves in the free
stream and local imperfections on the surface. The instability modes excited first grow
exponentially, which is well predicted by linear stability theory. Once the disturbances
become sufficiently strong, nonlinear inter-modal interactions take place, leading to final
breakdown to turbulence. In many situations, ambient disturbances may further influence
the linear and nonlinear development of the instability waves and thereby affect transition
location. This scenario has only received limited attention and it will be studied in this
paper. Specifically, we will focus on the evolution of such instability waves in a supersonic
boundary layer under the influence of impinging acoustic waves.

1.1. Intrinsic instabilities in compressible boundary layers
Theoretical studies of compressible boundary-layer instability as well as extensive
computations, performed at different conditions (e.g. Mach number, Reynolds number and
wall temperature) have identified a multitude of instability modes, which are now termed
the first and second Mack modes, etc. (Mack 1975, 1984) . Lower-branch first modes that
are sufficiently oblique are the continuation of the viscous Tollmien–Schlichting (T-S)
instability into the supersonic regime, and they are governed by the compressible version
of the triple-deck structure (Smith 1989). The remaining first modes and second modes
are of inviscid nature, and their existence is associated with a generalised inflection point
(Lees & Lin 1946). For insulated walls, the first modes represent dominant instability up
to a Mach number of approximately 4, beyond which the second modes prevail. For cooled
walls, the second modes can dominate at lower Mach numbers (Mack 1993).

Instability modes can be categorised based on their propagation speeds relative to the
free stream. A mode travelling relative to the free stream at a velocity smaller than the
sound speed is referred to as a subsonic mode. Its eigenfunction decays exponentially
away from the boundary layer. In contrast, a mode propagating supersonically relative to
the free stream is referred to as a supersonic or radiating mode because its eigenfunction
is oscillatory while attenuating, or remains bounded in the far field when the mode is
neutral. Both neutral subsonic and supersonic modes have a critical level (i.e. the position
where the base-flow velocity is equal to the phase velocity). The critical level of the former
coincides with the generalised inflection point, but that of the latter does not. It is well
known that the supersonic modes are present in supersonic jets, and radiate Mach waves;
see Tam (1995) and references therein.

The present paper is concerned with the supersonic mode, whose existence in
compressible boundary layers is also well known (Mack 1984). Such modes may
exist if the wall is cooled sufficiently below the adiabatic temperature (Chuvakhov &
Fedorov 2016) or the free-stream enthalpy is high (Salemi & Fasel 2018). They have
been reported for flows over flat plates (Mack 1987; Bitter & Shepherd 2015), wedges
(Chang, Malik & Hussaini 1990; Chang, Vinh & Malik 1997) and cones (Knisely &
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Excitation and evolution of radiating modes. Part 1

Zhong 2017; Mortensen 2018). Sound radiation by unstable supersonic modes in a
hypersonic blunt-cone boundary layer was studied numerically by Knisely & Zhong
(2019a,b).

While proven to be rather successful in describing the dispersion relationship and
growth rates of small-amplitude instability waves, linear stability theory fails to predict
the course of evolution when the magnitude of the instability mode is no longer small
enough. A typical evolution path is that the instability wave goes through almost the
entire linear amplification regime, acquiring a sufficiently large amplitude near its neutral
position. At high Reynolds numbers, a critical layer emerges, where nonlinear interaction
first takes place, and usually other physical factors such as viscous and non-equilibrium
effects (associated with the slow modulation of the modal amplitude), although remaining
negligible in the main bulk, also come into play (Goldstein & Hultgren 1988; Goldstein &
Leib 1988). The continued development of the disturbance under the combined influence
of these factors is described by the well-developed nonlinear non-equilibrium critical-layer
theory, a review of which is given by Wu (2019). In this theory, the nonlinear dynamics
is determined by the composition of modes and the singular nature of the inviscid
solution in the outer layer. Once a singularity is removed by introducing viscous and/or
non-equilibrium effects in the critical layer, the regularised solution represents a locally
large disturbance, which contributes dominant nonlinear effects. The dynamics may take
a weakly or strongly nonlinear form.

Nonlinear and non-equilibrium critical layers were considered for externally forced
waves in shear flows in the late 1970s, but for free instability modes the study of such
critical-layer dynamics started with Hickernell (1984), who considered temporal evolution
of a non-inflectional planar Rossby mode on a rotating free shear layer. The interactions
in the critical layer turned out to be of weakly nonlinear nature, the analysis of which
led to a novel amplitude equation containing a non-local nonlinear term. Goldstein &
Leib (1988) and Goldstein & Hultgren (1988) considered a regular Rayleigh instability
mode in a free shear layer. They showed that the critical-layer dynamics is strongly
nonlinear, and the evolution is governed by an amplitude equation coupled with the
vorticity equation, in which the unknown amplitude appears as a coefficient. Goldstein
& Leib (1989) studied the nonlinear evolution of a subsonic mode in a supersonic shear
layer, for which the inviscid solution of the temperature fluctuation exhibits a simple-pole
singularity, which dictates that the interactions are of weakly nonlinear type. An evolution
equation was derived, to which the singularity contributes a signature non-local nonlinear
term. Leib (1991) extended the analysis to a supersonic mode, which is non-inflectional.
The additional logarithmic singularity in the streamwise velocity gives rise to an extra
history-dependent nonlinear term. The above studies were the first to solve the non-local
nonlinear equations numerically, showing that the amplitude exhibits rather complex
behaviours, including finite-distance blow-up and oscillatory saturation. Their analyses
are closely related to the present study. Gajjar (1995, 1996) considered the nonlinear
development of stationary and travelling vortices in three-dimensional boundary layers. An
amplitude equation was derived in each case, with the non-local nonlinearity associated
with the three-dimensional nature of the perturbation, and for travelling vortices in the
compressible regime with the simple-pole and logarithmic singularities in the temperature
and streamwise velocity as well.

There has been a large number of studies of inter-modal interactions within
non-equilibrium critical layers (Goldstein 1995; Wu 2019). Important forms of modal
composition include pairs of oblique modes with equal frequency but opposite spanwise
wavenumbers (Goldstein & Choi 1989; Wu, Lee & Cowley 1993; Leib & Lee 1995),
resonant triads of inviscid Rayleigh waves (Wu 1992, 1995) and more generally
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phase-locked modes (i.e. modes having nearly the same phase speed) (Wu & Stewart 1996;
Wu, Stewart & Cowley 2007).

1.2. Effects of external disturbances on transition
External disturbances, including surface roughness elements and free-stream disturbances,
may affect the transition route and location through different mechanisms, depending on
their position as well as length and time scales. One of the important mechanisms is
receptivity, which refers to the process by which external disturbances excite instability
modes, and thus determine the initial amplitudes of the latter (Morkovin 1969). It is now
well recognised that excitation in general requires a mechanism of length scale conversion
or tuning, which is, in the incompressible or subsonic regime, provided by the adjustment
in the leading-edge region (Goldstein 1983) and/or scattering of free-stream acoustic waves
(Ruban 1984; Goldstein 1985) or vortical disturbances (Duck, Ruban & Zhikharev 1996;
Wu 2001a,b) by surface roughness.

The receptivity mechanisms identified for incompressible, or compressible subsonic,
boundary layers remain operational in super- and hyper-sonic regimes, but may take on
significantly different characteristics. On the other hand, new mechanisms may arise due
to the nature of the instabilities. The excitation of first and second modes by impinging
sound waves through the leading-edge mechanism was considered by Fedorov & Khokhlov
(1991, 2001) and Fedorov (2003a). Their analysis showed that there exist the so-called fast
and slow modes, whose phase velocities in the leading-edge region approach those of the
oncoming fast and slow acoustic waves, respectively. Both modes are thus excited. As they
undergo no or only marginal decay, the leading-edge adjustment mechanism is much more
efficient than its counterpart in the subsonic regime, and has been the subject of a series of
direct numerical simulations (DNS) (Ma & Zhong 2003, 2005; Balakumar 2005, 2009).
Vortical disturbances may generate highly oblique modes (Ricco & Wu 2007), which may
be particularly effective for a small specific range of obliqueness angle (Goldstein & Ricco
2018). The mechanism of the acoustic–roughness interaction carries over to the supersonic
regime, generating first and second modes in much the same manner as exciting the T-S
mode in the subsonic regime when the theory was formulated in a finite-Reynolds-number
framework (Fedorov 2003b). The (improved) large-Reynolds-number asymptotic analyses
showed that, among all possible acoustic waves, those on the triple-deck scales and
with incident angles close to cos−1(1/M) (M being the free-stream Mach number) are
particularly effective in generating the viscous first mode (Liu, Dong & Wu 2020), while
generation of the second mode was due to a pure surface geometry effect at leading order
(Dong, Liu & Wu 2020).

New receptivity mechanisms operate for supersonic boundary layers and have been
described theoretically. One of these is the sound–gust interaction (Wu 1999), in which
sound and vortical disturbances with suitable wavenumbers and frequencies interact to
generate a forcing that is in resonance with and thereby excites the viscous first mode.
Sound–sound interaction also generates the viscous first mode, and this mechanism
becomes particularly efficient for sound waves on the triple-deck scales (Hernández & Wu
2019). Another distinct mechanism operates in the hypersonic flow past a wedge, where,
due to the presence of an oblique shock, there exist viscous instability modes confined in
the region below the shock (Cowley & Hall 1990). Qin & Wu (2016) showed that any of the
oncoming acoustic, vortical and entropy disturbances interacts with the shock to generate
a slow acoustic wave downstream, and with suitable frequency the latter may resonate with
and thereby excite the instability. The above three mechanisms do not resort to any surface
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roughness, and hence operate in supersonic boundary layers over nominally smooth walls,
providing possible explanations for the unstable modes observed.

When external disturbances of sufficient magnitude are present in the main unstable
region, they may influence instability characteristics. Surface roughness has received most
attention, and is found to play a destabilising role, in most cases causing earlier transition
(Klebanoff & Tidstrom 1972; Corke, Barsever & Morkovin 1986). When roughness
elements have a length scale much longer than that of the instability, their impact can
be accounted for by local linear stability analysis of the altered base flow. Analyses
of this kind have been performed for two-dimensional (Nayfeh, Ragab & Al-Maaitah
1988; Masad & Iyer 1994) and three-dimensional roughness (Piot, Casalis & Rist 2008;
Choudhari et al. 2010; De Tullio et al. 2013; Groskopf & Kloker 2016). However, when the
length scale of the roughness is comparable to, or shorter than, that of the instability,
local stability analysis is no longer tenable, and DNS have been performed instead
(Marxen, Iaccarino & Shaqfeh 2010; Edelmann & Rist 2013). The physical mechanism
is local scattering: the roughness-induced local mean-flow distortion scatters an oncoming
instability wave, changing its amplitude over a short length. A transmission coefficient,
defined as the ratio of the amplitude of the transmitted wave downstream to that of
the oncoming wave, is a natural measure of the overall effect of the roughness (Wu
& Dong 2016; Xu et al. 2016). Another mechanism is modal interaction, where the
roughness-induced signature interacts resonantly with instability modes so that the growth
rate of the latter is changed substantially (Goldstein & Wundrow 1995; He, Butler & Wu
2019; Xu & Wu 2022).

Acoustic waves are dominant external disturbances affecting supersonic boundary-layer
transition, especially in conventional wind tunnel experiments (Pate & Schueler 1969;
Schneider 2001), as intense noise is emitted from the turbulent boundary layers on the
tunnel walls and/or radiated due to turbulence being scattered by wall inhomogeneities
such as roughness (Laufer 1961, 1964). Wind tunnel experiments were carried out to
establish the relationship between the noise level and transition location. Acoustic waves
with particular frequencies lead to considerably earlier transition (Spangler & Wells 1968).
By relaminarising the boundary layers on the tunnel walls to reduce the facility-produced
acoustic waves, transition was delayed significantly (Kendall 1971).

Because of intense acoustic disturbances to which the test model is exposed, transition
in conventional wind tunnels is notably different from that in quiet ones (Beckwith
& Miller 1990; King 1992; Schneider 2008). Modern hypersonic quiet wind tunnel
technology strives to reproduce flight conditions (Schneider 2015). However, even in the
latter acoustic waves are radiated from either the engine or the turbulent boundary layers
over neighbouring surfaces of the aircraft, and they are likely to have a significant effect
on transition. In view of this, conventional tunnels share some similarities with the flight
condition, and experimental data obtained in them on instability and transition may still
be useful (Duan, Choudhari & Wu 2014).

1.3. The aim of the present work
For either purpose of describing transition scenarios in the presence of impinging acoustic
waves and extrapolating wind tunnel data to flight conditions, it is necessary to investigate
how they influence the inherent boundary-layer instability and the ensuing transition.
Despite its potential importance, there have been few investigations of this aspect, in
contrast to extensive studies devoted to receptivity. In this paper, we identify and describe
mathematically a mechanism, through which impinging sound waves affect the linear and
nonlinear development of instability waves. Specifically, we consider radiating modes,
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and demonstrate that, while emitting a sound wave to the far field, a radiating mode is also
extremely sensitive to an incident acoustic wave with the same frequency and wavenumber
due to a fundamental resonance between them with the incident sound acting as the
forcing. This mechanism involves both receptivity and nonlinear modal interaction. While
receptivity normally refers to excitation of instability modes near the lower branch, the
present resonance takes place near the upper branch, in the vicinity of which an incident
wave of small intensity excites a radiating mode of much larger amplitude. When the
intensity is of a distinguished order of magnitude but still very low, nonlinearity affects
the excitation, and moreover the incident sound influences significantly the linear and
nonlinear evolution of the locally excited mode as well as of the oncoming pre-existing
mode.

The rest of the paper is organised as follows. In § 2, we formulate the problem pertinent
to a free-stream acoustic wave impinging upon the boundary layer. The distinguished
asymptotic scalings are deduced under which the incident sound wave affects the excitation
and evolution of the radiating mode. Two distinct, the non-equilibrium and the equilibrium
non-parallel, regimes are considered. In § 3, we investigate the reflection of an impinging
sound wave by the boundary layer. The boundary-layer response and reflection coefficient
are determined. A systematic numerical study is performed to show, inter alia, that the
reflection coefficient becomes infinite for a particular pair of frequency and wavenumber,
coinciding with those of the neutral radiating mode. This signals a fundamental resonance
between the incident wave and the radiating mode. In § 4, we focus on this particular
acoustic wave. Dominant interactions affecting the excitation and evolution take place in
the critical layer, and are analysed to derive the amplitude equations in the two regimes
mentioned above. These equations are solved numerically to demonstrate the role of the
incident sound and nonlinearity in the excitation and evolution of the radiating mode.
In order to take into account effects of both non-equilibrium and non-parallelism, we
construct a composite amplitude equation in § 5. In § 6, the spontaneously radiated sound
wave under the influence of the incident sound is computed. Finally, a summary and
conclusions are given in § 7.

