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Abstract

We propose a new method to obtain the boundary crossing probabilities or the first passage
time distribution for linear and nonlinear boundaries for Brownian motion. The method
also covers certain classes of stochastic processes associated with Brownian motion. The
basic idea of the method is based on being able to construct a finite Markov chain, and
the boundary crossing probability of Brownian motion is cast as the limiting probability
of the finite Markov chain entering a set of absorbing states induced by the boundaries.
Error bounds are obtained. Numerical results for various types of boundary studied in
the literature are provided in order to illustrate our method.

Keywords: Boundary crossing probability; first passage time; Brownian motion; diffusion
process; finite Markov chain imbedding; discretization; random walk

2010 Mathematics Subject Classification: Primary 60J65
Secondary 60J70; 60J60; 60J10

1. Introduction

Brownian motion is one of the most important continuous-time stochastic processes, and
boundary crossing probabilities (BCPs) or first passage times of one-dimensional Brownian
motion type processes have wide applications in many fields, including nonparametric statistics
(see [8] and [24]), sequential analysis (see [1] and [24]), mathematical finance (see [19]), biology
(see [20] and [21]), change-point problems (see [24]), and many engineering problems.

Let {W(t) : t ∈ [0, ∞)} be a stochastic process defined on R. The boundary crossing
probability of W(t) is

P(a(t) ≥ W(t) or W(t) ≥ b(t) for some t ∈ [0, T ]),
where T is fixed, and a(t) and b(t) are continuous functions on [0, T ]. There are various
definitions for a Brownian motion. For our approach, we view the Brownian motion W(t) as a
Markov process normally distributed with mean 0 and variance t , independent increments, and
continuous at 0. Given t > 0, the Brownian motion has density function

f (x, t) = 1√
2πt

exp

(
x2

2t

)
,

which satisfies the differential equation

∂

∂t
f (x, t) = 1

2

∂2

∂x2 f (x, t).
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Boundary crossing probabilities 1059

There are several historical and recent results for boundary crossing probabilities of Brownian
motion. We briefly introduce a few in the following. Given c > 0 and P(W(0) = 0) = 1 (this
condition is assumed throughout this paper), it follows from the reflection principle that the
boundary crossing probability in the time interval t ∈ [0, T ] is

P
(

sup
0≤t≤T

W(t) ≥ c
)

= 2 P(W(T ) > c) = 2√
2πT

∫ ∞

c

exp

(−x2

2T

)
dx.

For a one-sided boundary b(t), a well-known tangent approximation was first introduced by
Strassen [25] and independently established by Daniels [7] for general t with the method of
images. For −∞ < a < 0 < b < ∞, the two-sided boundary crossing probability for
t ∈ [0, T ] was given in an infinite series form in [1]. For a linear boundary a + bt, a > 0,
Robbins and Siegmund [18] showed, using martingale theory, that

P
(

sup
0≤t≤T

(W(t) − bt) ≥ a
)

= 1 − �

(
a√
T

+ b
√

T

)
+ exp(−2ab)�

(
b
√

T − a√
T

)
,

where � stands for the cumulative distribution of a standard normal distribution. Scheike [23]
extended Robbins and Siegmund’s [18] result to a piecewise linear boundary. Also, a number
of papers obtained the boundary crossing probability as an integral equation or in integral form.
Durbin [8], [9] computed the boundary crossing probabilities using the numerical solution of
integral equations. Wang and Pötzelberger [26] and Pötzelberger and Wang [17] extended the
results of Robbins and Siegmund [18] and Scheike [23] to approximate the boundary crossing
probabilities for one-sided and two-sided nonlinear boundaries. Several general nonlinear
boundaries have been considered and numerical computations were done using Monte Carlo
simulation methods. Novikov et al. [16] also obtained bounds by piecewise approximation for
two-sided boundary crossing probabilities. More approximations and computational algorithms
for boundary crossing probabilities can be found in [22].

