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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS
WITH CONVOLUTION KERNELS

by V. HUTSON
(Received 1st February 1963)

Summary
The equations considered are Fredholm integral equations of the second

kind with regular kernels, whose argument depends only on the difference
of the variables. Approximate solutions are sought for a given finite range
of the eigenvalues, and for large values of the range of integration. Certain
special conditions are imposed on the general form of the Fourier transforms
of the kernel. Then it is shown that approximate solutions may be obtained
in terms of the solutions of the corresponding (singular) Wiener-Hopf equations.
Approximations to the eigenvalues are also found. It is shown that the eigen-
functions are unique, and that except possibly near the end points of the range,
the solutions are of trigonometric type with the zeros of successive solutions
interlacing.

1. Introduction
The equations considered are the Fredholm integral equations of the

second kind

[" (1.1)

k{x-i)f(t)dt+g{x) (OSx^a) (1.2)

The solution of (1.1) is assumed to satisfy a condition similar to a normalisation
condition

['f2(x)dx = a (1.3)
Jo

The kernel is defined in ( —oo, oo) and is taken to be regular, independent of
a, even, and exponentially small at infinity. The unknown functions / depend
on A and a, and approximate solutions will be obtained when X lies in any
given finite range and a is large. Attention is focussed particularly on (1.1).

The Fredholm equation with a regular kernel has been studied extensively,
see for example (3) or (11). It is known that the eigenvalues, that is the values
Xn for which (1.1) has solutions (eigenfunctions), form a discrete set and that
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6 V. HUTSON

each eigenvalue is of finite index, the index being defined as the number of
linearly independent eigenfunctions corresponding to each eigenvalue.

Even if the kernel depends only on the difference of the variables, it is
difficult to find solutions or to obtain any general information about the
general form of the solutions or about the spectrum, unless the kernel is of
specially simple form.

Latter (7) obtained approximate solutions of these equations for large a
by Fourier transform methods. He shows how to find approximate solutions,
say/t(x), such that for sufficiently large a

(1.4)
This approximation is thus not uniformly valid in (0, a) in the sense of the
present results (1.6). Latter derived his solution from an approximation to
an infinite system of linear algebraic equations, but did not prove the validity
of his approximating process and did not study the uniqueness of the solutions.
However, the present investigation is based on Latter's method.

Widom (12) showed that if the Fourier transform AT of the kernel is decreas-
ing near the origin and d2K(Q)/dw2 ^ 0 then the eigenvalues of (1.1) are
given by

X~l = K(0)+i[na-\n + l)¥d2K(0)ldw2[l + O(a-1)l (1.5)

for fixed n as a approaches infinity. Widom (13) also gives a method for
finding the eigenfunctions. (In this paper the restriction d2K(0)/dw2 ^ 0 is
removed, but in the present investigation the condition is assumed to hold.)
This expression for the eigenfunctions is however not uniformly valid through-
out (0, a) in the sense of the present result (1.6). Also both results only hold
for fixed n as a becomes large, and as can be seen from (1.5), this implies that
the range of values of X approaches zero as a approaches infinity. In the
present investigation this restriction is not necessary.

The approximate solutions of both these authors are not accurate near
the end points of the range. In fact near these points the error may be as large
as 0(1) for large a. Carrier (1) suggested that solutions of equations (1.1)
and (1.2) may be found in terms of the solutions of the related Wiener-Hopf
equations (4.1) and (4.2). Carrier did not give conditions under which this
hypothesis should hold. The present investigation obtains appropriate
conditions and shows that if they hold, Carrier's hypothesis is correct.

The main purpose of the present investigation is to examine (1.1), and to
show that if the Fourier transform K of the kernel is a decreasing function
of w (w positive) and d2K(0)ldw2 # 0, then an approximate solution can be
found in terms of </> the solution of the corresponding Wiener-Hopf equation
(4.1) with an error which approaches zero as a approaches infinity. That is,
if X lies in any given finite range, A0<A<At say, then

f(x) = !() + ( ) ( g ^ ) , j
J
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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS 7

for any a greater than a0, where o0, TX are positive constants dependent only
o n ^ . An equation for the eigenvalues is also found, and it is shown that
they are of index unity. If, however, the Fourier transform of the kernel is
not decreasing, then the solutions of (1.1) are not necessarily of index unity,
and the situation is necessarily more complex. The present investigation does
not cover this more general case, although a remark is made about it in
Section 7. However, the methods used here could probably be extended to
cover this case.