2. Formulation

We consider a supersonic boundary-layer flow that forms over a semi-infinite flat plate
underneath a uniform free stream, where the density, velocity, shear viscosity and sound
speed are denoted by ρ∞, U∞, μ∞ and a∞, respectively. Based upon these quantities, the
Reynolds number R and the Mach number M are defined as

R = ρ∞U∞δ∗/μ∞, M = U∞/a∞, (2.1a,b)

where the reference length δ∗ is the boundary-layer thickness at the location of interest
(which is the neutral position of the radiating mode to be considered). To adopt an
asymptotic approach and focus on the supersonic regime, we take R � 1 and 1 < M =
O(1).

The flow will be described in a Cartesian coordinate system (x, y, z), where x and y
are along and normal to the wall, respectively, and z is in the spanwise direction, all
non-dimensionalised by δ∗. The time variable t is normalised by δ∗/U∞. The density
ρ, velocity u = (u, v,w), pressure p, temperature T and shear and bulk viscosities μ and
μ′ are non-dimensionalised by ρ∞, U∞, ρ∞U2∞, T∞ and μ∞, respectively. The flow is
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Excitation and evolution of radiating modes. Part 1

governed by the compressible Navier–Stokes (N-S) equations (e.g. Stewartson 1964),

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2a)

ρ
Du
Dt

= −∇p + 1
R

[
∇ · (2μe)+ ∇

((
μ′ − 2

3
μ

)
∇ · u

)]
, (2.2b)

ρ
DT
Dt

= (γ − 1)M2 Dp
Dt

+ 1
PrR

∇ · (μ∇T)+ (γ − 1)M2

R
Φ, (2.2c)

γM2p = ρT, (2.2d)

where e and Φ denote the strain-rate tensor and dissipation function, respectively,

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, Φ = 2μe:e +

(
μ′ − 2

3
μ

)
(∇ · u)2, (2.3a,b)

Pr is the Prandtl number and γ the ratio of specific heats. Furthermore, the conventional
assumption of vanishing bulk viscosity, μ′ = 0, is invoked.

2.1. The base flow
The boundary layer develops on a long length scale, and can be described by introducing
the slow variable

x3 = x/R. (2.4)

The base-flow density RB, velocity field (UB,VB), pressure PB and temperature TB can be
expressed as

(RB,UB,VB,PB, TB) = (R̄(x3, y), Ū(x3, y),R−1V̄(x3, y), 1/(γM2), T̄(x3, y)). (2.5)

The steady boundary-layer equations admit the similarity solution (Stewartson 1964)

Ū = F′(η), T̄ = T̄(η), (2.6a,b)

where η is the similarity variable defined, via the Dorodnitsyn–Howarth coordinate
transformation, by

η = 1√
x3

∫ y

0
R̄ dy. (2.7)

In terms of η, F and T̄ , the steady boundary-layer equations reduce to

1
2

FF′′ + (K̄F′′)′ = 0,

T̄ ′′ + PrF + 2K̄′

2K̄
T̄ ′ + Pr(γ − 1)M2(F′′)2 = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where we have put K̄(T̄) = μ̄(T̄)/T̄ . For Sutherland’s law, K̄ is given by

K̄ = 1 + C0

T̄ + C0
T̄1/2, (2.9)

where C0 = 110.4 K/T∞ with T∞ being the free-stream temperature in Kelvin. The
corresponding boundary conditions are

F(0) = F′(0) = 0; F′ → 1 as η → ∞, (2.10)
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Figure 1. The profiles of the base-flow streamwise velocity (a) and temperature (b) for different rc.

and

T̄(0) = T̄w; T̄ → 1 as η → ∞, (2.11)

if the wall is isothermal with a prescribed temperature T̄w.
We consider a perfect gas with ratio of specific heats γ = 1.4 and Prandtl number

Pr = 0.72. The free-stream temperature is taken to be T∞ = 300 K, and the Mach number
M = 6. The above chosen parameters are representative of flight conditions (Chuvakhov &
Fedorov 2016). The base-flow equations (2.8) are solved by using a shooting method based
on a fourth-order Runge–Kutta integrator. The streamwise velocity and temperature for
various cooling ratios, defined by the wall temperature over the adiabatic wall temperature,
are shown in figure 1. In particular, the base-flow quantities with the cooling ratio rc =
0.427 (T̄w = 3) will be used in the ensuing analysis. As will be shown later, a radiating
mode exists only for rc below a certain value less than unity.

2.2. Free-stream acoustic waves
Acoustic waves are one type of elementary disturbances in the free stream, where the
base flow is uniform. The density, velocity and pressure components of a two-dimensional
acoustic wave, εs(r̃s, ũs, ṽs, p̃s), where εs � 1 is the magnitude, are governed by the
linearised Euler equations about the uniform background field. Eliminating r̃s, ũs and ṽs
from these equations leads to the equation for pressure p̃s

M2
(
∂

∂t
+ ∂

∂x

)2

p̃s − ∇2p̃s = 0. (2.12)

The solution takes the form

p̃s = pI exp(i(αsx + γsy − ωst))+ c.c., (2.13)

where αs and γs are the streamwise and normal wavenumbers, respectively, and ωs is the
frequency; here, γs is taken to be positive so that the group velocity in the wall-normal
direction is negative, i.e. the disturbance represents an incoming wave.
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Substitution of (2.13) into (2.12) yields the dispersion relation for slow acoustic waves

cs ≡ ωs/αs = 1 − 1
M

√
1 + (γs/αs)2, (2.14)

where cs is the phase velocity. We define an incident angle θs by cos θs = αs/
√
α2

s + γ 2
s .

Use of the dispersion relation (2.14) shows that

θs = arccos{1/[(1 − cs)M]}. (2.15)

A sound wave in the free stream is characterised by its frequency and incident angle.

2.3. Asymptotic scaling
We are interested in slow acoustic waves and instability modes whose wavelengths are
comparable to the boundary-layer thickness (i.e. αs = O(1)). Only slow acoustic waves
are considered as they have a critical layer, which is crucial for acoustic waves of
moderate amplitude to be able to impact the radiating mode. When such a slow acoustic
wave impinges on the boundary layer, the response of the latter is in the form of an
absorbed disturbance and a reflected wave. For a sound wave with a particular frequency
and a specific incident angle, the reflection coefficient becomes infinite, indicating a
fundamental resonance between the impinging sound and the intrinsic radiating mode,
through which the latter is excited and its evolution influenced. We will investigate these
in the non-equilibrium parallel and equilibrium non-parallel regimes.

2.3.1. Non-equilibrium parallel regime
As an inviscid Rayleigh instability mode propagates downstream, its magnitude amplifies
exponentially until it reaches a neutral position, x3,n say. Due to the accumulated growth,
the mode is likely to enter a nonlinear stage in the vicinity of the neutral position (Goldstein
& Leib 1989; Wu 2019). This region is represented as

x3 ≈ x3,n + μ̃x̄1, (2.16)

where μ̃ � 1 and x̄1 = O(1) is negative. The local base-flow velocity and temperature
profiles are expanded as

(Ū(x3, y), T̄(x3, y)) ≈ (Ū(x3,n, y), T̄(x3,n, y))+ μ̃(Ū1( y), T̄1( y))x̄1. (2.17)

In this region, the growth rate of the mode is O(μ̃), correspondingly, the amplitude
develops over the length scale of O(μ̃−1), and so we introduce the slow variable

x̃ = μ̃(x − x0) with x0 = R(x3,n + μ̃x̄1). (2.18)

The instability mode is of the travelling-wave form, and in the main layer it can be
expressed, to leading order, as

(ρ̃, ũ, ṽ, p̃, θ̃ ) = A(x̃)(ρ̂0( y), û0( y), v̂0( y), p̂0( y), θ̂0( y))E + c.c.+ · · · , (2.19)

where E = exp(iαζ), ζ = x − ct is the coordinate moving at the phase speed, with α and c
being the streamwise wavenumber and phase speed, respectively, and A(x̃) is the amplitude
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function describing the evolution. The derivative with respect to x then becomes

∂

∂x
→ ∂

∂ζ
+ μ̃

∂

∂ x̃
. (2.20)

In order to derive the scaling, let us first write down the streamwise momentum equation
(of the incompressible N-S equations for convenience) for the perturbation[

(Ū − c)
∂

∂ζ
+ μ̃Ū

∂

∂ x̃

]
ũ︸ ︷︷ ︸

non-equilibrium

+ Ū′ṽ − R−1 ∂
2ũ
∂ ỹ2︸ ︷︷ ︸

viscous

= − ∂ p̃
∂ζ

− ũ
∂ ũ
∂ζ

− ṽ
∂ ũ
∂y

− μ̃ũ
∂ ũ
∂ x̃

+ · · · . (2.21)

The scaling is fixed by considering the main and critical layers. In the main layer, the
disturbance is linear and inviscid, and its streamwise velocity exhibits a jump of O(ε̃μ̃),
which is to be determined by analysis of the critical layer. Suppose that the critical-layer
width is O(δc). The advection term in (2.21) is O(δc), whereas the terms associated
with the non-equilibrium and viscous effects are O(μ̃) and O(R−1/δ2

c ), respectively. The
requirement that these terms are all balanced leads to

δc = O(μ̃), δc = O(R−1/3). (2.22a,b)

In the critical layer, the vertical velocity of the perturbation ṽ is O(ε̃), but the logarithmic
singularity ln( y − yc) of the inviscid solution for the streamwise velocity suggests that
the vorticity, or ũy, is O(ε̃δ−1

c ). The forcing proportional to the product of these two is
thus O(ε̃2δ−1

c ). It then induces a mean-flow distortion as well as a second harmonic;
their streamwise velocity is O(ε̃2δ−2

c ) as is deduced by balancing the forcing and the
non-equilibrium term in (2.21). The fundamental wave interacts with them to produce
a forcing of O(ε̃3δ−3

c ) at cubic level, which regenerates an O(ε̃3δ−4
c ) streamwise velocity

of the fundamental. If the latter is comparable to the O(ε̃μ̃) jump in the main layer, i.e. if
μ̃ = O(ε̃2/5), the nonlinear effect enters the amplitude equation (Leib 1991; Wu & Cowley
1995). Under this scaling the temperature fluctuation also contributes a nonlinear effect
(Goldstein & Leib 1989). Due to the resonant nature of the forcing, the O(ε̃) radiating
mode can be excited by a much weaker incident wave with the magnitude

ε̃s = ε̃μ̃ = O(ε̃7/5). (2.23)

We then write

μ̃ = ε̃2/5 = δc, R−1 = λμ̃3, (2.24a,b)

where λ is the O(1) Haberman parameter measuring the importance of the viscosity.
The above relations form the basis of non-equilibrium critical-layer theory describing the
interaction between the incident sound and the radiating mode.

2.3.2. Equilibrium non-parallel regime
The equilibrium non-parallel regime is pertinent to the region where the length scale over
which the growth rate varies is comparable to the length scale over which the amplitude
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Excitation and evolution of radiating modes. Part 1

evolves (Wu 2005). This region is represented by

x3 = x3,n + R−1/2x̄ with x̄ = O(1). (2.25)

We take δ∗ to be the boundary-layer thickness at the neutral position, and with the latter
being chosen to be origin of the coordinate we can set x3,n = 0. Inspection of (2.21) shows
that in this region the non-equilibrium effect, μ̄ = O(R−1/2), is much smaller than the
viscous effect. The critical layer is thus of equilibrium type and viscosity dominated,
having a width δc = O(R−1/3). A similar scaling argument shows that the balance between
the outer and inner jumps leads to

ε̄ = δ2
c μ̄

1/2 = O(R−11/12). (2.26)

Again noting the resonant nature of the forcing, we can infer that the radiating mode of
O(ε̄) can be excited by an incident sound wave with a much smaller magnitude

ε̄s = O(ε̄μ̄) = O(R−17/12). (2.27)

The local mean velocity and temperature profiles can be approximated by

(Ū(x3, y), T̄(x3, y)) ≈ (Ū(x3,n, y), T̄(x3,n, y))+ R−1/2(Ū1( y), T̄1( y))x̄, (2.28)

to the required order. With the key scalings identified, the effects of sound waves on the
evolution of the radiating mode will be analysed in a self-consistent manner.

2.4. Existence of the radiating mode
For inviscid instability, the linearised Euler equations for instability modes can be reduced
to the Rayleigh equation for the pressure

L p̂0 ≡
{
∂2

∂y2 +
(

T̄ ′

T̄
− 2Ū′

Ū − c

)
∂

∂y
− α2

[
1 − M2(Ū − c)2

T̄

]}
p̂0 = 0. (2.29)

For a neutral radiating mode, the boundary condition consists of the impermeability
condition at the wall and a finite amplitude at the infinity, namely, p̂′

0(0) = 0 and p̂0 is
bounded as y → ∞.

In order to find eigenvalues of the Rayleigh equation, it is convenient to write equation
(2.29) in terms of the similarity valuable η defined by (2.7) (in which x3 = x3,n = 1). The
Rayleigh equation (2.29) becomes

p̂′′
0 − 2Ū′

Ū − c
p̂′

0 − α2T̄2
[

1 − M2(Ū − c)2

T̄

]
p̂0 = 0, (2.30)

where the derivative is with respect to η, and the boundary condition becomes

p̂′
0(0) = 0, p̂0 is bounded as η → ∞. (2.31)

More precisely, the wavenumber and phase velocity of the eigenmode must satisfy the
condition, α2[1 − M2(1 − c)2] < 0, or equivalently, c < 1 − 1/M, so that the far-field
behaviour of the mode takes the form of an outgoing wave

p̂0 ∼ C∞ exp(−iαqη) as η → ∞, (2.32)

where C∞ is the normalisation factor, and q =
√

M2(1 − c)2 − 1.
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Figure 2. The eigenfunction of a two-dimensional supersonic mode: (a) p̂0 and (b) p̂′
0.

