EMERGENT STRUCTURES IN LARGE NETWORKS

DAVID ARISTOFF,∗ University of Minnesota
CHARLES RADIN,** The University of Texas at Austin

Abstract

We consider a large class of exponential random graph models and prove the existence of a region of parameter space corresponding to the emergent multipartite structure, separated by a phase transition from a region of disordered graphs. An essential feature is the formalism of graph limits as developed by Lovász et al. for dense random graphs.

Keywords: Exponential random graph model; complex network; phase transition

2010 Mathematics Subject Classification: Primary 60B99
Secondary 05C35

1. Introduction and statement of results

Complex networks, including the Internet, World Wide Web, social networks, biological networks, etc., are often modeled by probabilistic ensembles with one or more adjustable parameters; see, for instance, [4], [5], [9], [12], and the many references therein. We will use one of these standard families, the exponential random graph models (see the references in [2], [9], [12], and [13]), to study how the multipartite structure can exist in such networks, stable against random fluctuations, in imitation of the modeling of the crystalline structure of solids in thermal equilibrium.

Let \(H_1 \) be an edge, and let \(H_2 \) be any finite simple graph with \(k \geq 2 \) edges. We will be considering the two-parameter family of exponential random graph models, with probability mass function on graphs \(G_N \) with \(N \) nodes given by

\[
P_{\beta_1, \beta_2}(G_N) = \exp\{N^2[\beta_1 t_1(G_N) + \beta_2 t_2(G_N) - \psi_N(\beta_1, \beta_2)]\},
\]

where \(t_i(G_N) \) is the density of graph homomorphisms \(H_i \to G_N \):

\[
t_i(G_N) = \frac{\left|\text{hom}(H_i, G_N)\right|}{|V(G_N)||V(H_i)|}.
\]

Here \(V(\cdot) \) denotes a vertex set, and the term \(\psi_N(\beta_1, \beta_2) \) in (1) gives the probability normalization.

We think of the parameters \(\beta_1 \) and \(\beta_2 \) as representing mechanisms for influencing the network, as pressure and temperature do in models of materials in thermal equilibrium. Indeed, it is easy to see by differentiation that if \(\beta_1 \) is fixed, varying \(\beta_2 \) will vary the mean value of the ‘energy’ density, \(t_2(G_N) \); similarly, if \(\beta_2 \) is fixed, varying \(\beta_1 \) will vary the mean value of the edge density, \(t_1(G_N) \). Furthermore, if the mean value \(\mathbb{E}_{\beta_1, \beta_2}[t_1(G_N)] \) of \(t_1(G_N) \) is fixed and \(\beta_2 \ll 0 \),

Received 20 October 2011; revision received 17 July 2012.

∗ Postal address: Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
Email address: daristof@umn.edu

∗∗ Postal address: Mathematics Department, The University of Texas at Austin, Austin, TX 78712-1202, USA.
Email address: radin@math.utexas.edu

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 27 May 2019 at 02:18:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1239/jap/1378401243
then, as we will see below, the random graph will have a very low value for the mean value $\mathbb{E}_{\beta_1, \beta_2}[t_2(G_N)]$ of $t_2(G_N)$. However, if $\mathbb{E}_{\beta_1, \beta_2}[t_1(G_N)]$ is fixed, any variation of $\beta_2 > 0$ does not affect $\mathbb{E}_{\beta_1, \beta_2}[t_2(G_N)]$ (when N is large) [15]. It is natural to treat separately the cases $\beta_2 < 0$ and $\beta_2 > 0$. The former is called repulsive, the latter attractive; see [15]. The attractive case $\beta_2 > 0$ has been completely analyzed in [15], so we concentrate here on the case with repulsion, $\beta_2 < 0$.

It is useful to analyze the phenomenon in the last paragraph, as regards $\beta_2 \ll 0$, in two stages. First, consider the nonprobabilistic optimization problem in which one minimizes the density $t_2(G_N)$ among graphs G_N of N nodes, corresponding intuitively to $\beta_2 = -\infty$. Such problems have been widely studied following the pioneering work of Turán [16]. One can understand the exponential random graph models as a means of analyzing such ‘extremal graph theory’ problems using the language of statistical mechanics [14], [17]. The function $\psi_N(\beta_1, \beta_2)$ represents the free energy of a grand canonical ensemble, which is the Legendre transform of the entropy of a microcanonical ensemble. The latter is the usual setting for extremal graph theory problems.

Fundamental to our results are questions of analyticity of the normalization in (1), which we discuss next. (See [8] for elementary properties of real analytic functions of several real variables.) An explicit formulation of the normalization is

$$
\psi_N(\beta_1, \beta_2) = \frac{1}{N^2} \ln \left(\sum_{G_N} \exp \left[N^2 (\beta_1 t_1(G_N) + \beta_2 t_2(G_N)) \right] \right).
$$

(3)

It is proven in [2] that

$$
\psi_\infty(\beta_1, \beta_2) = \lim_{N \to \infty} \psi_N(\beta_1, \beta_2)
$$

exists for all β_1, β_2. By Theorem 6.1 of [2], the method, using analyticity, of the proof of Theorem 3.10 of [15] can be immediately extended to prove that $\psi_\infty(\beta_1, \beta_2)$ is analytic in the real variables β_1 and β_2 when $|\beta_2| < 2/[k(k-1)]$, where k is the number of edges in H_2. It is also noted in [15] that at points where ψ_∞ is analytic,

$$
\frac{\partial}{\partial \beta_j} \psi_\infty(\beta_1, \beta_2) = \lim_{N \to \infty} \frac{\partial}{\partial \beta_j} \psi_N(\beta_1, \beta_2),
$$

(4)

that is, the partial derivatives commute with the limit $N \to \infty$. Partial derivatives of ψ_∞, when they exist, give information on the large-N mean and variance of the densities $t_1(G_N)$ and $t_2(G_N)$ (see [15]), and it is standard in the corresponding modeling of materials, in part for this reason, to define phases and phase transitions as follows (see [6]).