It is also shown here that for large a equation (1.1) bears a resemblance
to a Sturm-Liouville system. First the eigenvalues are of index unity. Also,
by using the asymptotic formula (4.8) for the Wiener-Hopf equation, it is
shown that in the region away from the end points of the range, the solutions
are oscillatory and the zeros of successive solutions interlace (indeed the
solutions are approximately trigonometric). This is discussed more fully in
Section 7.

It is also shown in Section 8, that for X<X0 (the smallest eigenvalue of
(1.1)), (1.2) can be solved approximately in terms of the resolvent kernel of the
corresponding Wiener-Hopf equation (4.2).

2. Notation and conditions on the kernel
It is assumed that k(x) is given for all real x , / is then defined outside (0, a),

by requiring (1.1) and (1.2) to hold for all x. Take

K(w)= f" eixwk(x)dx, Fa(w)= \ eixwf(x)dx,
J -oo J o

F+(w)= f" eixwf(x)dx, F.(w)= I eixwf(x)dx,
J a J — oo

Ga(w) = ("" eix»g(x)dx.
Jo

It follows that, if/(x) = ±f(a—x), that is, if/(x) is symmetric or antisymmetric
about \a, then

F+(w) = ±eiw"F.(~w) (2.1)

It is assumed that the kernel and its Fourier transform satisfy the following
conditions.

Condition A. k is a real bounded, continuous, even function. Also there
exists a positive number T such that k(x) exp (sx) belongs to 1.(0, oo) and
L2(0, oo) for S^T. The derivative dkfdx is bounded and continuous except
for at most a finite number of discontinuities. Also the integral

i:
exists and considered as a function of x belongs to L(0, oo).
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8 V. HUTSON

Condition B. For w real and positive K(w) is a strictly decreasing function.

Condition C. dzK(0)/dw2 * 0.

It is easy to deduce from A and B that K is positive for real w.

3. Deductions from the general theory
A few simple results are noted; these results either come directly from the

general theory (3) and (11) or are simply deduced from it.

(a) The kernel is positive definite (in the sense defined below), and so (3)
has only positive eigenvalues.

(b) Any eigenfunction is either symmetric or antisymmetric, or may be
expressed as the sum of symmetric and antisymmetric eigenfunctions.

(c) If for any eigenvalue there are two symmetric eigenfunctions there
must also be an antisymmetric eigenfunction, with a similar result for anti-
symmetric functions.

(d) There exists a positive constant c independent of a such that for
sufficiently large a and all n,

Xn^K~1(0) + ca~2 (3.1)

(e) The solution of (1.2) satisfies the relation

g\x)dx (3.2){"f^dx^i-uo1)-2 r
Jo Jo

A kernel is defined to be positive definite if for all integrable non-null
functions /

J(f, f) = [ [ Ks - t)f(s)f(t)dsdt > 0.
Jo Jo

But

J(f,f) = Y \ X(W) I Fa{-w)\2dw

which is clearly positive as K(w) is positive.

(b) is clearly a consequence of the evenness of the kernel. To prove (c)
form an eigenfunction f3 = Cft + Df2 where / t and f2 are symmetric eigen-
functions, and C, D are chosen so that/3(0) = /3(a) = 0. Then an integration
by parts shows that the derivative of f3, an anti-symmetric function, is also an
eigenfunction.

(d) is proved by Widom (12).
To prove (e) it is first noted that

lo = mf\j-i(f,f)\ f2(x)dx\ (3,3)
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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS 9

Multiplying (1.2) by/, integrating and using Schwartz's inequality, we have

["f2(x)dx^ \["f\x)dx ["g\x)dx\ + k [' ("k(x-t)f(x)f(t)dxdt.
Jo Uo Jo J Jo jo

Relation (3.2) follows from (3.3).