Near the critical level ηc, where Ū(ηc)− c = 0, we seek solutions of Frobenius type to
the Rayleigh equation. It can be shown that, as η̄ ≡ η − ηc → 0,

p̂0 = ā±φ̄a + φ̄b, (2.33)

where the constants ā± take different values above and below the critical level, and

φ̄a = η̄3 + 3
4

Ū′′
c

Ū′
c
η̄4 + 1

10

[
2Ū′′′

c

Ū′
c

+ 3
2

(
Ū′′

c

Ū′
c

)2

+ α2T̄2
c

]
η̄5 + · · · , (2.34)

φ̄b = α2T̄2
c

3

(
2T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̄|φ̄a + 1 − α2

2
T̄2

c η̄
2 + χ̄ η̄4 + · · · , (2.35)

with

χ̄ = α2T̄2
c

4

[
1
2

(
Ū′′

c

Ū′
c

)2

− 2
3

Ū′′′
c

Ū′
c

− α2

2
T̄2

c + T̄ ′′
c

T̄c
+
(

T̄ ′
c

T̄c

)2]

− M2α2

4
(Ū′

c)
2T̄c − 11

48
α2T̄2

c
Ū′′

c

Ū′
c

(
2T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
. (2.36)

The analytical formula above supplements the numerical method to solve the eigenvalue
problem, the details of which are relegated to Appendix A.1.

For the base-flow condition considered, we find a radiating mode with

α = 0.355336, c = 0.723147, (2.37a,b)

and plot the corresponding eigenfunction in figure 2. As is shown, the radiating
(supersonic) mode exhibits a wavy structure in the far field, in contrast to the subsonic
mode which decays exponentially outside the boundary layer. This feature is closely
related to the Mach wave radiation (Wu 2005). The dependence of the radiating mode
on the base-flow parameters is studied. The variation of the streamwise wavenumber and
phase velocity of the neutral radiating mode with the Mach number M for a fixed wall
temperature T̄w = 3 is shown in figure 3. A radiating mode exists only in a small range of
Mach number. Similarly, for a fixed Mach number (M = 6), a radiating mode could only
be found in a small range of the cooling ratio, as is shown in figure 4.
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Figure 3. Variation of the wavenumber α (a) and the phase speed c (b) of the neutral radiating mode with the
Mach number M for a fixed wall temperature T̄w = 3 (rc = 0.427).
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Figure 4. Variation of the wavenumber α (a) and the phase speed c (b) of the neutral radiating mode with the
cooling ratio rc for a fixed Mach number M = 6.

3. Reflection of impinging sound waves

In this section, we consider the reflection of an impinging slow acoustic wave by
a supersonic boundary layer. The ensuing response is described by a double-layered
structure consisting of the main layer and a critical layer, as is shown in figure 5.

3.1. Main layer
In the main layer, where y = O(1), the disturbance expands as

(ρ̃, ũ, ṽ, p̃, θ̃ ) = εs(ρ̌s(x3, y), ǔs(x3, y), v̌s(x3, y), p̌s(x3, y), θ̌s(x3, y))Es + c.c.+ · · · ,
(3.1)

where Es = exp(iαs(x − cst)), and the dependence on x3 is parametric. Substitution of
(3.1) into (2.2) followed by linearisation yields the equations

iαs(Ū − cs)ρ̌s + R̄′v̌s + R̄(iαsǔs + v̌s,y) = 0, (3.2a)

iαs(Ū − cs)ǔs + Ū′v̌s = −iαsT̄p̌s, (3.2b)

iαs(Ū − cs)v̌s = −T̄p̌s,y, (3.2c)

iαs(Ū − cs)θ̌s + T̄ ′v̌s = iαs(γ − 1)M2(Ū − cs)T̄p̌s, (3.2d)

γM2p̌s = R̄θ̌s + T̄ρ̌s, (3.2e)
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y

U(y)

Critical layer
O(R−1/3)

U( yc) = c

Incident wave Reflected wave

θs

εs pI [exp(i(αsx + γsy – ωst)) +    exp(i(αsx – γsy – ωst))]M > 1

Figure 5. A sketch of the reflection of sound waves by the boundary layer.

where the prime ‘′’ in the base-flow quantities denotes the partial differentiation with
respect to y. Elimination of ρ̌s, ǔs, v̌s and θ̌s leads to the compressible Rayleigh equation
for pressure p̌s

p̌s,yy +
(

T̄ ′

T̄
− 2Ū′

Ū − cs

)
p̌s,y − α2

s

[
1 − M2(Ū − cs)

2

T̄

]
p̌s = 0. (3.3)

The above equation must be solved subject to the impermeability condition, p̌s,y(0) = 0,
as implied by (3.2c). In the far field, the pressure takes the form

p̌s ∼ pI[exp(iγsy)+ R(x3) exp(−iγsy)] as y → ∞, (3.4)

which represents an incident wave and a reflected wave; here, γs = αs
√

M2(1 − cs)2 − 1,
and R is the reflection coefficient. The solution exhibits a singularity at the critical
level yc(x3), at which Ū(x3, yc) = cs. As η̃ ≡ y − yc → 0, the local solution to (3.3) is
constructed by using the Frobenius method as

p̌s = a±
s (x3)φsa + b±

s (x3)

[
φsb + α2

s

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̃|φsa

]
, (3.5)

where

φsa = η̃3 + χsaη̃
4 + 1

10

[
3
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)2

− 3
2

(
Ū′′

c

Ū′
c

)2

+ 2Ū′′′
c

Ū′
c

− 3T̄ ′′
c

T̄c
+ 3

(
T̄ ′

c

T̄c

)2

+ α2
s

]
η̃5 + · · · , (3.6)

φsb = 1 − α2
s

2
η̃2 + χsbη̃

4 + · · · , (3.7)
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Excitation and evolution of radiating modes. Part 1

with

χsa = −3
4

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
, (3.8)

χsb = α2
s

4

[
T̄ ′′

c

T̄c
−
(

T̄ ′
c

T̄c

)2

+ 1
2

(
Ū′′

c

Ū′
c

)2

− 2
3

Ū′′′
c

Ū′
c

− M2(Ū′
c)

2

T̄c
− α2

s

2
+ 11

12

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)2]
.

(3.9)

The pressure, velocities and temperature of the disturbance have the expressions

p̌s = b±
s

[
1 − α2

s

2
η̃2 + α2

s

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
η̃3 ln |η̃| + (a±

s /b
±
s )η̃

3
]

+ O(η̃4 ln |η̃|), (3.10a)

v̌s = −iαsb±
s

T̄c

Ū′
c

[
1 −

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
η̃ ln |η̃|

+
(

2
3

T̄ ′
c

T̄c
− 1

6
Ū′′

c

Ū′
c

− 3a±
s

α2
s b±

s

)
η̃

]
+ O(η̃2 ln |η̃|), (3.10b)

ǔs = b±
s

T̄c

Ū′
c

[
−
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̃| + 5

6
Ū′′

c

Ū′
c

− 1
3

T̄ ′
c

T̄c
− 3a±

s

α2
s b±

s

]
+ O(η̃ ln |η̃|), (3.10c)

θ̌s = b±
s

T̄cT̄ ′
c

(Ū′
c)

2

[
1
η̃

−
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̃|

]
+ O(1). (3.10d)

Clearly, the temperature perturbation θ̌s has a simple-pole singularity, while the streamwise
velocity ǔs exhibits a logarithmic singularity, indicating that the main-layer solution breaks
down as η̃ → 0. Thus we need to analyse the critical layer.

3.2. Critical layer
By balancing the advection and viscous terms in the momentum or energy equation, we
find the critical-layer thickness δ = O(R−1/3). Then taking δ = R−1/3, we introduce an
inner variable

Y = ( y − yc)/δ. (3.11)

In view of the inner limit of the outer expansion (3.10a)–(3.10d), the inner expansion takes
the form

ũ = εs(ln δUsl0 + Us1 + · · · )Es + c.c., (3.12a)

ṽ = εs(Vs0 + δ ln δVsl0 + δVs1 + · · · )Es + c.c., (3.12b)

p̃ = εs(Ps0 + δ2Ps1 + δ3 ln δPsl1 + · · · )Es + c.c., (3.12c)

θ̃ = εs(δ
−1Θs0 + ln δΘsl0 +Θs1 + · · · )Es + c.c.. (3.12d)

At leading order, the y-momentum equation gives Ps0,Y = 0, which implies Ps0 =
Ps0(x3). Matching with the main-layer solution leads to

b+
s = Ps0 = b−

s ≡ bs. (3.13)
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The continuity, x-momentum and energy equations for the leading-order terms read
Vs0,Y = 0, and

Ū′
cVs0 = −iαsT̄cPs0, (3.14a)

iαsŪ′
cYΘs0 + T̄ ′

cVs0 = T̄cμ̄cPr−1Θs0,YY , (3.14b)

respectively. The solution is found to be

Vs0 = −iαsbsT̄c/Ū′
c, (3.15a)

Θs0 = iαs
T̄cT̄ ′

c

Ū′
c

bs

∫ ∞

0
exp(−sspξ

3 − iαsŪ′
cYξ) dξ with ssp = 1

3 (αsŪ′
c)

2T̄cμ̄cPr−1.

(3.15b)

It is found that the logarithm terms match their counterparts in the outer solution
automatically. At the next order, the continuity and x-momentum equations yield

iαsŪ′
cY(−Θs0/T̄2

c )+ (iαsUs1 + Vs1,Y)/T̄c − (T̄ ′
c/T̄

2
c )Vs0 = 0, (3.16a)

LsUs1 + Ū′
cVs1 + Ū′′

c YVs0 = −iαsT̄ ′
cYPs0 + T̄cŪ′

cμ̄
′
cΘs0,Y , (3.16b)

where μ̄′
c = (dμ̄/dT̄)|y=yc , and the operator Ls is defined by

Ls = iαsŪ′
cY − T̄cμ̄c

∂2

∂Y2 . (3.17)

Eliminating Vs1 in the above two equations, and solving the resulting equation, the solution
is found to be

Us1,Y = iαs
T̄ ′

c(T̄cμ̄
′
c − μ̄cPr−1)

μ̄c(1 − Pr−1)
bs

∫ ∞

0
[1 − exp(−(ssp − ss)ξ

3)]

× exp(−ssξ
3 − iαsŪ′

cYξ) dξ

− iαsT̄c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
bs

∫ ∞

0
exp(−ssξ

3 − iαsŪ′
cYξ) dξ, (3.18)

where ss = 1
3 (αsŪ′

c)
2T̄cμ̄c. Matching Us1 with its outer counterpart (3.10c) determines the

jump

a+
s − a−

s = α2
s

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
bsπi. (3.19)

This jump is used together with the numerical method to obtain the reflection coefficient
and boundary-layer response; the details are described in Appendix A.2.

3.3. The reflection coefficient and boundary-layer response

For each incident wave, we compute R and b̃, where b̃, introduced in (A16) as the ratio
of the pressure amplitude in the critical layer to the amplitude of the incident wave, is
a measure of the boundary-layer response. For the particular incident wave satisfying the
resonant condition, (αs, cs) = (0.355, 0.723), it is found that R = 1.299 × 107 + 5.140 ×
107i and b̃ = 5.725 × 107 − 7.032 × 106i. They are numerically large, indeed practically
infinite, indicating that the resonant over-reflection coincides with the onset of a neutral
radiating mode.
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Excitation and evolution of radiating modes. Part 1

Recalling that ωs = αscs and (2.15), we can regard |R| and |b̃| as functions of θs and
ωs. Figure 6(a,b) shows contours of |R| and |b̃| in the θs–ωs plane with increments
Δθs = 0.1 and Δωs = 10−3. For most frequencies and incident angles, the boundary-layer
response |b̃| is finite and indeed rather small, while the reflection coefficient remains
almost unchanged around the value of unity, indicating that these reflected acoustic waves
have roughly the same magnitude as that of incident ones, and the boundary layer does
not play a role in the reflection process. A prominent feature is that there appear two
long strips indicating a very steep gradient, one of which passes through the resonant
point (52.987, 0.257), where the response becomes infinite. The reflection coefficient
increases rapidly when approaching either of the two strips. To show further details of
the strips, we compute contours of two small regions in the lower strip using a smaller
increment, and the results are displayed in figure 6(c,e). The reflection coefficient soars to
very large values for a narrow frequency band, resulting in elongated contours enclosing
the resonant point. Strong over-reflection occurs for (θs, ωs) in the strips. Similarly, |b̃|
acquires large values in the strips, as is shown by figure 6(b) and the enlarged views of the
two selected zones (figure 6d, f ). These imply that the incident wave facilitates transfer of
a considerable amount of energy from the shear flow while the reflected wave absorbs a
significant amount from it.

To show further the dependence of the boundary-layer response on the parameters, we
plot the variations of the reflection coefficient |R| and response |b̃| with frequency ωs at
different incident angles. Figure 7(a,b) depicts the variations of |R| and |b̃| with ωs at
θs = 40◦, respectively. Two sharp peaks appear at ωs = 0.233 and 0.614, which lie in the
strips in the contours. In order to determine the nature of these peak values, calculations
of the variations near the peaks are performed. The panels in figure 7(a,b) zoom into the
range near ωs = 0.233 and 0.614. The sharp peaks turn out to be finite in these ranges.
The peak values in the upper strip (the zoomed views near ωs = 0.614) are markedly
smaller than those in the lower strip (the zoomed views near ωs = 0.233). Notably, the
frequency range over which the peak varies in the upper strip is of O(10−4), which is
much smaller than O(10−3) in the lower strip. Figure 7(c,d) plots the variations of |R| and
|b̃| with ωs at θs = 52.987◦, which is the resonant angle. Two sharp peaks at ωs = 0.257
and 0.702 are observed. As ωs approaches 0.257 (the resonant frequency), |R| and |b̃|
become unbounded as is shown by enlarged views near ωs = 0.257, signalling the onset
of resonance, while the zoomed views near ωs = 0.702 show the abrupt rise of |R| and
|b̃| to their peak values in the upper strip. Figure 7(e, f ) shows the variations of |R| and
|b̃| with ωs at θs = 61.4◦. The patterns resemble those at θs = 40◦.

4. Fundamental resonance

It was demonstrated in the previous section that, for the acoustic wave satisfying the
resonant condition, resonant over-reflection takes place, with the reflected wave coinciding
with a neutral radiating mode. We considered the response of the boundary layer at a fixed
location to impinging waves of different frequencies and incident angles. In this setting,
the resonance occurs for a specific pairing of ωs and θs. An alternative view is to consider
the response of the boundary layer at different x3 to the same incident wave with a fixed
ωs and θs, and then the resonance takes place at a streamwise location x3,s. In the vicinity
of this position, the reflected wave evolves in the streamwise direction into the radiating
mode. The generation and evolution of such a mode will be explored in this section. The
excitation process is similar to the receptivity of T-S waves studied in Qin & Wu (2016),
but the difference is that the present radiating mode is of inviscid nature and on the upper
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Figure 6. Contours of |R| (a) and |b̃| (b) in the θs–ωs plane. The resonant point is located at (52.987, 0.257).
(c,d) Zoom into the range 39 < θs < 41. (e, f ) Zoom into the range 61.2 < θs < 61.6.