General diffusion processes governed by stochastic differential equations are often used as
models in finance or biology (see, e.g. [20]). One of the methods used to find the boundary
crossing probabilities for diffusion processes is to express the diffusion processes in terms of
functions of the Brownian motion, and then the boundary crossing probabilities for diffusion
processes can be obtained via the boundary crossing probabilities for Brownian motion with
transformed time intervals and boundaries.

It is well known that Brownian motion can be approximated by discrete random walks
moving by ±1 with equal probability (see, e.g. [11]). In this paper, a new approach inspired by
the above idea is provided to obtain the boundary crossing probabilities of Brownian motion
for nonlinear boundaries, using the strong Markov property of Brownian motion and the finite
Markov chain imbedding technique (see [10]). It follows that the boundary crossing probability
can be expressed in terms of transition matrices of a discrete Markov chain, i.e.

P(W(t) ≤ a(t) or W(t) ≥ b(t) for some t ∈ [0, T ])
= 1 − P(a(t) < W(t) < b(t) for all t ∈ [0, T ])

= 1 − lim
n→∞ ξ0

( n∏
i=1

Ni

)
1�,

where 1� is the transpose of the row vector 1 = (1, . . . , 1), and the Ni , i = 1, . . . , n, are
referred to as fundamental transient probability matrices of a discrete Markov chain {Yn} having
absorbing states induced by boundaries a(t) and b(t).
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1060 J. C. FU AND T.-L. WU

This paper is organized as follows. In Section 2 we provide some results for discrete-time
Markov chains with finite state space. In Section 3 we provide the finite Markov imbedding
procedure and main theorems on the boundary crossing probability for Brownian motion. In
Section 4 we study the error bound. In Section 5 we provide several numerical results for linear
and nonlinear boundary crossing probabilities to illustrate our theoretical results. A summary
and discussion are given in Section 6.

2. Finite Markov chain with absorbing state

To facilitate our approach, we need a simple result for computing the absorption probability
of a finite nonhomogeneous Markov chain. Given n ∈ J+ = {1, 2, . . .}, let us define a sequence
of state spaces

�i = {c1, c2, . . . , cmi
} ∪ {αi} for i = 1, 2, . . . , n,

where αi stands for an absorbing state and mi +1 is the size of state space �i (the mi do not have
to be the same). Assume that �0 = {c0}, and denote by ξ0 the initial distribution. Furthermore,
assume that a finite Markov chain {Yi}ni=0 is defined on the sequence of state spaces {�i}ni=0
with transition probabilities given by, for i = 1, 2, . . . , n,

P(Yi = k | Yi−1 = j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi(k | j) if j ∈ �i−1 \ αi−1, k ∈ �i \ αi,

pi(αi | j) if j ∈ �i−1 \ αi−1,

0 if j = αi−1, k ∈ �i \ αi,

1 if j = αi−1, k = αi.

(2.1)

The transition probability matrices corresponding to the finite Markov chain {Yi}ni=0 will have
the form

Mi =
[

Ni Ci

0 1

]
(2.2)

where Ni = (pi(k | j)), j ∈ �i−1 \ αi−1 and k ∈ �i \ αi , is an mi−1 × mi rectangular
matrix, often referred to as the fundamental matrix, Ci = (pi(αi | j)) is an mi−1 × 1 column
matrix, and 0 = (0, . . . , 0) is a 1 × mi row matrix. It follows from the Chapman–Kolmogorov
equation and the structure of the matrices Mi that the probability that the Markov chain {Yi}ni=0
never touches the absorbing states, P(Y1 
= α1, . . . , Yn 
= αn | ξ0), can be obtained via the
following lemma.

Lemma 2.1. Given the state spaces {�i}ni=0 and the finite Markov chain {Yi}ni=0 defined on
the state spaces {�i}ni=0 with corresponding transition probability matrices defined by (2.2),
we have

P(Y1 
= α1, . . . , Yn 
= αn | ξ0) = ξ0

( n∏
i=1

Ni

)
1�,

where the Ni are given by (2.1) and (2.2).