4. The Wiener-Hopf equations
It is well known that the solutions of the Wiener-Hopf integral equations

(4.1)

Jo
(4.2)

may be reduced to quadratures. These equations are not regular and their
eigenvalues do not form a discrete set. Accounts of the method of solution
may be found in (2), (4), (6), (8), (9), (10). Approximate methods are also
given in (2) and (8). Even when these methods are difficult, it is possible to
find an asymptotic solution of (4.1) for large x from a knowledge of the Fourier
transform of the kernel alone; the eigenfunctions are found to be of trigono-
metric type (4.8).

The following results are standard and are taken mainly from (9) with the
requisite changes of notation to meet the present special case. Expressions as
quadratures are given there for K+ and K_ defined below.

Condition B implies that for fixed X>K~1(0) there are exactly two real
roots, ±n say, of 1 -XK(w) = 0. Thus X = K~xQi). Also it is known that
| K(w)\ approaches zero uniformly in the strip | 3iv | < T . This together with
conditions B and C implies that, for y, in some fixed range 0<n<ii1 say,
there is a constant T 1 ( 0 < T 1 < T ) independent of y. such that there are only
the two real zeros in the strip |3w | ^ t i . It is always assumed when dealing
with (4.1) that \i lies in the given range.

The solutions of (4.1) depend on the following factorisation theorem. In
the strip | 3w> | ̂  xu it is possible to write

\-XK(w)=^^-{w2-n2), (4.3)
X+(w)

where K^ is regular and free from zeros for 3M><T!, and K+ has the same
property for 3w> — t^ The moduli | wK_(w)\ and | w~1AT+(iv)| lie for
sufficiently large w between positive bounds in their respective half planes of
regularity, these bounds being dependent only on nr. The functions K+

and /sT_ satisfy the relations

K±{w)=-Kj\-w), (4.4)

K ± ( -w) = -K±(w) (4.5)
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10 V. HUTSON

These functions depend on \i and will be written K+(w; /x), AL(w; //) when
this dependence needs to be emphasised. The derivative dK±(ji; n)ldn is a
continuous function of \i.

If X < K ~1 (0) there will be no real zeros in a strip 3H> < a say. The factorisa-
tion then becomes

1 -XK{w) = KUw)/Kl
+(w) (4.6)

Equation (4.1) has just one solution (except for multiplication by a constant)
which has a bound independent of x.

<j)(x) =B~l l.i.m. — e-'wxK+(w)(w2-n2yldw (4.7)

Thus the integral must be interpreted in the Plancherel sense. That is, as
A approaches infinity the integral tends in mean square to a function <f> such
that $exp(-T;c) belongs to L2(0, oo). The number B has been chosen so
that

fo/2
2a-1 4>2(x)dx=\.

Jo
Further it is possible to show (9, Theorem 16) that <f> is a bounded continuous
function. Indeed | (f> | has a bound independent of both n and x. Also, for
the relevant range fi>ca~1, B = 0(a).

It can easily be shown (9) that

B<l>(x) = <3in-1K+(ji)e-il'x+O(e~tlX) (x-*oo) (4.8)

In (4.2) it is assumed that \g | = O(exp(— fix)) for some positive /?.
Equation (4.2) has just one solution which is bounded at infinity.

, 4>{x) = l.i.m. — T e-ixwKl
+(w)G+(w)dw, (4.9)

A— oo 271 J _^

where

G+iw) =^±+± r~ CQ"W

5. Approximate solution of the homogeneous equation (1.1)
In this section it will be proved that for a given finite range of values of

k (and so of \i since X = K~l(ji)), every solution of (1.1) is given approximately
for a large enough by equation (5.15) and the relation between fi and a by
equation (6.1). In Appendix 2 it will be shown conversely that every /z (lying
in the given range) that satisfies (6.1) and (d) of Section 3 provides a solution
(1.1). A further discussion of the spectrum is given in Section 6.