(right) branch of the neutral curve, and thus has a critical layer, which is sensitive to
nonlinear effects. The radiating mode locally excited is likely to develop nonlinearly on
a relatively short length scale. Another fact is that a non-neutral radiating mode is likely
to be present upstream of the resonance location, and when approaching the resonant
(neutral) position, it is likely to have acquired, through the accumulated growth, a large
enough amplitude to become nonlinear (Leib 1991; Wu 2019), while it is also influenced
substantially by the incident sound. For locally excited and pre-existing radiating modes,
the direct effect of the impinging sound can be accounted for by an appropriate amplitude
equation of the mode, which is to be derived. Depending on the intensity of the acoustic
wave, the critical-layer dynamics may be different. The excitation and evolution of the
radiating mode in both the non-equilibrium parallel and equilibrium non-parallel regimes
will be analysed in the following.
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Figure 7. Variations of |R| and |b̃| with ωs at θs = 40◦ (a,b), 52.987◦ (c,d) and 61.4◦ (e, f ).

We note that nonlinear evolution and excitation were simultaneously included in the
work by Hall & Smith (1982) on the T-S mode in an incompressible boundary layer forced
by a moving wavy wall. There the focus was on the vicinity of the lower-branch neutral
curve. Since the T-S wave upstream experiences considerable decay, the nonlinearity effect
is associated with the locally excited mode, and is expected to be significant only if the
external forcing is sufficiently strong.

4.1. Non-equilibrium parallel regime
The scaling argument in § 2.3.1 shows that the radiating mode evolves nonlinearly with the
rate μ̃ = ε̃2/5 when its amplitude ε̃ = O(R−5/6), and such a mode may be excited and/or
affected by the incident sound of a much smaller magnitude ε̃s = ε̃μ̃ = O(R−7/6) due to
resonance. Detuning effects may be included by allowing the wavenumber of the sound to
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F. Qin and X. Wu

differ from that of the radiating mode by an O(μ̃) amount, that is,

αs = α + μ̃α̃d, ωs = ω, (4.1a,b)

where α̃d is an O(1) detuning parameter.

4.1.1. Main layer
In the main layer, the disturbance expands as

(ρ̃, ũ, ṽ, p̃, θ̃ ) = ε̃sμ̃
−1[Ã(x̃)(ρ̂0, û0, v̂0, p̂0, θ̂0)+ μ̃(ρ̂1, û1, v̂1, p̂1, θ̂1)]E + c.c.+ · · · ,

(4.2)
where E = exp(iα(x − ct)) is the carrier wave, and the first term represents a radiating
mode, which may be locally excited and/or propagates from upstream with Ã(x̃) being
its amplitude function. Substitution of (4.2) into (2.2) followed by linearisation yields the
leading-order equations for the disturbance

iα(Ū − c)ρ̂0 + R̄′v̂0 + R̄(iαû0 + v̂′
0) = 0, (4.3a)

iα(Ū − c)û0 + Ū′v̂0 = −iαT̄p̂0, (4.3b)

iα(Ū − c)v̂0 = −T̄p̂′
0, (4.3c)

iα(Ū − c)θ̂0 + T̄ ′v̂0 = iα(γ − 1)M2(Ū − c)T̄p̂0, (4.3d)

γM2p̂0 = R̄θ̂0 + T̄ρ̂0. (4.3e)

Elimination of ρ̂0, û0, v̂0 and θ̂0 leads to the familiar compressible Rayleigh equation (2.29)
for the leading-order pressure p̂0. As y → ∞,

p̂0 ∼ C∞ exp(−iαqy) with q =
√

M2(1 − c)2 − 1, (4.4)

which represents an outgoing wave that persists away from the main layer. Here, C∞ is a
constant that is determined by normalisation of the eigenfunction.

Let η̂ ≡ y − yc → 0, the solution near the critical level yc is obtained using the
Frobenius method as

p̂0 ∼ Ū′
c

T̄c

{
α2

3
a±φa + φb + α2

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̂|φa

}
, (4.5)

where φa and φb have the same expressions as φsa and φsb given by (3.6) and (3.7),
respectively, with α replacing αs. It follows from (4.3b)–(4.3d) that, as η̂ → 0,

û0 ∼ −
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̂| + 5

6
Ū′′

c

Ū′
c

− 1
3

T̄ ′
c

T̄c
− a± + · · · , (4.6)

v̂0 ∼ −iα
{

1 −
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
η̂ ln |η̂| +

(
2
3

T̄ ′
c

T̄c
− 1

6
Ū′′

c

Ū′
c

− a±
)
η̂ + · · ·

}
, (4.7)

θ̂0 ∼ T̄ ′
c

Ū′
cη̂
. (4.8)

The temperature perturbation exhibits the same simple-pole singularity as that of an
inflectional mode (Goldstein & Leib 1989), while the logarithmic singularity is present
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Excitation and evolution of radiating modes. Part 1

only for a supersonic mode, whose critical level does not correspond to the generalised
inflection point (Leib 1991). Equation (4.6) indicates a jump of û0

û+
0 − û−

0 = −(a+ − a−)+ · · · . (4.9)

At the next order, the second terms in the expansion (4.2), (ρ̂1, û1, v̂1, p̂1, θ̂1), are found
to satisfy the inhomogeneous version of (4.3a)–(4.3e) (Qin 2024). By eliminating ρ̂1, û1,
v̂1 and θ̂1 from those equations, we can show that p̂1 satisfies an inhomogeneous Rayleigh
equation (Wu 2005; Qin 2024)

L p̂1 = Ã′ 2ic
α

{
Ū′p̂′

0

(Ū − c)2
+ α2

c

[
M2Ū(Ū − c)

T̄
− 1

]
p̂0

}
− x̄1ÃΔ1, (4.10)

where we have put

Δ1 =
{

2Ū′

Ū − c

(
Ū1

Ū − c
− Ū′

1

Ū′

)
+ T̄ ′

T̄

(
T̄ ′

1

T̄ ′ − T̄1

T̄

)}
p̂′

0

+ α2M2 (Ū − c)2

T̄

(
2Ū1

Ū − c
− T̄1

T̄

)
p̂0. (4.11)

As y → ∞, the incident acoustic wave must be included in the far-field boundary
condition, which reads

p̂1 ∼ pI exp(iα̃dx̃)[exp(iαqy)+ R̂(x̃) exp(−iαqy)]

+ q−1[1 − M2(1 − c)]C∞Ã′y exp(−iαqy). (4.12)

On the other hand, by the method of dominant balance we deduce that, as y → yc,

p̂1 ∼ α2

T̄c

(
ic
α

Ã′ − Ū1cx̄1Ã
){

η̂ −
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
η̂2 ln |η̂|

−
[

a± + 1
3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)]
η̂2 + 1

3
jη̂3 ln |η̂|

}
+ Ū′

c

T̄c
(iαÃ′)η̂2

+
(
α2Ū′

c

3T̄c
x̄1Ã

)
j1η̂3 ln |η̂| + c±φa + d

[
φb + α2

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
ln |η̂|φa

]
, (4.13)

where c± and d are arbitrary functions of x̃, and the constants, j and j1, have the expressions

j = T̄ ′′
c

T̄c
− Ū′′′

c

Ū′
c

−
(

T̄ ′
c

T̄c

)2

+
(

Ū′′
c

Ū′
c

)2

+ 3
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)2

− 2
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
Ū′

c

Ūc
, (4.14)

j1 = T̄ ′
c

T̄c

(
T̄ ′

1c

T̄ ′
c

− T̄1c

T̄c

)
+ Ū′′

c

Ū′
c

(
Ū′

1c

Ū′
c

− Ū′′
1c

Ū′′
c

)
− 2

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
Ū1c

Ūc
. (4.15)

It follows from the x- and y-momentum equations that

û1 = − T̄
Ū − c

p̂1 − T̄Ū′

α2(Ū − c)2
p̂1,y + · · · . (4.16)
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Thus, the jump of û1 is found to relate to (c+ − c−) by the equation

û+
1 − û−

1 = − 3T̄c

α2Ū′
c
(c+ − c−)+ · · · . (4.17)

In order for the inhomogeneous equation (4.10) to have an acceptable solution, it has to
satisfy a solvability condition. This can be derived by multiplying both sides of (4.10) by
p̂0T̄/(Ū − c)2 and integrating from 0 to ∞, leading to

− T̄
(Ū − c)2

[(p̂0p̂1,y − p̂′
0p̂1)|y→y+

c
y→y−

c
− (p̂0p̂1,y − p̂′

0p̂1)|y=∞] = 2ic
α

I2Ã′ − I1x̄1Ã, (4.18)

where use has been made of the impermeability condition p̂′
0(0) = p̂1,y|y=0 = 0, and

I1 =
∫ ∞

0

{[
2Ū′

Ū − c

(
Ū1

Ū − c
− Ū′

1

Ū′

)
+ T̄ ′

T̄

(
T̄ ′

1

T̄ ′ − T̄1

T̄

)]
T̄p̂0p̂′

0

(Ū − c)2

+ α2M2
(

2Ū1

Ū − c
− T̄1

T̄

)
p̂2

0

}
dy, (4.19)

I2 =
∫ ∞

0

{
T̄Ū′p̂0p̂′

0

(Ū − c)4
+ α2

c

[
M2Ū
Ū − c

− T̄
(Ū − c)2

]
p̂2

0

}
dy. (4.20)

It should be noted that both sides of (4.18) contain singular terms, which turn out to be
of the same form, and hence are cancelled out in such a manner that the integrals I1 and
I2 are interpreted as Hadamard finite parts. By applying the far-field condition (4.4) and
(4.12), we obtain

1
Ū′

c

{
3(c+ − c−)− 2α2

T̄c

(
ic
α

Ã′ − Ū1cx̄1Ã
)(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
(a+ − a−)− α2d(a+ − a−)

}

− 2iαqC∞
(1 − c)2

pI exp(iα̃dx̃) = −
(

2ic
α

I2Ã′ − I1x̄1Ã
)
. (4.21)

The jumps (a+ − a−) and (c+ − c−) will be determined by analysing the critical-layer
dynamics.

4.1.2. Critical layer
The singularity of the main-layer solution is to be removed by introducing the
non-equilibrium and viscous effects within the critical layer, which determine the
critical-layer width to be O(ε̃2/5), and so the appropriate local transverse coordinate is

Y = ( y − yc)/ε̃
2/5. (4.22)

The asymptote of the inviscid solution, (4.5) and (4.6)–(4.8), suggests that the perturbation
in the critical layer expands as

ũ = ε̃sμ̃
−1(U1E + ε̃1/5UM + ε̃2/5U2E)+ c.c.+ · · · , (4.23a)

ṽ = ε̃sμ̃
−1(V0E + ε̃2/5V1E + ε̃3/5VM + ε̃4/5V2E)+ c.c.+ · · · , (4.23b)

p̃ = ε̃sμ̃
−1(P0E + ε̃2/5P1E + ε̃4/5P2E)+ c.c.+ · · · , (4.23c)

θ̃ = ε̃sμ̃
−1ε̃−2/5(Θ1E + ε̃1/5ΘM + ε̃2/5Θ2E)+ c.c.+ · · · . (4.23d)
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Excitation and evolution of radiating modes. Part 1

Strictly speaking, the expansions actually contain logarithm terms, but they are not needed
in the calculation of the jumps and hence are not written out for brevity. Substituting
(4.23) into (2.2), we then obtain the equations governing the terms at different orders in
the expansion.

At leading order, inspection of the x- and y-momentum equations gives

P0 = (Ū′
c/T̄c)Ã, V0 = −iαÃ. (4.24a,b)

Expansion of the energy equation shows that

LpΘ1 + T̄ ′
cV0 = 0, (4.25)

with the operator Lp being defined by

Lp = c
∂

∂ x̃
+ iα(Ū′

cY + Ū1cx̄1)− λT̄cμ̄cPr−1 ∂
2

∂Y2 . (4.26)

Equation (4.25) is solved by use of Fourier transform to give

Θ1 = iαT̄ ′
c

∫ ∞

0
exp(−spξ

3 − iαŪ′
cȲξ)Ã(x̃ − cξ) dξ, (4.27)

where we have put Ȳ ≡ Y + (Ū1c/Ū′
c)x̄1 and sp = 1

3λ(αŪ′
c)

2T̄cμ̄cPr−1.
At the next order, expansion of the continuity and x-momentum equations yields

−cΘ1,x̃/T̄2
c + iα(Ū′

cY + Ū1cx̄1)(−Θ1/T̄2
c )+ 1

T̄c
(iαU1 + V1,Y)− T̄ ′

c

T̄2
c

V0 = 0, (4.28a)

LμU1 + Ū′
cV1 + (Ū′′

c Y + Ū′
1cx̄1)V0 = −iαT̄cP1 − T̄cP0,x̃ − iα(T̄ ′

cY + T̄1cx̄1)P0

+ λT̄cμ̄
′
cŪ′

cΘ1,Y , (4.28b)

where Lμ is the same as Lp provided that Pr is set to unity. The above two equations can
be combined to obtain an equation for U1,Y , which is solved to give

U1,Y = iαŪ′
c
T̄ ′

c(T̄cμ̄
′
c − μ̄cPr−1)

T̄cμ̄c(1 − Pr−1)

∫ ∞

0
[1 − exp(−(sp − s)ξ3)]

× exp(−sξ3 − iαŪ′
cȲξ)Ã(x̃ − cξ) dξ

− iαŪ′
c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)∫ ∞

0
exp(−sξ3 − iαŪ′

cȲξ)Ã(x̃ − cξ) dξ, (4.29)

where s = 1
3λ(αŪ′

c)
2T̄cμ̄c. Matching U1 with its outer counterpart determines the jump

a+ − a− =
(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
πi. (4.30)

The self-interaction of the fundamental mode at quadratic level generates a mean-flow
distortion, which interacts in turn with the fundamental at cubic level. The analysis is
presented in Appendix B. The key outcome is the nonlinear jump (B8). Inserting the jumps
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(4.30) and (B8) into (4.21), we obtain the evolution equation for the amplitude function Ã
(cf. Leib 1991)

Ã′(x̃) = σ x̄1Ã + Υ

∫ ∞

0

∫ ∞

0
K(ξ, η)Ã(x̃ − cξ)Ã(x̃ − cξ − cη)Ã∗(x̃ − 2cξ − cη) dηdξ

+ F̃ exp(iα̃dx̃), (4.31)

where

σ = (−iα/c)

{
I1 + α2

T̄c

[
Ū1c

Ū′
c

(
j − 2

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)2)
− j1

]
πi

}
/G, (4.32)

Υ = 2πα7(Ū′
c)

2T̄ ′
c/(cT̄2

c G), (4.33)

F̃ = 2α2qC∞pI/[c(1 − c)2G], (4.34)

with

G = 2I2 + α2

T̄cŪ′
c

[
j − 2

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)2]
πi. (4.35)

The amplitude equation (4.31) is inhomogeneous with the forcing representing the impact
of the incident sound, and it describes both the excitation and evolution of the radiating
mode.