While the above construction is somewhat simple, the construction of the sequence of state
spaces and the Markov chain {Yi}ni=0 with absorbing states will play an indispensable role in
our method of computing boundary crossing probabilities.

https://doi.org/10.1239/jap/1294170519 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170519


Boundary crossing probabilities 1061

3. Boundary crossing probabilities

3.1. Brownian motion

For given �t , the Brownian motion W(t) has transition probability density function

f (x, y | �t) = 1√
2π�t

exp

(
− 1

2�t
(y − x)2

)

for all x, y ∈ R. Let a(t) and b(t) be lower and upper boundaries that satisfy the following
conditions:

(A) a(t) < b(t) are continuous for t ∈ [0, T ], and

(B) a(0) < 0 < b(0).

Let h = max(sup0≤t≤T |a(t)|, sup0≤t≤T |b(t)|). Since a(t) and b(t) are continuous func-
tions defined on the compact set [0, T ], we have 0 < h < ∞. Given a large positive integer m,
we define �x = h/m and discretize the real line R as Rm = {k�x : k = 0, ±1, . . .}. We also
discretize the time interval [0, T ] into n = m2T/h2 subintervals. Without loss of generality,
we may assume that T = 1 and n = m2/h2 is always an integer or, if not, we may take
n = �m2/h2�, the integer part of m2/h2. For given t ∈ [0, 1], we then construct a partial
sum Ŵn(t) = ∑�nt�

j=1 X̂j , where P(Ŵn(0) = 0) = 1 and the X̂j s are discrete, independent
and identically distributed (i.i.d.) random variables induced by discretizing the R and the time
interval [0, 1], having distribution defined by, for j = 1, . . . , �nt�,

P(X̂j = k�x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C−1

√
2π

exp

(
−k2

2

)
if k 
= 0,

C−1

√
2π

∑
	
=0

(	2 − 1) exp

(
−	2

2

)
if k = 0,

(3.1)

where
∑

	
=0 stands for
∑−1

	=−∞ + ∑∞
	=1 and

C = 1√
2π

∑
	
=0

	2 exp

(
−	2

2

)

is the normalizing constant. Obviously, {Ŵn(t)} is a homogeneous Markov chain having
transition probabilities

p(k | j) = P(Ŵn(t + �t) = k�x | Ŵn(t) = j�x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C−1

√
2π

exp

(
− (k − j)2

2

)
if k − j 
= 0,

C−1

√
2π

∑
	
=0

(	2 − 1) exp

(
−	2

2

)
if k − j = 0.

(3.2)

Note that the discrete probability functions defined by (3.1) have two important characters:
(i) they preserve the basic relationship that the variance of X̂j equals �t = �x2, and (ii) the
transition probabilities depend only on the difference k − j . Next we establish that Ŵn(t)

converges to a Brownian motion W(t) in distribution.
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Theorem 3.1. Given t ∈ [0, 1] and �t = �x2 (n = m2/h2), we have

Ŵn(t)
d−→ W(t) as m → ∞,

where ‘
d−→’ stands for convergence in distribution.

Proof. Note that, for large m, the characteristic function of X̂1 has the form

E[eisX̂1 ] =
∑
k 
=0

C−1

√
2π

(k2 − 1)e−k2/2 +
∑
k 
=0

eisk�x C−1

√
2π

e−k2/2

= C−1

√
2π

∑
k 
=0

(k2 − 1)e−k2/2 + C−1

√
2π

∞∑
k=1

e−k2/2(eisk�x + e−isk�x)

= C−1

√
2π

∑
k 
=0

(k2 − 1)e−k2/2 + C−1

√
2π

∞∑
k=1

e−k2/22 cos(sk�x)

= C−1

√
2π

∑
k 
=0

(k2 − 1)e−k2/2 + C−1

√
2π

∑
k 
=0

e−k2/2
(

1 − (sk�x)2

2
+ O(�x4)

)

= 1 − s2�x2

2

C−1

√
2π

∑
k 
=0

k2e−k2/2 + O(�x4)

= 1 − s2h2

2m2 + O

(
1

m4

)
.

Hence, we have

ϕ
Ŵn(t)

(s) =
(

1 − s2h2

2m2 + O

(
1

m4

))m2t/h2

→ exp

(
− ts2

2

)
as m → ∞.