The approximation is based on an approximate method of Latter (7)
described later in this section. It was pointed out in the introduction that
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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS 11

Latter's solution is not uniformly valid, and that the uniqueness and con-
vergence were not discussed. The present investigation makes certain assump-
tions about the kernel (conditions B and C) and proves rigorously that the
solutions of equation (1.1) are closely related to the solutions of the corre-
sponding Wiener-Hopf equation (4.1) with an error which is uniformly small
for large a. The uniqueness is discussed in Section 6.

Choose a positive constant T2<TX. Let Ct, C2, C'2, C3 be contours lying
in the strip | 3 W | ^ T 2 . Let Ct be the line joining IT2 — OO to JT2 + OO. Let
C2) C2 be contours joining — oo to oo and lying above the point w = —fi
and below w = /z. Let C3 be the line joining — JT2—oo to — rr2 + oo.

Latter showed that the problem could be formulated as follows in terms
of Fourier transforms. The method is similar to the Wiener-Hopf method,
but does not in this case lead to an explicit solution.

In the strip of regularity,

K+(w) F.(w) K+(w) (5{)
2 ) K ( ) (5{)

(w2-p2)K.(w)
The functions F+ and F_ are the solutions of the simultaneous integral
equations

F-M = J_ f dw' F+(w')
(w-n)K_(w) 2niJC2w'-w (w'-n)K.(w')

27tiJc-w'-w (w'

where the two integrals are evaluated for w below and above C2, C2 respectively.
The solution is then found from the Fourier inversion formula

2« Jo
(5.4)

Latter obtained approximate solutions of (5.2) and (5.3) in the following
manner. In the first equation the contour is raised to sweep across a finite
number of the poles of the integrand, the remaining integral being ignored.
In the second the contour is lowered. A system of linear algebraic equations
is then obtained by letting w approach in turn the poles of (w—fi)~lKZ1(w)
and (w+/i)~ iK+iw) respectively. Latter then obtained the solution by evaluat-
ing (5.4) by allowing the contour to sweep across some finite number of the
poles of the approximately calculated integrand. The present investigation
shows that, if conditions B and C hold, it is possible to obtain a uniformly
valid approximation by considering only two of the poles in setting up the
algebraic equations, but by an evaluation of the integral in (5.4) with an error
which is exponentially small.

In (5.2), C2 is changed to Cx (crossing the pole at fi) and, in (5.3), C2 is
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12 V. HUTSON

changed to C3 (crossing the pole at — fi). Then

F.(w)
(5-5)

S(w) (5.6)

Expressions for R and S are given in Appendix 1, equation (A4).
Now let iv approach ±fi in turn. Then

(5.7)

» (5.8)

It may be seen from (2.1) that for symmetric and antisymmetric eigenfunctions
these equations are identical. Thus for symmetric and antisymmetric eigen-
functions respectively

F+(»)[K+(-ti±e-i»°K+(n)-]= -2nR(-ii) (5.9)

It may be seen from (A5) that the right-hand side of this equation is exponentially
small for large a. However, for the moment nothing can be said about the
relation between /i and a, although it will later be proved that this bracket is
small for large a.

The approximate solution of (1.1) is now obtained by substituting (5.5)
and (5.6) into (5.4). Equations (2.1) and (4.4) have been used to simplify the
equation. Then

2nf{x) = -F+0*)X+( -M) f dw \ + #«'-*•> \r—r, +e~ix

Jc 2 L (w2-n2)K_(w)
e-«w R(w)K+(w)dw + f eiW(a-x) S(w)dw „ 1Q.

c2 w + /i ]c2 iw-n)K-(w)'
where the two signs refer to symmetric and antisymmetric eigenfunctions
respectively.

It will now be shown that the last two terms in this expression are small
in mean square, and it will be proved later that they are uniformly small.
The first is then shown to be related to the Wiener-Hopf solution.