4.1.3. Nonlinear response
Consider now the physical processes which are described by (4.31). The noise level in the
conventional wind tunnel is of O(10−3) (Masutti et al. 2012; Cerminara et al. 2019), but in
flight conditions it can be one to two orders of magnitude lower (Schneider 2008, 2015).
It is impossible to infer from the overall noise level the amplitude of a component, but just
as a rule of thumb, we take ps = O(10−4). Recall that the pressure of the acoustic wave
takes the form ps = ε̃spI exp(i(αsx + γsy − ωst))+ c.c., and it follows that the rescaled
amplitude of the incident sound

pI = ps/ε̃s = ps/R−7/6 ≈ 4.64–68.13, (4.36)

for Reynolds numbers in the range of 104–105. Varying pI in the above range with a fixed
R alternatively corresponds to different ps.

The inhomogeneous amplitude equation (4.31) admits an equilibrium solution of the
form

Ã = Ae ≡ ae exp(iα̃dx̃), (4.37)

where ae is a complex constant to be determined. This solution represents the nonlinear
boundary-layer response to the incident sound. Substitution of (4.37) into (4.31) yields

(iα̃d − κ0)ae = l̄ae|ae|2 + F̃, (4.38)

where we have put κ0 = σ x̄1, and

l̄ = Υ

∫ ∞

0

∫ ∞

0
K(ξ, η) dηdξ. (4.39)
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Figure 8. Effects of the forcing and detuning on the nonlinear response with λ = 1. (a) Effects of pI on ae
with α̃d = 0. (b) Effects of α̃d on ae with pI = 5.

On writing ae = |ae| eiφ and F̃ = |F̃| eiθF (−π < θF ≤ π), (4.38) becomes

(iα̃d − κ0r − iκ0i)|ae| = (l̄r + il̄i)|ae|3 + |F̃| eiθ , (4.40)

where θ = θF − φ. Separation of the real and imaginary parts gives

−κ0r|ae| − l̄r|ae|3 = |F̃| cos θ, (α̃d − κ0i)|ae| − l̄i|ae|3 = |F̃| sin θ. (4.41a,b)

Eliminating θ leads to the response equation

(l̄2r + l̄2i )b
3
e + 2[κ0rl̄r − l̄i(α̃d − κ0i)]b2

e + [κ2
0r + (α̃d − κ0i)

2]be − |F̃|2 = 0, (4.42)

where we have put be = |ae|2 > 0. From (4.41a,b), we obtain θ = θ0 or θ = θ0 + π, where

θ0 = arctan
[

l̄i|ae|2 + κ0i − α̃d

l̄r|ae|2 + κ0r

]
. (4.43)

The phase of the nonlinear response can be obtained as φ = θF − θ .
The dependence of the nonlinear response on x̄1 for various values of pI and α̃d is shown

in figure 8. The nonlinear response attains its maximum at some point, beyond which it
decreases rapidly. The maximum value of |ae| increases with the sound magnitude pI ,
indicating that sound waves of higher intensity induce larger boundary-layer response.
Note that the response would have been infinite at a particular value of x̄1 = α̃d/σ if
nonlinearity were ignored, but remains finite in the presence of the latter, which plays
a regularising role. For large pI , ae scales as p1/3

I . Changing the detuning parameter α̃d
simply shifts the nonlinear response curve, but the overall behaviour remains almost the
same. It should be noted that the equilibrium solution is only physically meaningful for
x̄1 < 0 because when x̄1 = O(R−1/3) and negative, the equilibrium solution evolves into
the radiating mode as will be described in § 4.2.

4.1.4. Effects on the linear growth rate
In general, the solution to (4.31) can be written as

Ã = (ae + A0(x̃)) exp(iα̃dx̃). (4.44)
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By substituting (4.44) into (4.31), we obtain

A′
0(x̃) = (κ0 − iα̃d)A0 + Υ |ae|2

∫ ∞

0

∫ ∞

0
K(ξ, η)[A0(x̃ − cξ)+ A0(x̃ − cξ − cη)] dηdξ

+ Υ a2
e

∫ ∞

0

∫ ∞

0
K(ξ, η)A∗

0(x̃ − 2cξ − cη) dηdξ

+ Υ ae

∫ ∞

0

∫ ∞

0
K(ξ, η)[A0(x̃ − cξ)+ A0(x̃ − cξ − cη)]A∗

0(x̃ − 2cξ − cη) dηdξ

+ Υ a∗
e

∫ ∞

0

∫ ∞

0
K(ξ, η)A0(x̃ − cξ)A0(x̃ − cξ − cη) dηdξ

+ Υ

∫ ∞

0

∫ ∞

0
K(ξ, η)A0(x̃ − cξ)A0(x̃ − cξ − cη)A∗

0(x̃ − 2cξ − cη) dηdξ.

(4.45)

This may be viewed as describing the stability of the nonlinear response, but more
appropriately as describing the instability of the boundary layer in the presence of the
impinging sound, which now appears multiplicatively despite the fact that it originally
enters as an additive term in (4.31).

Linearising the above equation, we have

A′
0(x̃) = (κ0 − iα̃d)A0 + Υ |ae|2

∫ ∞

0

∫ ∞

0
K(ξ, η)[A0(x̃ − cξ)+ A0(x̃ − cξ − cη)] dηdξ

+ Υ a2
e

∫ ∞

0

∫ ∞

0
K(ξ, η)A∗

0(x̃ − 2cξ − cη) dηdξ. (4.46)

Let us seek a solution of the form

A0 = A0r + iA0i, (A0r,A0i) = (ar, ai) eκ x̃ + c.c., (4.47a,b)

where ar and ai are both complex constants. Then A0 can be written as

A0 = (ar + iai) eκ x̃ + (a∗
r + ia∗

i ) eκ
∗x̃. (4.48)

Substitution of (4.48) into (4.46) and collection of terms proportional to eκ x̃ and eκ
∗x̃ leads

to the eigenvalue problem(
κ0r + Υr|ae|2χ0 + (Υ a2

e)rχ̄0 −κ0i + α̃d − Υi|ae|2χ0 + (Υ a2
e)iχ̄0

κ0i − α̃d + Υi|ae|2χ0 + (Υ a2
e)iχ̄0 κ0r + Υr|ae|2χ0 − (Υ a2

e)rχ̄0

)(
ar
ai

)

= κ

(
ar
ai

)
, (4.49)

where we have put

χ0 =
∫ ∞

0

∫ ∞

0
K(ξ, η)(exp(−κcξ)+ exp(−κcξ − κcη)) dηdξ

=
∫ ∞

0
[K0(ξ)+ K1(ξ)] exp(−2sξ3 − κcξ) dξ, (4.50)
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Excitation and evolution of radiating modes. Part 1

χ̄0 =
∫ ∞

0

∫ ∞

0
K(ξ, η) exp(−2κcξ − κcη) dηdξ =

∫ ∞

0
K1(ξ) exp(−2sξ3 − 2κcξ) dξ ;

(4.51)
here, K0 and K1 are given by

K0 =
(

1
3s

+ 1
3sp

)
exp(−(sp − s)ξ3)+ T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
1
3s

− T̄cμ̄
′
c − μ̄cPr−1

μ̄c(1 − Pr−1)

[
1
3s

− 1
3sp

exp(−2(sp − s)ξ3)

]
,

K1 =
(

ξ2

3sξ2 + κc
+ ξ2

3spξ2 + κc

)
exp(−(sp − s)ξ3)+ T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
ξ2

3sξ2 + κc

− T̄cμ̄
′
c − μ̄cPr−1

μ̄c(1 − Pr−1)

[
ξ2

3sξ2 + κc
− ξ2

3spξ2 + κc
exp(−2(sp − s)ξ3)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.52)
The requirement that ar and ai are non-vanishing gives the characteristic equation for the
modified growth rate

F ≡ (κ − Υr|ae|2χ0 − κ0r)
2 + (Υi|ae|2χ0 + κ0i − α̃d)

2 − |Υ a2
e |2χ̄2

0 = 0. (4.53)

The function F is real if κ is, and thus, if the equation F = 0 admits a complex root κ ,
so does its complex conjugate. The equation is solved numerically using Newton iteration.
The corresponding eigenvector (ar, ai) is obtained from (4.49) and written as

ar = a0ar0 ≡ |a0||ar0| exp(i(θ1 + φ0)), ai = a0ai0 ≡ |a0||ai0| exp(i(θ2 + φ0)),
(4.54a,b)

where (ar, ai) is normalised such that |ar0|2 + |ai0|2 = 1, and a0 = |a0| eiφ0 is a complex
constant. Thus the perturbation A0 can be written as

A0 = 2|a0| eκrx̃[|ar0| cos(κix̃ + θ1 + φ0)+ i|ai0| cos(κix̃ + θ2 + φ0)]. (4.55)

Figure 9 shows the effects of pI on the modified growth rate κr. In general, κr is enhanced
by the impinging sound, especially in the region where the nonlinear response is significant
(cf. figure 8). As x̄1 → −∞, κr approaches the unperturbed growth rate κ0r. The modified
growth rate increases with pI . Since the function F is real for real values of κ , it may admit
real roots for certain parameters. Indeed, the solution changes from a complex conjugate
pair to two real roots at certain positions with one being significantly larger than the
other. These real roots are associated with the ‘phase-locking’ phenomenon, that is, we
can write A0 = |ǎ0| exp(iφ̌0 + κ x̃), where ǎ0 = 2|a0|[|ar0| cos(θ1 + φ0)+ i|ai0| cos(θ2 +
φ0)] ≡ |ǎ0| exp(iφ̌0). Now the total amplitude Ã can be expressed as Ã = (|ae| eiφ +
|ǎ0| exp(iφ̌0 + κ x̃)) exp(iα̃dx̃), indicating that the phases of the nonlinear response and
the perturbation are ‘locked’ in the sense that their difference is independent of x̃.

Figure 10 shows the variation of the modified growth rate with x̄1 for three values of α̃d.
Altering α̃d shifts the distribution of both κr and κi. Again, the complex roots κ develop
into two branches of real roots in the region where the nonlinear response is large. All
these results indicate that, for the parameters examined, the impinging sound enhances the
linear growth rate substantially.
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Figure 9. Effects of the forcing on the modified growth rate κ with α̃d = −1 and λ = 1: (a) κr and (b) κi.
The dashed line represents the linear growth rate in the absence of the incident sound.
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Figure 10. Effects of detuning on the modified growth rate κ with pI = 5 and λ = 1: (a) κr and (b) κi. The
dashed line represents the linear growth rate in the absence of the incident sound.

4.1.5. Nonlinear evolution
We proceed to consider the effect of the impinging sound on the nonlinear development
by solving numerically the nonlinear amplitude equation (4.45), subject to the appropriate
initial condition (4.55) as x̃ → −∞. The sixth-order Adams–Moulton method is used,
and the integral term is approximated by Simpson’s rule. Results of the effects are shown
in figure 11. The amplitude always develops into a singularity at some point. Increasing
the intensity of the sound wave advances the blow-up behaviour (figure 11a). We also
examine the effects of viscosity on the nonlinear development, which generally delays the
occurrence of the finite-distance singularity (figure 11b), similar to what has been found
in previous studies of free-mode evolution (Goldstein & Leib 1989; Wu et al. 1993).

4.2. Equilibrium non-parallel regime
As is shown in § 2.3.2, a sound influences nonlinearly the excitation and evolution of the
radiating mode in the equilibrium regime when its magnitude ε̄s = ε̄R−1/2 = O(R−17/12),
and its frequency/wavenumber is the same/close to those of the radiating mode, that is,

ωs = ω, αs = α + R−1/2ᾱd, (4.56a,b)

where ᾱd is an O(1) detuning parameter. For R = 104–105, p̄I = ps/ε̄s = ps/R−17/12 ≈
46.4–1211.5.

985 A13-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.278
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Figure 11. Effects of sound intensity and viscosity on the nonlinear evolution of the radiating mode.
(a) Nonlinear development for different values of pI with λ = 1. (b) Nonlinear development for different
values of λ with pI = 5. The dashed lines represent the corresponding linear solution (4.55). Here, we have
taken x̄1 = −7, α̃d = −1 and a0 = 1.

4.2.1. The amplitude equation
The analysis in the main layer is only slightly modified with expansion (4.2) being replaced
by

(ρ̃, ũ, ṽ, p̃, θ̃ ) = ε̄sR1/2[Ā(x̄)(ρ̂0, û0, v̂0, p̂0, θ̂0)+ R−1/2(ρ̂1, û1, v̂1, p̂1, θ̂1)]E

+ c.c.+ · · · . (4.57)

The corresponding solvability condition (4.21) becomes

1
Ū′

c

{
3(c+ − c−)− 2α2

T̄c

(
ic
α

Ā′ − Ū1cx̄Ā
)(

T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
(a+ − a−)− α2d(a+ − a−)

}

− 2iαqC∞
(1 − c)2

p̄I exp(iᾱdx̄) = −
(

2ic
α

I2Ā′ − I1x̄Ā
)
, (4.58)

which corresponds to (4.21) but with the parameter x̄1 being replaced by variable x̄. The
jump (a+ − a−) remains as (4.30), while (c+ − c−) was given in Wu (2005) (see also Qin
2024), that is,

c+ − c− = 1
3
α2

T̄c

(
ic
α

Ā′ − Ū1cx̄Ā
)

jπi +
(
α2Ū′

c

3T̄c
x̄Ā
)

j1πi

+ d
α2

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
πi + Λ

3
Ā|Ā|2, (4.59)

where Λ is given by

Λ = −2πiα4Ū′
c

3T̄2
c μ̄c

{
T̄ ′

c(T̄cμ̄
′
c − μ̄cPr−1)

T̄cμ̄c(1 − Pr−1)
(Pr4/3 − 1)+

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)

+ T̄ ′
c

T̄c
(1 + Pr)2/3(2Pr)1/3

}
(2s)−1/3Γ

(
1
3

)
, (4.60)

with Γ denoting the gamma function and s being the same as that in (4.29) provided that
λ is set to unity. Inserting (4.30) and (4.59) into (4.58), we obtain the amplitude equation
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for Ā,

Ā′(x̄) = σ x̄Ā + lĀ|Ā|2 + F̄ exp(iᾱdx̄), (4.61)

where σ is given in (4.32), F̄ = F̃ as given by (4.34) and

l = iαΛ/(cŪ′
cG). (4.62)

4.2.2. The initial amplitude without oncoming free modes
On dropping in (4.61) the nonlinear term, which is negligible in the upstream region, and
solving the linear equation, the initial condition is specified as

Ā(x̄) = exp(σ x̄2/2)
[

ă0 + F̄
∫ x̄

0
exp(iᾱdτ − στ 2/2) dτ

]
as x̄ → −∞, (4.63)

where ă0 is an arbitrary constant. It should be noted that, although the first term is
a complementary solution of the linearised version of (4.61), it does not represent
a free oncoming mode. This is because the first term is exponentially small in the
upstream region, whereas the second term is algebraically small, and when approximated
asymptotically, the remainder contains the exponentially small term corresponding to the
free mode. Therefore our immediate task is to determine the specific value of ă0 such
that the free mode is absent in the upstream region. This is achieved by using the idea of
optimal truncation in asymptotic approximation.