Let S(t) denote a random variable with distribution function to which Ŵn(t) converges in
distribution. For ε > 0, define the event En = {ω : |S(1/n)| > ε}. We have

∑∞
n=1 P(En) < ∞;

therefore, by the Borel–Cantelli lemma, S(t) is continuous at t = 0 almost surely. Obviously,
S(t) satisfies the independent increment property; hence, the process {S(t), t ∈ [0, 1]} is a
Brownian motion owing to its definition.

Remark 3.1. It is worth mentioning that the construction of the probability function in (3.1)
which preserves the variance is not unique, for example, we may define the discrete distribution
by

P(X̂i = k�x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C−1

kp
√

2π
exp

(
−k2

2

)
if k 
= 0,

C−1

√
2π

∑
	
=0

(
1

	p−2 − 1

	p

)
exp

(
−	2

2

)
if k = 0,

(3.3)

where C = (1/
√

2π)
∑

	
=0(1/	p−2) exp(−	2/2) and p is even. As p → ∞, the Markov chain
{Ŵn(t : p)} induced by (3.3) reduces to a simple random walk moving one step in either the right
or left direction with equal probability. For p = 0, it reduces to (3.1) and Ŵn(t) = Ŵn(t : 0).
We will return to study more about the Markov chain Ŵn(t : p) generated by this family of
discrete distributions in Section 4.
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In the sequel, we define a nonhomogeneous Markov chain with absorbing states induced
by the homogeneous Markov chain {Ŵn(t)} and boundaries a(t) and b(t). Let ti = i�t , and
define ai = �a(ti)/�x� and bi = �b(ti)/�x�. Then the induced boundaries for Ŵn(ti) are
a∗(i/n) = ai�x and b∗(i/n) = bi�x for i = 1, 2, . . . , n. We define a finite Markov chain
{Yi(m)}ni=0 on the state spaces

�i = {j : ai < j < bi} ∪ {αi}, i = 1, 2, . . . , n, (3.4)

by collapsing the values of Ŵn(ti) greater than (bi − 1)�x or smaller than (ai + 1)�x into an
absorbing αi . Then {Yi(m)}ni=0 is a nonhomogeneous Markov chain with absorbing states {αi}
and transition probabilities given by

P(Yi(m) = k | Yi−1(m) = j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(k | j) if j ∈ �i−1 \ αi−1, k ∈ �i \ αi,

pi(αi | j) if j ∈ �i−1 \ αi−1,

1 if j = αi−1, k = αi,

0 if j = αi−1, k ∈ �i \ αi,

(3.5)

where p(k | j) is given by (3.2) and

pi(αi | j) = 1 −
bi−1∑

k=ai+1

p(k | j)

for all j ∈ �i−1 \ αi−1, �0 = {0}, and P(Y0(m) = 0) ≡ 1. All of the transition probability
matrices of the Markov chain {Yi(m)}ni=0 have the form

Mi =
[

p(k | j) pi(αi | j)

0 1

]
=

[
Ni Ci

0 1

]
, i = 1, 2, . . . , n, (3.6)

where the fundamental matrices Ni are rectangular of size (bi−1 − ai−1 − 1) × (bi − ai − 1).
It follows from Lemma 2.1 that the probability that the Markov chain {Yi(m)}ni=0 never enters
the absorbing states αi is given by the following lemma (see [10]).

Lemma 3.1. Given m and n = �m2/h2�, we have

P(Y1(m) 
= α1, . . . , Yn(m) 
= αn | Y0(m) = 0) = ξ0

(�m2/h2�∏
i=1

Ni

)
1�,

where the Ni , i = 1, . . . , n, are defined by (3.5) and (3.6), and 1 = (1, . . . , 1) is a row vector
of size (bn − an − 1).

In view of our constructions and Lemma 3.1, we have the following result.