After a change of the line of integration, it is easily seen that the third term is

eix"R(-^K+(-^)+ f e-^R(w)K+(W) - ^ - (5.11)
Jc3 (w + M)

Let this integral be h(x). By (A5) the integral belongs to L2(-oo, oo) and is
also exponentially small. Hence, by Plancherel's theorem and by (A5),

f
Jc

I"
J -'-co J-ir2-ool

= O(ae~2"') (5.12)

for sufficiently large a. The same result applies for the last term.
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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS 13

Therefore, by a change of contour,

2nf(x) = - F + W

fJ CCl ( w - ^ ) K _ (
where (f> is the solution of the Wiener-Hopf equation (4.7), and e is an error
term which is small in mean square. The integral may be shown by Plancherel's
theorem to be of the form m{x) exp [—{a—x)xx] for x^$a. where the square
integral of m(x) is bounded in a. A similar result may be obtained for a ̂  x ̂  \a.

Now, by (d) of Section 3, n>ca~l for some constant c, and as stated in
Section 4, B is then O(a) for this range of values of \i. Therefore, because of
the factor F+(ji) multiplying the solution, it is now obvious from equations
(5.9) and (A5) that, unless

K+(-ti±e-*-°K+(n) = O(a*e-^), (5.13)

f(x) will be too small to satisfy (1.3) for sufficiently large a. (5.13) is an equation
for the relation between /i and a and determines the eigenvalues. An approxi-
mate solution of this equation is given in the next section. It can be shown
from the asymptotic formula (4.8) that an alternative statement of (5.13) is

d<t>($a)ldx = 0 (<j) symmetric) ]
(5.14)

<Kia) = 0 (<£ antisymmetric) )
The argument may be repeated for x^^a. Thus it has been proved that

fix) = <b(x) + 5(x)> (5-15)
where

<b(x)=<Kx) (O^x^a),

and

' S\x)dx = 0(e"atl) (5.16)f
Jo

I o

A multiplicative constant has been dropped from the solution so that / may
satisfy (1.3).

It will now be proved that 8 is uniformly small. To do this (5.15) is sub-
stituted into (1.1). Then

= X f"
Jo

f(x)
Jo

by Schwartz's inequality and (5.16). Now using the fact that </> is the solution
of (4.1),

f(x) = <t>{x)-X ffc(x-O[0(OT*(fl-O]^-^f k{x-t)4>{i)dt

2
±X
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14 V. HUTSON

Schwartz's inequality then shows from the known asymptotic form (4.8) of
<j> and from (5.14) that the first integral is small. By splitting the integrand
into the form [k(x—i) exp (tr)][cj)(t) exp ( — tx)] and using Schwartz's inequality
the second integral is seen to be small, a similar argument applying for the
last term. The argument is similar for \a^x^a. Then

6{x) = O(e-*at>), (5.17)
for sufficiently large a.

6. Further approximations
In Section 5 the approximate solution of (1.1) was obtained in terms of

the Wiener-Hopf solution. The Wiener-Hopf solution may be expressed in
quadratures (9). However, the evaluation of the integrals is sometimes difficult
and it is therefore useful to approximate still further to the solution by using
the asymptotic formula (4.8) and to find approximate solutions of (5.13).
Certain general characteristics of the solution then become clear. These
approximations are carried out in this section where it is also proved that each
of the eigenvalues is of index unity. A general discussion of the results is then
given in the next section.

Approximate solutions of (5.13) are first obtained. From (4.5) we may
define K+(fi;n)/K+(-n;n) = -exp [i6(ji)] where 0(0) = n. Also as K+(fi;n)
is a continuous differentiable function of fi, 9 may be defined to be so also.
(5.13) may then be written as

iut = nn + 9(n) + h(a, /i), (6.1)

where n is any integer such that ca~1<n<(i1, and even and odd n give sym-
metric and antisymmetric eigenfunctions respectively. Also h and dh/dfi are
both <9(a* exp (—aTi)). From the differentiability of 6 and h it is easy to
show by the mean value theorem that successive solutions of (5.1) are such
that

fir+1-Hr = na-l + 0(a-2) (6.2)

As 6(0) = n the first eigenvalue must be such that

Ho = na-l + O(a-2) (6.3)
(There may possibly be one smaller solution of (6.1) but this will not satisfy
(d) of Section 3.) Thus for \i in the given range

/in = (n +1)™*"1 [1 + 0 ( 0 ] (» = 0, 1...) (6.4)

The eigenvalues Xn are then found from the relation Xn = .K"1 (//„)• Better
approximations than (6.4) may be obtained by evaluating O(ji) approximately.
Thus Widom (12) obtains (by a different method) an approximation which
holds for small n. This result may also be obtained without difficulty by the
present method.