For that purpose, we split the integration interval into (0, τ0) and (τ0, x̄) and perform
integration by parts to the integral over the latter to obtain

Ā(x̄) = exp(σ x̄2/2)

[
ă0 + F̄

(
I0 − exp(iᾱdτ0 − στ 2

0 /2)
N∑

n=0

σ n(−1)n1 · 3 · 5 · · · (2n − 1)
(iᾱd − στ0)2n+1

+ exp(iᾱdx̄ − σ x̄2/2)
N∑

n=0

σ n(−1)n1 · 3 · 5 · · · (2n − 1)
(iᾱd − σ x̄)2n+1

+ (−1)N
∫ τ0

x̄

exp(iᾱdτ − στ 2/2)σN+11 · 3 · 5 · · · (2N + 1)
(iᾱd − στ)2N+2 dτ

)]
, (4.64)

where τ0 is constant and

I0 =
∫ τ0

0
exp(iᾱdτ − στ 2/2) dτ. (4.65)

The optimal truncation of the asymptotic expansion is the one that makes the remainder
exponentially small by retaining the right number of terms, N = Nop, where Nop is the
maximum number of terms whose size is monotonically decreasing for a fixed large
negative x̄, and is dependent of x̄. The expression for Nop is determined as follows.
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Excitation and evolution of radiating modes. Part 1

ᾱd τ0 x̄∞ Nop āop/p̄I

0 −15 −20 28 −0.18985 − 0.14595i
4 −15 −20 166 −0.01761 + 0.00208i

Table 1. The initial amplitude without oncoming free modes determined by the optimal truncation for
p̄I = 115.94.
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Figure 12. Linear and nonlinear evolution for p̄I = 115.94 starting from different upstream positions x̄∞;

(a) ᾱd = 0 and ă0 = −22.011 − 16.921i, (b) ᾱd = 4 and ă0 = −2.042 + 0.241i.

Let fn be the nth term in (4.64). Then consider the ratio of the two consecutive terms

fn+1/fn = −σ(2n + 1)/(iᾱd − σ x̄∞)2, (4.66)

for a large x̄ = x̄∞. If we require | fn+1/fn| < 1, then

n < (|(iᾱd − σ x̄∞)2/σ | − 1)/2. (4.67)

Thus the terms in the expansion are in decreasing order for n ≤ Nop, where

Nop = [(|(iᾱd − σ x̄∞)2/σ | − 1)/2] + 1, (4.68)

with [I] representing the largest integer that is smaller than I; the magnitude of the terms
with n > Nop increases. With the optimal truncation, the remainder is made sufficiently
small. The complementary solution would be absent if we choose ă0 to be

ă0 = āop ≡ −F̄
[

I0 − exp(iᾱdτ0 − στ 2
0 /2)

Nop∑
n=0

σ n(−1)n1 · 3 · 5 · · · (2n − 1)
(iᾱd − στ0)2n+1

]
. (4.69)

The values of āop calculated using (4.69) are listed in table 1 for ᾱd = 0 and 4. We evaluate
the linear solution (4.63) and solve the nonlinear equation (4.61) with the initial condition
being imposed at different upstream positions x̄∞ with ă0 = āop. As is shown in figure 12,
the solutions starting from different x̄∞ overlap each other, suggesting that the particular
initial amplitude is independent of the upstream position; the initial condition with ă0 =
āop represents solely the locally forced response.
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R1/3δ∗ R1/2δ∗

R2/3δ∗

x3,n + R−1/3x̄1
x3,n

Non-equilibrium regime Equilibrium regime

Composite

Figure 13. A sketch illustrating different evolution regimes.

5. Non-parallelism and the composite amplitude equation

Having obtained the amplitude equations in the non-equilibrium parallel and equilibrium
non-parallel regimes, respectively, it is straightforward to construct a composite amplitude
equation that accommodates both regimes. The respective validity regions and the
associated length scales are shown in figure 13.

5.1. Construction of the composite amplitude equation
Recall that, in the equilibrium regime, the evolution occurs in the vicinity of the neutral
position (figure 13)

x3 = x3,n + R−1/2x̄ with x̄ = O(1), (5.1)

and the amplitude equation is (4.61) with ᾱd being defined by (4.56a,b). On the other hand,
in the non-equilibrium regime, where without loss of generality the Haberman parameter
is taken to be λ = 1, the evolution occurs in the vicinity of the neutral position

x3 ≈ x3,n + R−1/3x̄1 with x̄1 = O(1), (5.2)

and the amplitude is governed by (4.31) with α̃d being specified by (4.1a,b).
Let us first construct the composite solution starting from the non-equilibrium regime.

Noting (2.18), i.e.
x̃ = R2/3(x3 − (x3,n + R−1/3x̄1)), (5.3)

we can approximate the base flow by

(Ū(x3, y), T̄(x3, y)) ≈ (Ū(x3,n, y), T̄(x3,n, y))+ R−1/3(Ū1( y), T̄1( y))(x̄1 + R−1/3x̃).
(5.4)

Following Wu & Huerre (2009), we construct a composite amplitude equation by
retaining the O(R−2/3) term in (5.4) so that the first term on the right-hand side
of (4.31) is modified to σ(x̄1 + R−1/3x̃), and the carrier of the forcing becomes
exp(iα̃d(x̃ + R1/3x̄1 + R2/3x3,n)). From (5.1) and (5.3) follows

x̄ = R1/6x̄1 + R−1/6x̃. (5.5)

Note that, in the equilibrium regime, we expanded the perturbation as

p = ε̄sR1/2[Ā(x̄)p̂0 + R−1/2p̂1 + · · · ], (5.6)

where
ε̄s = R−17/12, p̄I = ps/ε̄s, (5.7a,b)
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Excitation and evolution of radiating modes. Part 1

whilst, in the non-equilibrium regime, we expand the perturbation as

p = ε̃sR1/3[Ã(x̃)p̂0 + R−1/3p̂1 + · · · ], (5.8)

where
ε̃s = R−7/6, pI = ps/ε̃s. (5.9a,b)

Thus we have the relations Ā(x̄) = R1/12Ã(x̃) and p̄I = R1/4pI (F̄ = R1/4F̃). On using
these relations as well as (5.5), and noting ᾱd = R1/6α̃d, the amplitude equation (4.31)
is rewritten as

Ā′(x̄) = σ x̄Ā + Υ R2/3
∫ ∞

0

∫ ∞

0
K(ξ, η; s̄)Ā(x̄ − cξ)Ā(x̄ − cξ − cη)

× Ā∗(x̄ − 2cξ − cη) dηdξ + F̄ exp(iᾱdx̄), (5.10)

where s̄ = sR1/2, and we have taken x3,n = 0 without loss of generality.
The same composite amplitude equation may alternatively be constructed starting from

the equilibrium regime by retaining the small non-equilibrium term in the critical-layer
operator, which then becomes

R−1/6c
∂

∂ x̄
+ iαŪ′

cY − T̄cμ̄cPr−1 ∂
2

∂Y2 . (5.11)

In Appendix C, we show that the evolution problems in the equilibrium and
non-equilibrium regimes can be properly recovered from the composite theory.

The initial condition of the composite amplitude equation (5.10) is obtained by
neglecting the nonlinear term, leading to

Ā(x̄) = ă0 exp(σ x̄2/2)+ F̄ exp(σ x̄2/2)
∫ x̄

0
exp(iᾱdτ − στ 2/2) dτ as x̄ → −∞.

(5.12)

We can write ă0 = āop + â0 so that the term â0 exp(σ x̄2/2) represents the free mode.

5.2. Effects of forcing and free modes
We first solve the composite amplitude equation (5.10) without forcing (i.e. F̄ = 0). The
results are shown in figure 14. For all the values of ă0 examined, the numerical solution
and the corresponding initial condition overlap as expected in the upstream linear phase.
For small values of ă0, the numerical solution remains linear in the entire course of the
development. As the initial amplitude becomes larger, Ā amplifies faster than in the linear
limit, suggesting that nonlinear effects enhance the growth of the free radiating mode
before it attenuates. When ă0 exceeds a threshold value, the solution blows up at a finite
distance.

Next, we solve the composite amplitude equation (5.10) numerically for a range of
forcing amplitude p̄I with ă0 taken to be ă0 = āop (â0 = 0), so that there is no oncoming
free mode. Each solution represents the locally excited disturbance through resonance and
describes its subsequent development into a radiating mode. The solutions are presented in
figure 15. The corresponding linear solution (5.12), the solution to (4.61) in the equilibrium
regime and the nonlinear response in the non-equilibrium regime (recast in terms of the
coordinate of the composite theory, (C3)) are also plotted for comparison. For small values
of p̄I , the perturbation remains weak that the solutions to the composite and equilibrium
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Figure 14. Effects of the initial amplitude on the solution to (5.10) with F̄ = 0. The dashed lines represent the

corresponding linear solution (5.12).

amplitude equations overlap with the linear solution in the whole range (figure 15a).
After reaching its peak value, the amplitude decays in an oscillatory manner. For
a moderate value of p̄I , the nonlinear effect comes into play during the attenuation
phase, causing a slow decay of the disturbance in the downstream region, while
the non-equilibrium effect is rather small, as indicated by the agreement between
the composite and equilibrium solutions (figure 15b). However, non-equilibrium effect
becomes significant with further increase of p̄I (figure 15c) and suppresses the disturbance.
When p̄I is large enough, instead of attenuation, the disturbance amplifies in the
downstream region, and appears to terminate at a finite-distance singularity (figure 15d).
On entering the nonlinear stage, non-equilibrium becomes important, as indicated by the
fact that the solution to the composite amplitude equation saturates/grows at a smaller rate
than that in the equilibrium regime.

Figure 16 shows the effects of the forcing (i.e. p̄I) on the evolution in the presence of
a pre-existing free mode (â0 /= 0). Two cases are considered, for which the free mode
remains bounded (figure 16a) and blows up (figure 16b). While the amplitude upstream
increases monotonically in the case of either solely a free mode (figure 14) or just the
locally forced disturbance (figure 15), when both are present their total amplitude becomes
oscillatory even in the earlier linear stage. Figure 16(a) shows that moderate forcing
inhibits the mode, whereas further increase of the forcing enhances the amplification of
the disturbance and may lead to blow-up. Similar behaviours are observed in figure 16(b),
where moderate forcing delays the development of a finite-distance singularity and
sufficiently large forcing does the opposite.

We consider further the evolution of the combined free and locally excited modes.
The solutions to the composite amplitude equation for a fixed p̄I = 10 but different
initial amplitudes of the free mode are displayed in figure 17. A free mode with initial
amplitudes â0 = 1 and 3 influences the overall behaviour of the evolution appreciably
(figure 17b,c). Interestingly, the free mode suppresses the disturbance downstream
(figure 17c). However, when its initial amplitude is increased to â0 = 5, the free mode
promotes the disturbance instead, causing the latter to blow up at a finite distance
(figure 17d). The phase of the initial amplitude of the free mode also plays an important
role in the evolution, as is displayed in figure 18. Figure 18(a) shows that changing
the phase either suppresses or promotes the disturbance significantly. The free mode
with particular phases can cause a finite-distance singularity even though the mode
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Figure 15. Effects of the forcing on the evolution predicted by the composite amplitude equation (5.10)
with ᾱd = 0 and ă0 = āop (â0 = 0) for p̄I = 3 (a), p̄I = 6 (b), p̄I = 10 (c) and p̄I = 15 (d). Solid lines:
solution to (5.10) with R = 104; dashed lines: linear solution (5.12); dashed-dotted lines: solution to (4.61)
in the equilibrium regime; (red) dashed-dotted-dotted lines: nonlinear response given by (C3) in terms of the
coordinate of the composite theory.
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Figure 16. Effects of the forcing on the evolution in the presence of a pre-existing free mode with an initial
amplitude â0: (a) â0 = 3 and (b) â0 = 5.

with the same initial magnitude but different phases saturates. The important role of
the phase is also observed for the case where the disturbance blows up, as is shown in
figure 18(b): the shift of the phase either advances or delays the formation of finite-distance
singularity.
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Figure 17. Evolution of the combined free and locally excited modes. The solid lines represent the solution
to the composite amplitude equation (5.10) with R = 104, p̄I = 10, ᾱd = 0 and ă0 = āop + â0 for â0 = 0 (a),
â0 = 1 (b), â0 = 3 (c) and â0 = 5 (d). The dashed lines represent the nonlinear solution to (4.61), and the
dashed-dotted lines represent the nonlinear evolution of a free mode with the same â0 but without forcing.
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Figure 18. Effects of the phase of the free-mode initial amplitude, â0 ≡ |â0| eiψ , on the evolution of the
combined free and locally excited modes with R = 104, p̄I = 10 and ᾱd = 0 for |â0| = 3 (a) and |â0| = 5 (b).

6. Mach wave radiation

Similar to its counterpart on a free shear layer and a circular jet (Tam & Burton 1984a,b), a
supersonic instability mode on a boundary layer undergoing amplification–attenuation can
radiate a highly directional sound wave in the form of a Mach wave beam, as was described
by Wu (2005). We shall follow his asymptotic approach to determine the complete
structure of the Mach wave beam, formally in the non-parallel equilibrium regime.