Theorem 3.2. Let a(t) and b(t) be two continuous functions satisfying conditions (A) and (B),
and let W(t) be a standard Brownian motion. Then

P(W(t) ≤ a(t) or W(t) ≥ b(t) for some t ∈ [0, 1]) = 1 − lim
m→∞ ξ0

(�m2/h2�∏
i=1

Ni

)
1�.
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Proof. We can rewrite the boundary crossing probability as

P(a(t) < W(t) < b(t), 0 ≤ t ≤ 1)

= P
(

0 < inf
0≤t≤1

(W(t) − a(t)) and sup
0≤t≤1

(W(t) − b(t)) < 0
)
.

As the time interval [0, 1] is divided into n equal subintervals, the boundaries, a(t) and b(t), are
also divided into n segments. Then the induced sequences of step functions an(t) = a∗(�nt�/n)

and bn(t) = b∗(�nt�/n) uniformly converge to a(t) and b(t), respectively, on the compact set
[0, 1]. Since an(t) → a(t) and bn(t) → b(t), by Slutsky’s theorem, Ŵn(t) − an(t) and
Ŵn(t) − bn(t) converge in distribution to W(t) − a(t) and W(t) − b(t), respectively. Also,
h1(x) = (supt x(t), inf t x(t)) is a continuous function. As m → ∞ (or n → ∞), the following
holds (see [2, p. 77]):(

min
0≤i≤n

(
Ŵn(ti) − a∗

(
i

n

))
, max

0≤i≤n

(
Ŵn(ti) − b∗

(
i

n

)))

d−→
(

inf
0≤t≤1

(W(t) − a(t)), sup
0≤t≤1

(W(t) − b(t))
)
.

Hence, the boundary crossing probability for Brownian motion can be approximated via the
discrete random walks induced by direct discretization of Brownian motion and calculated
using the finite Markov chain imbedding technique as follows:

P(a(t) < W(t) < b(t), 0 ≤ t ≤ 1)

= P
(

0 < inf
0≤t≤1

(W(t) − a(t)) and sup
0≤t≤1

(W(t) − b(t)) < 0
)

= lim
m→∞ P

(
min

0≤i≤n

(
Ŵn(ti) − a∗

(
i

n

))
> 0 and max

0≤i≤n

(
Ŵn(ti) − b∗

(
i

n

))
< 0

)

= lim
m→∞ P

(
a∗

(
i

n

)
< Ŵn(ti) < b∗

(
i

n

)
for all 0 ≤ i ≤ n

)

= lim
m→∞ P(Y1(m) 
= α1, . . . , Yn(m) 
= αn)

= lim
m→∞ ξ0

(�m2/h2�∏
i=1

Ni

)
1�. (3.7)

This completes the proof.

Remark 3.2. For the one-sided BCP, we simply let a(t) = −H and H → ∞ (or b(t) =
H and H → ∞) in our computation. In this case, we use h = max(H, sup0≤t≤1 b(t))

(or h = max(H, sup0≤t≤1 |a(t)|)).
3.2. Diffusion processes

In this section we extend the method to a class of diffusion processes which can be trans-
formed into functions of a Brownian motion. Two such examples are the Ornstein–Uhlenbeck
(OU) process and the Brownian bridge.

An Itô diffusion process is a solution to the stochastic differential equation

dX(t) = b(t, X(t)) dt + σ(t, X(t)) dW(t),

where the drift b(t, x) : [0, 1] × R → R and diffusion coefficient σ(t, x) : [0, 1] × R → R are
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measurable functions, and W(t) is the standard Brownian motion. The solution of the stochastic
differential equation exists uniquely under the growth and Lipschitz conditions (see [12]).

A well-known method for solving the boundary crossing problem for diffusion processes is
to express them as functions of a Brownian motion, and the boundary crossing probability
for diffusion processes is equivalent to a boundary crossing probability for the Brownian
motion with transformed time interval and boundaries. There are a number of papers in the
literature concerning the transformation from diffusion processes to a Brownian motion. The
one-to-one transformation of the transition probability density functions between diffusion
processes described by Kolmogorov’s backward equation was first posed by Kolmogorov [13].
Cherkasov [5] established a class of diffusion processes transformed into Brownian motion
through one-to-one transformation of the transition probability density functions. Bluman [3]
extended Cherkasov’s [5] result into a wider class of diffusion processes. Wang and Pötzel-
berger [27] found a class of diffusion processes which can be expressed as functionals of
Brownian motion. It is also known that any time-homogeneous diffusion process can be
transformed into a Brownian motion using random time change and a change of variable (see [12,
p. 208]).