It is now easy to show that each eigenvalue is of index unity. For it was
proved ((c) of Section 3) that if there are two symmetric eigenfunctions there
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must be an antisymmetric eigenfunction. But from (6.2) these two types
cannot occur for the same eigenvalue. Therefore the index of each eigenvalue
is unity.

From the asymptotic formula (4.8) and from (5.15) it is obvious that

/n(x) = cos [/iJLx-ia)+tmi'] + Ole-*x"+e-*Tlia-'>'] (« = 0, 1, ...), ...(6.5)
where the nn are given by (6.1) or approximately by (6.4).

7. Discussion of results. Analogy with the Sturm-Liouville system
The known results about the spectrum of this type of integral equation are

not complete. As stated in the introduction Widom (12) obtained a relation
(1.5) which is however only valid for small /i. Grenander and Szego (5) obtained
a result for very general kernels concerning the average number of eigenvalues
in a given interval for large a. They proved that

lira Tta"1 {Number of values of A"1 in (C, £>)} = m(C^K{x)^ D),
a-*co

where m denotes measure. In the present investigation more restrictive assump-
tions are made about the kernel. And under these conditions more accurate
predictions may be made. For example, in constrast with Widom's result
(1.5) the present results are valid for any given range 0</z</z1 for choice of a
(dependent only on /zj large enough.

Also the results when conditions B and C hold resemble the results of
Sturm-Liouville theory (in fact the result about the oscillations is only a
partial one); for, the index of each eigenvalue is unity. Also it may be seen
from (6.5) and (6.2) that the solutions are oscillatory (and indeed trigono-
metric) and the zeros of successive solutions interlace in the range where the
error in (6.5) is small; the only part of the range where the error is not small
is the relatively small range near the endpoints. It would be theoretically
possible from a more exact examination of the Wiener-Hopf solution to find
out whether this is so even near the end points. However, it has not yet been
found possible to do this for general kernels.

As stated in the introduction Carrier (1) made a suggestion about the
possibility of expressing the solution of (1.1) in terms of the Wiener-Hopf
solution. This has been shown to be true if conditions B and C hold.

However, if condition B is removed, then for some value of A, the equation
1 — XK(yv) = 0 may have 2r(r> 1) real roots. In this case an equation of the
form (1.1) may be constructed with some eigenvalues of index greater than
one. Probably the situation is then that the index of an eigenvalue is not
greater than the index of the eigenvalue of the corresponding Wiener-Hopf
solution. This case could be examined by an extension of the present method.

If condition C is removed and d2K(0)ldw2 = 0, then 1 -XK(w) = 0 will
have complex roots which approach the real axis as /i approaches zero. In
this case the approximate solution (5.15) and (6.1) will hold for 0<[i2<fi<fi1

(fixed /ij and n2). But the proof given will not hold for the original range

https://doi.org/10.1017/S0013091500011172 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500011172


16 V. HUTSON

8. The solution of equation (1.2)
The solution of (1.2) may be obtained by a method very similar to that

used in Section 5. From the definition of the kernel, it is obvious that it is
regular (3) and therefore (1.2) has one and only one solution for A<A0 the
smallest eigenvalue. The solution will be given approximately for A<AT~1(O).

The solution may be given in terms of H(x, t) the resolvent kernel of the
corresponding Wiener-Hopf equation (4.2). An expression for H when the
kernel is of a certain type is given in (6). It is found that

f(x) = g(x)+ H(x, t)g(t)dt + «5(x) (0 ̂  x ̂  ±a)
Jo

(8.1)
= g(.x)+ I H(a-x,a-t)g(t)dt + 8(*

Jo
where

S(x) = O

for sufficiently large a and A<A^~1(0), where (e) of Section 3 has been used.
The smallest eigenvalue k0 is given approximately by (6.4).