985 A13-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.278


Excitation and evolution of radiating modes. Part 1

The disturbance outside of the boundary layer, (ρ̃, ũ, ṽ, p̃, θ̃ ), is governed by the linearised
Euler equations. Eliminating ρ̃, ũ, ṽ and θ̃ from these equations leads to the wave equation
for the pressure p̃

Lwp̃ ≡
{

M2
(
∂

∂t
+ ∂

∂x

)2

−
(
∂2

∂x2 + ∂2

∂y2

)}
p̃ = 0. (6.1)

6.1. Near field of the Mach wave beam
As in Wu (2005), the main-layer expansion (4.57) becomes disordered when y = O(R1/2)
in view of the solution (4.12) for the pressure. The appropriate solution can be sought by
introducing the variable

ȳ = R−1/2y. (6.2)

Accordingly, by the multiple-scale method, we have

∂

∂x
→ ∂

∂x
+ R−1/2 ∂

∂ x̄
,

∂

∂y
→ ∂

∂y
+ R−1/2 ∂

∂ ȳ
. (6.3a,b)

The perturbation now expands as

(ρ̃, ũ, ṽ, p̃, θ̃ ) = ε̄sR1/2[(ρ0, u0, v0, p0, θ0)+ R−1/2(ρ1, u1, v1, p1, θ1)

+ R−1(ρ2, u2, v2, p2, θ2)+ · · · ]. (6.4)

Substitution of the above expansion for p̃ into (6.1) leads to the equation for the
leading-order pressure, Lwp0 = 0. The solution may be written in the form

p0 = p̄0(x̄, ȳ) exp(iα(x − ct − qy))+ c.c., (6.5)

where q =
√

M2(1 − c)2 − 1, and p̄0 is determined by considering the second-order term.
Proceeding to the next order, we obtain the equation for p1

Lwp1 = 2
[
∂2p0

∂ x̄∂x
+ ∂2p0

∂ ȳ∂y
− M2

(
∂

∂t
+ ∂

∂x

)
∂p0

∂ x̄

]
. (6.6)

It is worth pointing out that p1 contains the incident wave, which satisfies the homogeneous
equation and thus does not affect the radiation directly. In order to remove the secular terms
in the expansion, the term proportional to p0 on the right-hand side of the above equation
is required to be zero, from which and (6.5), we obtain

[M2(1 − c)− 1]
∂ p̄0

∂ x̄
+ q

∂ p̄0

∂ ȳ
= 0, (6.7)

which satisfies the boundary condition through matching with the main-layer solution

p̄0(x̄, ȳ) = C∞Ā(x̄) at ȳ = 0. (6.8)

The solution to (6.7)–(6.8) is found by the method of characteristic lines as

p̄0(x̄, ȳ) = C∞Ā(x̄ − q−1[M2(1 − c)− 1]ȳ), (6.9)

which indicates that the amplitude modulation propagates along the characteristic lines

ξ̄ ≡ x̄ − q−1[M2(1 − c)− 1]ȳ = constant. (6.10)
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6.2. Far field of the Mach wave beam
As was pointed out by Wu (2005), the expansion (6.4) and the solution (6.9) are no longer
valid in the far field corresponding to the region

ȳ = O(R1/2), ξ̄ = O(1). (6.11a,b)

To construct the valid solution in this far field, we introduce the variable

ỹ = R−1/2ȳ = R−1y, (6.12)

and it follows that

∂

∂y
→ ∂

∂y
− R−1/2 M2(1 − c)− 1

q
∂

∂ξ̄
+ R−1 ∂

∂ ỹ
. (6.13)

The expansion for the pressure takes the form

p̃ = ε̄sR1/2[p̃0(ξ̄, ỹ)+ R−1p̃1(ξ̄, ỹ)+ · · · ] exp(iα(x − ct − qy))

+ ε̄sp̄I exp(iα(x − ct + qy))+ c.c.. (6.14)

Again the leading-order term satisfies the wave equation, but the secular condition for p̃1
leads to (Wu 2005)

− 2iαq
∂ p̃0

∂ ỹ
+ q−2M2c2 ∂

2p̃0

∂ξ̄2
= 0, (6.15)

which is different from (6.7). Matching with the near-field solution (6.9) gives the
boundary condition

p̃0(ξ̄, ỹ) = C∞Ā(ξ̄ ) at ỹ = 0. (6.16)

Equation (6.15) with (6.16) is solved by Fourier transform to give

p̃0(ξ̄, ỹ) = exp(πi/4)√
ỹ

√
αq3

2πM2c2 C∞
∫ ∞

−∞
Ā(ζ ) exp

{
− iαq3

2M2c2ỹ
(ξ̄ − ζ )2

}
dζ. (6.17)

For a linear free mode, Ā(x̄) = ā0 exp(σ x̄2/2), and the solution has the explicit expression

|p̃0(ξ̄, ỹ)| =
∣∣∣∣1 + iM2c2σ

αq3 ỹ
∣∣∣∣
−1/2 ∣∣∣∣C∞ā0 exp

{
1
2
σ ξ̄2/

(
1 + iM2c2σ

αq3 ỹ
)}∣∣∣∣ . (6.18)

6.3. Numerical evaluation
To compute the distribution of the sound field, we rewrite the far-field pressure (6.17) as

p̃0(x̌, y̌) = R1/4 exp(πi/4)

|σr|1/4
√

y̌

√
αq3

2πM2c2 C∞
∫ ∞

−∞
Ā(ζ/

√
|σr|) exp

{
− iαq3R1/2

2M2c2√|σr|y̌

× [x̌ − q−1(M2(1 − c)− 1)y̌ − ζ ]2
}

dζ, (6.19)

where we have introduced
x̌ =

√
|σr|x̄, y̌ =

√
|σr|ȳ. (6.20a,b)

As a highlight of the structure of the sound field, we first study the case of a linear free
mode and consider the analytical formula (6.18) in terms of the variables x̌ and y̌. Let us
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Excitation and evolution of radiating modes. Part 1

write |p̃0(ξ̄, ỹ)| as

|p̃0(ξ̄, ỹ)| ≡ F(x̌, y̌) = |C∞ā0|H−1/4(y̌) exp
{

1
2 σ̌r(x̌ − q̌y̌)2/H(y̌)

}
, (6.21)

where we have put

H(y̌) = (1 − σiQ̌y̌)2 + (σrQ̌y̌)2, Q̌ = M2c2

R1/2√|σr|αq3
,

q̌ = M2(1 − c)− 1
q

, σ̌r = σr

|σr| .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.22a–d)

In order to locate a possible maximum/minimum (or saddle point) of F(x̌, y̌), we seek
stationary point(s) by setting ∂F/∂ x̌ = 0 and ∂F/∂ y̌ = 0. The first of the above equations
implies that x̌ = q̌y̌, use of which in the second gives ∂H(y̌)/∂ y̌ = 0. The above equation
yields a unique stationary point (x̌s, y̌s),

y̌s = σi

(σ 2
r + σ 2

i )Q̌
, x̌s = q̌y̌s, (6.23a,b)

which indicates that a stationary point with y̌s > 0 exists only when σi > 0. It is noted that
the characteristic line emanating from the origin passes through the stationary point.

Next, we evaluate the second-order derivatives of F(x̌, y̌) at (x̌s, y̌s), and find that

Δ̌(x̌s, y̌s) ≡ ∂2F
∂ x̌2

∂2F
∂ y̌2 −

(
∂2F
∂ x̌∂ y̌

)2

= −1
2

F2σ̌r
(σ 2

r + σ 2
i )Q̌

2

H2 > 0. (6.24)

Thus, we conclude that the stationary point (x̌s, y̌s) is a local maximum.
For the present case, we have σi > 0, so that there is a stationary point with y̌s > 0,

which turns out to be the maximum. The fact that σi > 0 in the present case is consistent
with the result of Chuvakhov & Fedorov (2016). Figures 3 and 9 of their paper show that
the phase speed decreases as the mode passes through the neutral point, indicating that the
streamwise wavenumber increases and hence its derivative with respect to the streamwise
coordinate at the neutral position is positive. Since in our theory σi is proportional to
that derivative, it is positive. As a validation of our numerical code evaluating (6.19), we
compare the result of the analytical formula (6.18) with the numerical evaluation of (6.19)
in figure 19. The two are in complete agreement. Figure 19(b), which is a locally enlarged
view of the ‘focal region’, shows that the stationary point is indeed a local maximum. For
the case of σi ≤ 0, no physically meaningful stationary point exists; contours of the sound
intensity are lobed, as is shown in Wu (2005).

We now turn to the acoustic field of a nonlinearly evolving mode with and without
the incident sound. The pressure contours predicted using the solutions to the composite
amplitude equation (5.10) with R = 104 are displayed in figure 20. The pressure contours
without an impinging sound are shown in figure 20(a) with the far field in figure 20(b). The
emitted sound wave focuses first towards the point where the intensity attains its maximum,
beyond which the contours feature a main lobe flanked by two secondary beams. The
contours are rather smooth. Figure 20(c) depicts the pressure contours of a locally excited
mode by the incident sound without any oncoming free mode. The distinct feature is that
the contours exhibit multiple spikes. This is due to amplitude oscillations caused by the
forcing. The structure in the far field is illustrated in figure 20(d). Figure 20(e) shows the
acoustic field in the case where a free radiating mode is present in addition to the locally
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Figure 19. Contours of the far-field pressure |p̃0| of a linear free mode with ā0 = 3 and R = 104. (b) Zooms
into a region near the ‘focal point’ in (a). Solid lines: the analytical result (6.18); dashed lines: the numerical
evaluation of (6.19).

excited mode. The far-field region in figure 20( f ) shows that multiple spikes are again
present as a result of the amplitude oscillations. In summary, the pattern of the Mach wave
radiation is substantially changed in the presence of the impinging sound.

7. Summary and conclusions

The present paper has investigated the effects of impinging sound waves on linear and
nonlinear instability of supersonic boundary layers at asymptotically large Reynolds
numbers. The focus is on the flow conditions (Mach number and wall temperatures) under
which there exists a radiating mode, which remains finite at the outer edge of the boundary
layer and emits a Mach wave. We identified and described a particularly important
mechanism, referred to as fundamental resonance, through which the radiating mode and
the impinging sound with the same frequency and wavenumber interact effectively. As a
result, the latter can, even with a rather low amplitude, alters substantially the linear and
nonlinear evolution of the radiating mode.

In order to provide the context for this mechanism, we first considered reflection of
an impinging slow sound wave by the boundary layer. The boundary-layer response,
consisting of the absorbed and reflected waves, is predicted by a primarily inviscid analysis
supplemented by a jump condition across the critical level, which is derived by analysing
the viscous critical layer. We introduced the reflection coefficient R, defined as the ratio of
the magnitude of the outgoing wave to that of the incident wave. The scaled sound pressure
|b̃| at the critical level was used to measure the absorbed disturbance. We monitored the
values of |R| and |b̃| in a broad range of the incident angle and frequency, and found that
both are extraordinarily large for a small subset of the sound incident angle and frequency.
Furthermore, for a specific pairing of incidence angle and frequency, R becomes infinite,
which is referred to as resonant over-reflection, and the reflected wave corresponds to the
neutral radiating mode. The infinite reflection coefficient signals high sensitivity of the
radiating mode to this particular incident sound wave.

The resonant over-reflection implies that, among broadband external acoustic
disturbances, there exist ones whose wavenumber and frequency would coincide with
those of the neutral radiating mode at each streamwise location. As a result, fundamental
resonance takes place between the sound and the instability mode. The excitation of the
radiating mode as well as its evolution were described by using the nonlinear critical-layer
theory. Depending on the magnitude of the sound, the amplitude equations are derived
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Figure 20. Contours of the far-field pressure |p̃0| using the solution to the composite amplitude equation (5.10)
with R = 104. Panels show (a) p̄I = 0 and ă0 = 3, (c) p̄I = 10 and ă0 = āop, (e) p̄I = 10 and ă0 = āop + 3.
(b,d, f ) Show the far field of (a,c,e), respectively.

in the non-equilibrium parallel and equilibrium non-parallel regimes, respectively. In the
non-equilibrium regime, which occurs when the incident sound is sufficiently strong, the
amplitude equation admits an equilibrium solution representing the nonlinear response,
which modifies the linear growth rate of the mode significantly. In the nonlinear evolution
stage, the incident sound wave promotes nonlinear amplification and advances the eventual
blow-up. In the equilibrium regime, in addition to the pre-existing free mode, the locally
forced response evolves into a radiating mode. The evolution depends on both the
intensity of the incident sound and the amplitude of the pre-existing free mode. With
the amplitude equations derived for the two distinguished regimes, we then constructed
a composite amplitude equation that takes into account non-parallel and non-equilibrium
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effects simultaneously. This equation was solved numerically, and solutions showed that
the incident sound influences the evolution significantly: with moderate intensity it inhibits
the disturbance, but enhances amplification when the intensity is sufficiently large. The
most obvious effect of the impinging sound wave is that the amplitude undergoes vigorous
oscillations, whether attenuating or amplifying. The amplitude evolution predicted by the
composite amplitude equation was then used to study the Mach wave radiation process.
The Mach wave in the far field is drastically altered by the impinging sound wave: the
characteristic simple lobed beam is replaced by a highly complex directivity.

The present theoretical investigation provides physical insights into how acoustic waves
originated from the environment may influence the instability and acoustic radiation of
supersonic boundary layers. The rather striking phenomena revealed and described are
important when incident sound waves of an appreciable level are present, but may also
be relevant if the experimental data are to be extrapolated to flight conditions. The results
may be of relevance for flow control using acoustic actuation.