Using the following well-known results, we give two examples, the OU process and the
Brownian bridge, to show the transformations.

• Itô’s formula. Let X(t) be an Itô process, f (t, x) be a twice differentiable function on
[0, ∞) × R, and Y (t) = f (t, X(t)). Then we have

dY (t) = ∂f

∂t
dt + ∂f

∂x
dX(t) + 1

2

∂2f

∂x2 σ(t, X(t))2 dt.

• Random time change. Let f (t) be a continuous function, and let X(t) be a process
governed by

dX(t) = f (t) dW(t).

Then a Brownian motion W̃ (τt ) is a weak solution, where τt = ∫ t

0 f 2(s) ds and g−1(t) =
τt given f (t) > 0. If X(0) = x0 then W̃ (t) starts at x0.

Example 3.1. (OU processes.) Let X(t) denote the OU process satisfying

dX(t) = −µX(t) dt + σ dW(t), X(0) = 0.

It is well known (see, for example, [27]) that the OU process can also be written as

X(t) = e−µtW̃ (τt ),

where W̃ (τt ) is a Brownian motion with τt = σ 2(e2µt − 1)/2µ.

Example 3.2. (Brownian bridge.) The Brownian bridge is a solution of

dX(t) = c − X(t)

S − t
dt + dW(t) for 0 ≤ t ≤ S.

Then we can compute the boundary crossing probability

P(a(t) < X(t) < b(t), 0 ≤ t ≤ 1) = P(a�(t) < W̃(t) < b�(t), 0 ≤ t ≤ τ1)

= lim
m→∞ ξ0

(�m2τ1/h2�∏
i=1

Ni

)
1�,
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where

a�(t) = a(g(t))

S − g(t)
− ((S − g(t))x0 + g(t)c)/S

S − g(t)

and

b�(t) = b(g(t))

S − g(t)
− ((S − g(t))x0 + g(t)c)/S

S − g(t)
.

4. Error bound

Let F = {fp : the family of distributions given by (3.3) for p = 0, 2, 4, . . .}. For the
proposed approximation Ŵn(t : p) induced by (3.3) with fp ∈ F , it is important to know
its error bound and numerical performance. Let

P̂

(
a

(
k

n

)
, b

(
k

n

))
:= P

(
a

(
k

n

)
< Ŵn(tk : p) < b

(
k

n

)
, k = 1, . . . , n

)
,

P (a(t), b(t)) := P(a(t) < W(t) < b(t), t ∈ [0, 1]).
We present the following theorem.

Theorem 4.1. Given fp ∈ F ,

(i) Ŵn(t : p)
d−→ W(t) as n → ∞, and

(ii) for the boundaries a(t) and b(t) satisfying conditions (A), (B), and

(C) there exists a constant K such that |a(t + ε)−a(t)| < Kε and |b(t + ε)−b(t)| <

Kε, ε > 0 (the Lipschitz condition),

then the error bound is∣∣∣∣P (a(t), b(t)) − P̂

(
a∗

(
k

n

)
, b∗

(
k

n

))∣∣∣∣ = O

(
1

m

)
as n → ∞,

where n = �m2/h2�, a∗(k/n), and b∗(k/n) are the boundaries for Ŵn(tk : p).

The proof of the error bound depends on the results of Nagaev [14], [15] and Borokov and
Novikov [4]. We list their results as lemmas, but provide no proofs.

Lemma 4.1. ([14], [15].) Assuming that the boundaries a(t) and b(t) satisfy conditions (A),
(B), and (C), then there exists a constant c1 such that, for any p = 0, 2, . . . , ∞,∣∣∣∣P (a(t), b(t)) − P̂

(
a

(
k

n

)
, b

(
k

n

))∣∣∣∣ <
c1√
n

,

where c1 is a constant which may depend on p.