Alternatively this may be expressed by saying that / is approximately the
solution of (4.2) given by (4.9) for O^x^^a, with a similar result applying
for

Appendix 1

Bounds will now be obtained for R(w) and S(w) which appear in equations
(5.5) and (5.6). Three inequalities (Al), (A2) and (A3) are needed in the proof.
The proofs are given for dkjdw a continuous function, the extension to the case
when it has a finite number of jump discontinuities being done by splitting
the interval into subintervals. C stands for any constant (not necessarily always
the same) independent of a.

Lemma 1.
\ \ * ( A l )

(A2)

| - x exp{-a3w} (3w>0) ..

Proof. As k and dk/du belongs to L2(0, oo) the first two results are obvious
on application of Schwartz's inequality.

To prove (A3) integrate the expression for F+ by parts and use Schwartz's
inequality. Then

IW
w •{£
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After use of (A2) and changes of variable,

^ce-°
Sw I w r

IW

The result now follows on using (Al) and condition A of Section 2.
The remainder function R(w) — S{ — w) is defined by Latter as

r F+MW ( A 4 )
2niJ l t |_ c 0 ( » v ' / i ) X ( w ' ) ( w ' w )

Lemma 2. The remainder function R(w) satisfies the condition

| K(w)|^Ca*/le-flt'(l + | w D"1 log(l + | w |) (3W£T,) , (A5)

/r/i a similar result for S(vv).

Proof. From the factorisation theorem it is known that | wK_(w)\ lies
between positive bounds, and K-(w) is regular along the line of integration.
Therefore from (A3),

fiU + co Jw>

J it ( - oo | w 11 w **" |

The result follows immediately from the obvious bounds for the integral.

Appendix 2

In Section 5 it was proved that every eigenfunction of (1.1) must be given
by (5.15) and the relation between n and a by (5.13), for \i lying in a given
range §<[>.<\ix and for sufficiently large a. The converse will now be proved.
That is, every ix given by (6.1) provides an eigenfunction of (1.1). The argument
will be by contradiction.

In Section 5 it was shown that

O«W = i,v \ Kx-t)4>N(t)dt + 5(x), (A6)
Jo

where

o\x)dx = O(e-iat% (A7)
o

and <$>N is determined by (6.1). Suppose that some O say <J>W is not an approxi-
mate eigenfunction. Then by Mercer's theorem (11) the sum of reciprocals
of the eigenvalues is absolutely convergent and the solution of (A6) is given
by the absolutely and uniformly convergent series

" fn{t)5{t)dt, (A8)
Jo

E.M.S.—B
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where /„ are the solutions of (1.1). Then

after multiplication by <&N and integration and use of Schwartz's inequality
together with (A7).

Now choose an eigenvalue XNl > 2XN and choose a so large that the approxi-
mation holds for X<XNl. Then all the eigenvalues in the first part of the
sum must satisfy (6.1) although it is possible that some solutions, in this case
XN is one of them, may not provide eigenfunctions. Therefore

| ^ - A , I " 1 ^ s u p | A w -
1
N

^ / ^ arc"'sup |
But the least value of | XN — Xn | is taken when n = N± 1. Suppose it is N+1
(the same proof will apply for N— 1). Then using the relation between X and
fi, and (6.2), and the mean value theorem

But dKjdw is by definition non-zero except at w = 0, and near this point
dK/dw Bw (as d2K(0)/dw2 = 0) for some B>0. The lower bound of
| dKjdw | in the interval (nj2a, /Zj) may therefore for large enough a be taken
to be nB\1a. Then

I | A w - A . | - 1 = O(a3) (A9)
n = 1
n ?t N

Also
f

n = Nt

From (A9) and (A10)

f
Jo
;o

which for choice of sufficiently large a contradicts (1.3). This completes the
proof.
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