Finally, we comment on related issues that require further investigation. Free-stream
acoustic waves in reality have a broadband spectrum whereas our theory considered a
single discrete component. The simplification was based on the observation that, among
all possible components, only those in a narrow band centred at the particular component
with the same frequency and wavenumber of the radiating mode can take part in the
fundamental resonance. Only one such component was considered in this paper for
simplicity, but the analysis can be generalised to include a continuum of components in
the narrow band, in which case the amplitude function A would be allowed to modulate
simultaneously in time. Another issue concerns the fact that solutions to the amplitude
equations blow up for a certain range of parameters. The present weakly nonlinear theory
becomes invalid close to the blow-up location, where the disturbance would evolve on
the short scale comparable to the boundary-layer thickness and be governed by the Euler
equations (Leib 1991). It is also possible that the primary disturbance becomes susceptible
to secondary instability. Either of the scenarios signals a cascade into small scales, the
implication of which is unclear, but it might undermine the quantitative usefulness of
asymptotic solutions as was argued by Cowley (2001). Predicting ensuing rapid evolution
and/or onset of small-scale motions is a major challenge.
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Appendix A. Computation of neutral eigenmode and reflection coefficient

A.1. Computation of the neutral eigenmode
To solve Rayleigh equation (2.30) numerically, we recast it into a system of first-order
differential equations. The integration starts at a position slightly beneath the critical
level, ηc − d̃, with the initial values φ̄a(ηc − d̃), φ̄′

a(ηc − d̃), φ̄b(ηc − d̃) and φ̄′
b(ηc − d̃)

calculated using (2.34) and (2.35). The governing equations are marched from η =
ηc − d̃ to η = 0 by the fourth-order Runge–Kutta method, leading to (p̄a(0), p̄′

a(0)) and
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(p̄b(0), p̄′
b(0)) at the wall. Imposing the first of the boundary condition (2.31), we obtain

ā− = −p̄′
b(0)/p̄

′
a(0). (A1)

A second integration starts from the position η = ηe = 20, which represents the far
field. According to (2.32), the initial condition can be taken as

p̂0 = exp(−iαqηe), p̂′
0 = −iαq exp(−iαqηe). (A2a,b)

The governing equations are marched from η = ηe to η = ηc + d̃ again by the fourth-order
Runge–Kutta method, yielding (p̂0(ηc + d̃), p̂′

0(ηc + d̃)) just above the critical level.
Equating C∞(p̂0(ηc + d̃), p̂′

0(ηc + d̃)) to the corresponding local analytical solution (2.33)
at ηc + d̃, we obtain a pair of equations, eliminating from which the constant C∞ yields
the expression for ā+

ā+ = p̂′
0(ηc + d̃)φ̄b(ηc + d̃)− p̂0(ηc + d̃)φ̄′

b(ηc + d̃)

p̂0(ηc + d̃)φ̄′
a(ηc + d̃)− p̂′

0(ηc + d̃)φ̄a(ηc + d̃)
. (A3)

In addition, a linear critical-layer analysis (presented in § 4.1) determines the jump

ā+ − ā− = α2T̄2
c

3

(
2T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
πi, (A4)

which corresponds to, as is well known, the phase of the logarithm in the Frobenius
solution changing by −π as η goes from η+

c to η−
c . From (A1), (A3) and (A4) follows

the dispersion relation

Δ(α, c) ≡ p̂′
0(ηc + d̃)φ̄b(ηc + d̃)− p̂0(ηc + d̃)φ̄′

b(ηc + d̃)

p̂0(ηc + d̃)φ̄′
a(ηc + d̃)− p̂′

0(ηc + d̃)φ̄a(ηc + d̃)

+ p̄′
b(0)/p̄

′
a(0)− α2T̄2

c

3

(
2T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
πi = 0. (A5)

The Newton–Raphson method is employed to solve the dispersion relation for an initial
guess of (α, c).

A.2. Computation of the reflection coefficient and boundary-layer response
For a given pairing (αs, cs), the reflection coefficient R and boundary-layer response are
determined by using a combination of analytical results and numerical method. Using the
similarity solution for Ū and T̄ , (3.3) for p̌s is recast in terms of η and then written as a
system of first-order ordinary differential equations.

Near the critical level ηc (i.e. η̆ ≡ η − ηc → 0), the pressure takes the form

p̌s = ã±φ̃a + bsφ̃b, (A6)

where φ̃a and φ̃b have the same expressions as (2.34) and (2.35), respectively, with α
being replaced by αs. Integrating from η = ηc − d̃ to η = 0 with the initial conditions
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(φ̃a(ηc − d̃), φ̃′
a(ηc − d̃)) and (φ̃b(ηc − d̃), φ̃′

b(ηc − d̃)), we obtain ( pa(0), p′
a(0)) and

( pb(0), p′
b(0)), respectively. Then use of the impermeability condition gives

ã−p′
a(0)+ bsp′

b(0) = 0. (A7)

In the far field, the pressure takes the form

p̌s = pI(exp(iγsη)+ R exp(−iγsη)). (A8)

Given the initial values (exp(iγsηe), iγs exp(iγsηe)) and (exp(−iγsηe),−iγs exp(−iγsηe)),
the governing equations are marched from η = ηe to η = ηc + d̃ by the fourth-order
Runge–Kutta method, leading to ( pi(ηc + d̃), p′

i(ηc + d̃)) and ( pr(ηc + d̃), p′
r(ηc + d̃))

above the critical level. Equating the numerical solution to the analytical formula (A6)
yields

ã+φ̃a(ηc + d̃)+ bsφ̃b(ηc + d̃) = pI[pi(ηc + d̃)+ Rpr(ηc + d̃)], (A9)

ã+φ̃′
a(ηc + d̃)+ bsφ̃

′
b(ηc + d̃) = pI[p′

i(ηc + d̃)+ Rp′
r(ηc + d̃)]. (A10)

In addition, the jump condition can be written as

ã+ − ã− = bsJ, (A11)

where

J = α2
s T̄2

c

3

(
2T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
πi. (A12)

From (A7) and (A9)–(A11), we obtain the reflection coefficient

R(αs, cs) = Bpi(ηc + d̃)− Ap′
i(ηc + d̃)

Ap′
r(ηc + d̃)− Bpr(ηc + d̃)

, (A13)

where we have put

A ≡ [J − p′
b(0)/p

′
a(0)]φ̃a(ηc + d̃)+ φ̃b(ηc + d̃), (A14)

B ≡ [J − p′
b(0)/p

′
a(0)]φ̃

′
a(ηc + d̃)+ φ̃′

b(ηc + d̃). (A15)

We introduce the scaled quantity b̃ ≡ bs/pI , which measures the response in the critical
layer. Substituting the expression of R into (A9), we find that

b̃ = [pi(ηc + d̃)+ Rpr(ηc + d̃)]/A. (A16)
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Appendix B. The mean-flow distortion and interaction at the cubic level

The mean-flow distortion driven by the nonlinear interaction of the fundamental wave is
found to satisfy the equations

− c
T̄2

c

∂ΘM

∂ x̃
+ 1

T̄c

∂VM

∂Y
= V0

T̄2
c

∂Θ∗
1

∂Y
, (B1a)

c
∂UM

∂ x̃
+ Ū′

cVM − λT̄cμ̄c
∂2UM

∂Y2 = −V0
∂U∗

1
∂Y

− iαP0Θ
∗
1 + λT̄cμ̄

′
cŪ′

c
∂ΘM

∂Y
, (B1b)

c
∂ΘM

∂ x̃
− λT̄cμ̄cPr−1 ∂

2ΘM

∂Y2 = −V0
∂Θ∗

1
∂Y

, (B1c)

where the asterisk indicates the complex conjugate. Equation (B1c) is solved to give

ΘM = iα3T̄ ′
cŪ′

c

∫ ∞

0

∫ ∞

0
ξ exp(−spξ

3 − 3spξ
2η

+ iαŪ′
cȲξ)Ã(x̃ − cη)Ã∗(x̃ − cη − cξ) dηdξ. (B2)

Equations (B1a) and (B1c) imply that VM = λμ̄cPr−1ΘM,Y , which is inserted into (B1b)
to obtain(

c
∂

∂ x̃
− λT̄cμ̄c

∂2

∂Y2

)
UM = −V0

∂U∗
1

∂Y
− iαP0Θ

∗
1 + λŪ′

c(T̄cμ̄
′
c − μ̄cPr−1)

∂ΘM

∂Y
. (B3)

We find the solution to be

UM,YY = α4(Ū′
c)

3 T̄ ′
c

T̄c

∫ ∞

0

∫ ∞

0
ξ2 exp(−spξ

3 − 3sξ2η + iαŪ′
cȲξ)

×
[

1 − T̄cμ̄
′
c − μ̄cPr−1

μ̄c(1 − Pr−1)

(
exp((sp − s)ξ3)− exp(3(s − sp)ξ

2η)
)

+ T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
exp((sp − s)ξ3)

]
× Ã(x̃ − cη)Ã∗(x̃ − cη − cξ) dηdξ. (B4)

Now we proceed to consider the fundamental regenerated by the cubic interaction,
whose governing equations are found to be[

c
∂

∂ x̃
+ iα(Ū′

cY + Ū1cx̄1)

]
(−Θ2/T̄2

c )+ 1
T̄c
(iαU2 + V2,Y) = V0

T̄2
c
ΘM,Y + · · · , (B5a)

LμU2 + Ū′
cV2 = −iαT̄cP2 − V0UM,Y − iαP0ΘM + λT̄cμ̄

′
cŪ′

cΘ2,Y + · · · , (B5b)

LpΘ2 = −V0ΘM,Y + · · · . (B5c)

In order to find U2 and hence the jump, we must calculate the temperature component Θ2.
Equation (B5c) is thus solved to give

Θ2 = −iα5(Ū′
c)

2T̄ ′
c

∫ ∞

0

∫ ∞

0

∫ ∞

−ζ
ζ 2 exp[−spξ

3 − iαŪ′
cȲξ − 2spζ

3 − 3spζ
2η]

× Ã(x̃ − cξ − cζ )Ã(x̃ − cξ − cζ − cη)Ã∗(x̃ − cξ − 2cζ − cη) dξdηdζ. (B6)
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Equations (B5a) and (B5b) can be reduced to

LμU2,Y = −V0UM,YY − iαP0ΘM,Y + λŪ′
c(T̄cμ̄

′
c − μ̄cPr−1)Θ2,YY + · · · . (B7)

The jump of U2 can be obtained by performing Fourier transform of the above equation
and setting the transform variable to zero. Matching U2 with the outer solution (4.17)
determines the jump

c+ − c− = 1
3
α2

T̄c

(
ic
α

Ã′ − Ū1cx̄1Ã
)

jπi +
(
α2Ū′

c

3T̄c
x̄1Ã

)
j1πi + d

α2

3

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)
πi

− 2πiα6(Ū′
c)

3T̄ ′
c

3T̄2
c

∫ ∞

0

∫ ∞

0
K(ξ, η)Ã(x̃ − cξ)Ã(x̃ − cξ − cη)

× Ã∗(x̃ − 2cξ − cη) dηdξ, (B8)

where the linear part of the jump corresponds to the (−π) phase jump of the logarithmic
singularity in (4.13), and the kernel function

K(ξ, η) = ξ2 exp[−s(2ξ3 + 3ξ2η)]
{

exp[−(sp − s)ξ3]

+ exp[−(sp − s)ξ3 − 3(sp − s)ξ2η]

− T̄cμ̄
′
c − μ̄cPr−1

μ̄c(1 − Pr−1)
[1 − exp(−(sp − s)(2ξ3 + 3ξ2η))] + T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū′′

c

Ū′
c

)}
.

(B9)

Appendix C. Recovery of the equilibrium and non-equilibrium regimes from the
composite theory

In this appendix, we show that the amplitude equations in the equilibrium and
non-equilibrium regimes can be recovered from the composite amplitude equation (5.10)
as the appropriate limiting cases.

First, consider recovery of the equilibrium regime. Following Wu & Huerre (2009), we
perform the substitution ξ → R−1/6ξ and η → R−1/6η and take the limit R � 1 in (5.10).
The latter then reduces to (4.61).

Next, recall that in the non-equilibrium regime we have the nonlinear response
ae exp(iα̃dx̃), where ae(x̄1) is governed by (4.38). Let Āe denote the corresponding
nonlinear response written in terms of the scaled quantities and coordinate in the
composite theory. Then we have

Āe(x̄) = R1/12ae(x̄1), x̄ = R1/6x̄1, (C1)

where we have put x̃ = 0 in (5.5). By using (C1) and noting

F̄ = R1/4F̃, ᾱd = R1/6α̃d, (C2a,b)

the response equation (4.38) is rewritten as

(iᾱd − σ x̄)Āe = lĀe|Āe|2 + F̄. (C3)

Figure 21 compares the nonlinear response with the solution to the composite amplitude
equation in the absence of an oncoming free mode. The two solutions overlap in the
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Figure 21. Comparison between the nonlinear response and the solution to the composite amplitude equation
without an oncoming free mode for p̄I = 160 and ᾱd = 0. Solid lines: solution to (5.10) with R = 104; dotted
lines: linear solution (5.12); dashed-dotted lines: nonlinear response governed by (C3). (b) Zooms into a range
in (a).
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Figure 22. Comparison between the nonlinear response plus the nonlinear perturbation and the solution to
the composite amplitude equation (5.10) in the presence of an oncoming free mode with â0 = 3 for p̄I = 160,
ᾱd = 0 and R = 104.

upstream region, suggesting that the former can be recovered from the latter in the
upstream limit. An enlarged view, figure 21(b), shows that the solution to the composite
amplitude equation evolves through a stage which is nonlinear and captured by the
nonlinear response.

We consider next the evolution of the perturbation with the growth rate modified by
the nonlinear response. The perturbation in the non-equilibrium regime satisfies the initial
condition (4.55) with the modified growth rate κ being given by (4.53), and the eigenvector
(ar, ai) given in (4.54a,b). Let Ā0 denote the corresponding perturbation under the scaling
of the composite theory, that is, Ā0(x̄) = R1/12A0(x̃). On noting (5.5), the perturbation can
be written as

Ā0 = 2|ā0| exp(κ̄rx̄)[|ā0r| cos(κ̄ix̄ + θ̄1 + φ̄0)+ i|ā0i| cos(κ̄ix̄ + θ̄2 + φ̄0)], (C4)

where the modified growth rate κ̄ ≡ R1/6κ and the eigenvector (ār, āi) satisfy the same
equations as (4.53) and (4.54a,b) in the non-equilibrium regime, respectively, provided
that the parameter x̄1 is replaced by the variable x̄ and the parameters Υ and s are replaced
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by Ῡ and s̄ with

Ῡ = Υ R2/3, s̄ = sR1/2. (C5a,b)

Similarly, the rescaled nonlinear evolution equation for the perturbation in the composite
theory has the same form as (4.45) in the non-equilibrium regime, provided that x̄1 is
replaced by x̄ and the rescaled quantities in (C5a,b) are used.

In order to compare the solution to the composite amplitude equation (5.10) in the
presence of an oncoming free mode with the nonlinear response plus the nonlinear
perturbation, the constants |ā0| and φ̄0 are first determined by fitting Āe + Ā0 with the
composite solution at a particular location x̄ = −10. The resulting initial condition (C4)
is used to solve the rescaled version of the nonlinear evolution equation (4.45). Figure 22
shows the comparison between the two solutions. The sum of Āe and Ā0 represents the
nonlinear response and the nonlinear perturbation under the scaling of the composite
theory. There is good agreement between the two solutions. This indicates that the
composite theory captures the characteristics of the non-equilibrium effects.
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