Lemma 4.2. ([4].) Given small δ > 0, there exists a constant c2 such that

|P (a(t) − δ, b(t) + δ) − P (a(t) + δ, b(t) − δ)| < c2δ.

Lemma 4.3. Given small δ > 0,∣∣∣∣P̂
(

a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a∗

(
k

n

)
, b∗

(
k

n

))∣∣∣∣
≤

∣∣∣∣P̂
(

a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ

)∣∣∣∣.
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Proof. From the definitions of a∗(k/n) and b∗(k/n), the following two inequalities hold for
k = 1, 2, . . . , n:

a

(
k

n

)
− δ < a∗

(
k

n

)
< a

(
k

n

)
+ δ and b

(
k

n

)
− δ < b∗

(
k

n

)
< b

(
k

n

)
+ δ.

The lemma follows immediately from the above two inequalities.

Proof of Theorem 4.1. The proof of part (i) follows along the same lines as the proof of
Theorem 3.1 and is thus omitted. Given small δ > 0, it follows from the triangle inequality
that ∣∣∣∣P (a(t), b(t)) − P̂

(
a∗

(
k

n

)
, b∗

(
k

n

))∣∣∣∣
≤

∣∣∣∣P (a(t), b(t)) − P̂

(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)∣∣∣∣
+

∣∣∣∣P̂
(

a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a∗

(
k

n

)
, b∗

(
k

n

))∣∣∣∣
= An + Bn.

Furthermore, using the triangle inequality, we have

An ≤ |P (a(t), b(t)) − P (a(t) − δ, b(t) + δ)|
+

∣∣∣∣P (a(t) − δ, b(t) + δ) − P̂

(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)∣∣∣∣
= Cn + Dn.

By Lemma 4.3 we have

Bn ≤
∣∣∣∣P̂

(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ

)∣∣∣∣
≤

∣∣∣∣P̂
(

a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P (a(t) − δ, b(t) + δ)

∣∣∣∣
+ |P (a(t) − δ, b(t) + δ) − P (a(t) + δ, b(t) − δ)|
+

∣∣∣∣P (a(t) + δ, b(t) − δ) − P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ

)∣∣∣∣
= En + Fn + Gn.

It follows from Lemma 4.1 that the Dn, En, and Gn terms tend to 0 with order O(1/
√

n).
By Lemma 4.2, the Cn and Fn terms tend to 0 with order O(δ). Part (ii) is an immediate
consequence of taking δ = h/m and n = �m2/h2�. This completes the proof of part (ii).

For p = ∞, it is a simple random walk (SRW). The result Ŵn(t : ∞)
d−→ W(t) was given

in [11] and, therefore, we expect the rate of convergence of Ŵn(t : ∞) to be slower than that
of Ŵn(t : 0). In Table 1 we provide numerical results to illustrate the errors and rates of
convergence of the BCPs of Ŵn(t : p) for various p.

Several things can be seen from the Table 1. (i) The error bound tending to 0 is with order
cp/m with unknown constant cp. (ii) The constant cp not only depends on p but also on the
boundaries. For example, in Table 1(a), for p = 0 and m = 8000, the error is 1.581 × 10−4,
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Table 1: The error (|exact − approximation|) for (a) a one-sided Daniels’ boundary 1
2 − t log( 1

4 (1 +√
1 + 8e−1/t )) and (b) a two-sided boundary ±(1 + t) under various p.

m p = 0 p = 2 p = 6 p = ∞ (SRW)

(a)

2000 6.605 × 10−4 8.780 × 10−4 9.725 × 10−4 9.799 × 10−4

4000 3.220 × 10−4 4.306 × 10−4 4.778 × 10−4 4.809 × 10−4

8000 1.581 × 10−4 2.124 × 10−4 2.360 × 10−4 2.376 × 10−4

12 000 1.046 × 10−4 1.408 × 10−4 1.565 × 10−4 1.576 × 10−4

(b)

