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In 1956, Jacobson asked whether the intersection of the powers of the Jacobson
radical, J(R), of a right Noetherian ring R, must always be zero [4, p. 200]. His question

Z
was answered in the negative by I. N. Herstein [3], who noted that R, = ( 62) Q), where

Q
Z,, denotes the ring of rational numbers with denominator prime to 2, affords a
counterexample. In contrast, the ring R, = (,(; :Eg%), though similar in appearance to

R,, satisfies (T J"(R,)=0. (Here, k denotes a field.)
An explanation for the differing behaviour of these rings is provided by the following.

THEOREM. Let R be a right Noetherian, right fully bounded ring, all of whose simple
modules are finitely generated over a central subring C of R. Then (T J"(R)=0.

A prime ring is right bounded if each of its essential right ideals contains a non-zero
two sided ideal. A ring is right fully bounded if each of its prime factor rings is right
bounded. For example, rings satisfying a polynomial identity are right fully bounded [8§,
Ch. 11, 5.2 and 5.7]; in particular, this is true of the rings R; and R,.

All rings are assumed to have an identity, and all modules are unital, and are right
modules unless otherwise described. The injective hull of a module M over the ring R is
denoted by E,(M). We shall need the following lemmas.

LEMMA 1 [6, Lemma 6]). If R is a ring and & is a set of representatives of isomorphism
classes of simple R-modules then E=€D, 4 E(S) is a faithful R-module.

Lemma 2 [1, Lemma 3.4]. Let M be a finitely generated faithful uniform module over
the prime, right fully bounded, right Noetherian ring R. Then every non-zero submodule of

M is faithful.

Let M be an R-R-bimodule. We write My (resp. gkM) to indicate that M is being
viewed as a right (left) R-module, and, for a subset A of M, write r(A)={re R | Ar=0}
and I{(A)={re R|rA =0}. The key to the theorem is contained in

LemMa 3. Let R be a right Noetherian ring all of whose simple modules are finitely
generated over a central subring C. If I is an ideal of R with I Artinian then gI and R/I(I)
are Artinian.

Proof. By Noetherian induction, it may be assumed that I contains no smaller
non-zero ideals of R. Let I=3",aC. Then P=r(I) is a prime ideal and, since
r()=N", r(a;), the ring R/P is Artinian. Therefore, R/P is a finitely generated
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(C/C N P)-module; and so C/C NP is Artinian, by [2, Theorem 1]. Let K = C/C N P. Thus
I=3"_, Ka;, so gl is Artinian. Since Iy is finitely generated, the last part follows easily.

Proof of the Theorem. Nakayama’s Lemma ensures that any module with a composi-
tion series is annihilated by a power of J(R). Thus the theorem follows from Lemma 1
provided that, if S is simple and M is a finitely generated submodule of Eg(S), then M is
Artinian. Let M be such a submodule, with largest Artinian submodule A(M). If
M+ A(M) and N is any other non-Artinian submodule of M then S € N and r(M) < r(N).
Also, since A(N)=NNAM), r(M/A(M)) < r(N/JA(N)). Hence, using Noetherian induc-
tion and replacing M by a suitable non-Artinian submodule if necessary, we may assume
that r(M)=r(N) and that r(M/A(M))=r(N/A(N)), whenever N is a non-Artinian sub-
module of M. It follows easily from the second of these two assumptions that Q=
r(M/A(M)) is a prime ideal. Put X =r(A(M)). Then R/X and (Q/QX)g are Artinian.
Therefore, by Lemma 3, if I=1(Q/QX) then R/I is an Artinian ring. Note that MIQ <
MQX =0. If MI < A(M) then M is Artinian, as required. Otherwise, MI is not Artinian,
so MQ =0 by assumption. Since Q =r(M/A(M)), clearly Q =r(M). By Lemma 2, Q = X,
and again M is Artinian, as required.
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