ERRATUM: Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil

Priit Tammeorg¹, Tero Brandstaka¹, Asko Simojoki² and Juha Helenius¹

¹Department of Agricultural Sciences, P.O. Box 27 (Latokartanonkaari 5, Plant Production Sciences), FIN-00014 University of Helsinki, Finland

E-mail: priit.tammeorg@helsinki.fi

²Department of Food and Environmental Sciences, P.O. Box 27 (Latokartanonkaari 11, Environmental Soil Science), FIN-00014 University of Helsinki, Finland

[Earth and Environmental Science Transactions of the Royal Society of Edinburgh, **103**(2012), 19–30] [doi: 10.1017/S1755691012000047]

The original version of this paper unfortunately contained errors.

Under 'Materials and methods' (section 1, page 20), the description of the total elemental concentration of the biochar (section 1.1) should read as follows: "The ash content and the total elemental composition of the biochar were determined by dry ashing a 1.5-g sample in a laboratory muffle furnace (Nabertherm Program Controller C19, Nabertherm, Lilienthal, Germany), by raising the temperature to 500°C within two hours and then maintaining it at 500°C for three hours. The ash was transferred into an Erlenmeyer flask with 100 ml 0.2 M HCl, boiled for 30 minutes, transferred quantitatively into a 100-ml measurement flask, adjusted to the volume with deionised water, and filtered through a filter paper (Whatman, Grade 589/3, blue ribbon, pore size 2 μ m, GE Healthcare, UK). The total elemental concentrations of extracts were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES; Thermo-Fisher iCAP3600 MFC Duo, Thermo Fisher Scientific, Cambridge, UK)."

Revised Table 1 (page 20):

Property	Result	Unit	Analytical procedure
BET SSA	11.8	$m^2 g^{-1}$	N ₂ adsorption
pН	8.9		1:5 water suspension
pH (90°C)	9.93		1:100 hot water suspension
Moisture	9.1	$ m g~kg^{-1}$	Gravimetry
C/N	148		Dumas dry combustion
Ash	22.5	$\mathrm{g~kg^{-1}}$	Muffle furnace, 500°C, 3 hrs
Al	0.2	$\mathrm{g \ kg^{-1}}$	ICP-OES
Ca	4.8	g kg ⁻¹	ICP-OES
Fe	0.4	g kg ⁻¹	ICP-OES
K	2.8	g kg ⁻¹	ICP-OES
Mg	0.8	$g kg^{-1}$	ICP-OES
Mn	0.3	g kg ⁻¹	ICP-OES
Na	0.1	g kg ⁻¹	ICP-OES
Р	0.2	g kg ⁻¹	ICP-OES
S	0.2	$g kg^{-1}$	ICP-OES
С	903	$\mathrm{g \ kg^{-1}}$	Dumas dry combustion
Ν	6.1	$g kg^{-1}$	Dumas dry combustion
Cd	0.002	mg kg ⁻¹	ICP-OES
Co	0.5	mg kg ⁻¹	ICP-OES
Cu	19.3	mg kg ⁻¹	ICP-OES
Ni	7.4	mg kg ⁻¹	ICP-OES
Pb	3.7	mg kg ⁻¹	ICP-OES
Sr	33.8	mg kg ⁻¹	ICP-OES
Zn	64.3	$mg kg^{-1}$	ICP-OES

 Table 1
 Physicochemical properties of softwood biochar used in the experiment

ICP-OES = inductively coupled plasma optical emission spectroscopy. Ash and elemental composition analyses were conducted in triplicate; all other analyses in duplicate.