2000 1.651 × 10−4 2.220 × 10−4 2.467 × 10−4 2.485 × 10−4

4000 8.158 × 10−5 1.101 × 10−4 1.224 × 10−4 1.233 × 10−4

8000 4.035 × 10−5 5.461 × 10−5 6.013 × 10−5 6.124 × 10−5

12 000 2.615 × 10−5 3.623 × 10−5 3.762 × 10−5 4.065 × 10−5

but, for p = ∞ (SRW), it requires m = 12 000 to have the same error. This phenomenon can
also be found in Table 1(b). (iii) The Ŵn(t : 0) has the fastest rate of convergence to a Brownian
motion W(t) among all fp ∈ F . Technically speaking, we have not yet determined if f0 has
the best rate among all possible discretizations.

5. Numerical results

Numerical results for the standard Brownian motion, OU processes, and the Brownian bridge
are given in this section. Tables 2–4 give BCPs in the time interval [0, 1] for various boundaries
for Brownian motion and OU processes. In Figure 1 we plot the BCPs for the Brownian bridge.

Table 2: One-sided BCPs for Brownian motion.

m
Boundary

100 500 1000 5000

exp(−t) 0.558 872 0.560 512 0.560 866 0.561 233√
t + 1 0.193 925 0.195 480 0.195 682 0.195 935

1 + t − t2 0.253 998 0.255 644 0.255 915 0.256 153
sin t + 1 0.101 419 0.102 643 0.102 824 0.102 975

Table 3: Two-sided BCPs for Brownian motion.

m
Boundary

100 500 1000 5000

± exp(−t) 0.984 047 0.984 366 0.984 406 0.984 439
±√

t + 1 0.389 771 0.391 084 0.391 259 0.391 403
±(1 + t − t2) 0.509 908 0.510 977 0.511 128 0.511 254
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Table 4: Two-sided BCPs for OU processes for various σ and ρ with m = 5000.

σ 2 = 0.5 σ 2 = 2
Boundary

ρ = 0.5 ρ = 2 ρ = 0.5 ρ = 2

±(1 + t) 0.006 915 0.000 185 0.445 738 0.250 645
± exp(−t) 0.855 233 0.745 546 0.999 629 0.999 258
±(t2 + 1) 0.029 596 0.002 957 0.603 617 0.430 781

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
–0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

BCP

Figure 1: Plot of BCPs for the Brownian bridge with T ∈ [0, 1], x0 = c = 0, S = 10, and ± exp(t)

boundaries.

6. Summary and discussion

In this paper we provided a new way to calculate the boundary crossing probabilities for
Brownian motion and certain diffusion processes with continuous boundaries, which exploits
the advantages of two well-known techniques, the finite Markov chain imbedding technique and
the invariance principle. The result involves the multiplication of transition matrices, which is
easy to manipulate for computation, even for large m. Our method is also flexible in such a way
that not only can we compute the BCPs, but we can also calculate the joint distribution of the
first passage time and the location of the process (i.e. the probability that the Brownian motion
does not cross the boundaries and stays in a certain region of interest at time T ), simply by
replacing the column vector 1� in (3.7) by a vector with 1s in the positions of states associated
with the region and 0s elsewhere. The latter probability might be needed in finance problems
such as pricing corporate debt.

A well-known result is that the BCP of Brownian motion is 0.479 749 with boundary 1
2 −

t log( 1
4 (1 + √

1 + 8e−1/t )) (see [6]). By our method, we obtained a BCP of 0.479 737 with
m = 50 000. For a linear boundary (1+ t), our BCP was 0.090 417 97 with m = 50 000, which
is close to the exact BCP of 0.090 417 77 computed by Robbins and Siegmund [18]. For a two-
sided boundary ±(1 + t), Anderson [1] obtained a BCP of 0.180 812, and we obtained a BCP
of 0.180 803 with m = 20 000. Clearly, higher accuracy requires large m. The computational
CPU times for computing BCPs with m ≤ 5000 are negligible.
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Another advantage of our method is that it can be extended to compute the BCPs for certain
classes of Markov processes. With some proper modifications to the probability functions
in (3.1), the method could also be extended to compute the BCPs for two- or higher-dimensional
Brownian motion.
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