Definition. A phase is an open connected region of the parameter space $((\beta_1, \beta_2))$ which is maximal for the condition that $\psi_\infty(\beta_1, \beta_2)$ is analytic. The ‘high temperature phase’ is that domain of analyticity of $\psi_\infty(\beta_1, \beta_2)$ which contains the strip $-2/[k(k-1)] < \beta_2 < 0$. There is a phase transition at (β_1^*, β_2^*) if (β_1^*, β_2^*) is a boundary point of an open set on which ψ_∞ is analytic, but ψ_∞ is not analytic at (β_1^*, β_2^*).

In this notation our main result is as follows.

Theorem 1. Assume that the chromatic number $\chi(H_2)$ of H_2 is at least 3. Then there is a function $s(\beta_1)$, $-\infty < \beta_1 < \infty$, with $s(\beta_1) \leq -2/(k(k-1))$, such that, for every β_1, the interval $[(\beta_1, \beta_2) \mid \beta_2 \leq s(\beta_1)]$ does not intersect the high temperature phase.
2. Proof of Theorem 1

We write P for the probability mass function P_{β_1, β_2} given by (1), and E for the expectation E_{β_1, β_2}.

Before beginning we need some notation; see [1], [2], [3], [9], and [10] for discussions of the ideas behind these terms, which basically provide the framework for ‘infinite volume limits’ for graphs, in analogy with the infinite volume limit in statistical mechanics [14].

To each graph G on N nodes we associate the following function on $[0, 1]^2$:

$$f^G(x, y) = \begin{cases} 1 & \text{if } ([Nx_x], [Ny_]) \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

We define W to be the space of measurable functions $h : [0, 1]^2 \to [0, 1]$ which are symmetric, i.e. $h(x, y) = h(y, x)$ for all x, y. For $h \in W$, we define

$$t(H, h) = \int_{[0, 1]^\ell} \prod_{(i, j) \in E(H)} h(x_i, x_j) \, dx_1 \cdots dx_\ell,$$

where $E(H)$ is the edge set of H and $\ell = |V(H)|$ is the number of nodes in H, and note that, for a graph G, $t(H, G)$ defined in (2) has the same value as $t(H, f^G)$.

We define an equivalence relation on W as follows: $f \sim g$ if and only if $t(H, f) = t(H, g)$ for every simple graph H. Elements of the quotient space, \tilde{W}, are called ‘graphons’, and the class containing $h \in W$ is denoted \tilde{h}.

On \tilde{W} we define a metric in steps as follows. First, on W we define

$$d_{\Box}(f, g) = \sup_{S, T \subseteq [0, 1]} \left| \int_{S \times T} [f(x, y) - g(x, y)] \, dx \, dy \right|.$$

Let Σ be the space of measure preserving bijections σ of $[0, 1]$, and, for f in W and $\sigma \in \Sigma$, define $f_\sigma(x, y) = f(\sigma(x), \sigma(y))$. Using this, we define a metric on W by

$$\delta_{\Box}(\tilde{f}, \tilde{g}) = \inf_{\sigma_1, \sigma_2} d_{\Box}(f_{\sigma_1}, g_{\sigma_2}).$$

In the topology induced by this metric, \tilde{W} is compact [11].

Next we need a few terms associated with ψ_∞. Define, on $[0, 1]$,

$$I(u) = \frac{1}{2} u \ln(u) + \frac{1}{2} (1 - u) \ln(1 - u),$$

and, on \tilde{W},

$$I(\tilde{h}) = \int_{[0, 1]^2} I(h(x, y)) \, dx \, dy.$$}

Also, on \tilde{W} we define

$$T(\tilde{h}) = \beta_1 t_1(\tilde{h}) + \beta_2 t_2(\tilde{h}).$$

The above is relevant because it was proven in Theorem 3.1 of [2] that $\psi_\infty(\beta_1, \beta_2)$ is the solution of an optimization problem:

$$\psi_\infty(\beta_1, \beta_2) = \sup_{\tilde{h} \in \tilde{W}} [T(\tilde{h}) - I(\tilde{h})].$$

(5)
(Note that it follows immediately from (5) that $ψ_∞(β_1, β_2)$ is convex.) From Theorem 3.2 of [2] one has some control on the asymptotic behavior as $N → ∞$, i.e.
\[
\delta_{\square}[\tilde{G}_N, \tilde{F}^*(β_1, β_2)] \rightarrow 0 \quad \text{in probability as } N \rightarrow ∞,
\]
where $\tilde{F}^*(β_1, β_2)$ is the (nonempty) subset of \tilde{W} on which $T - I$ is maximized, and $\tilde{G}_N = f_{\tilde{G}_N}^N$.

We now return to our proof. Our proof will be by contradiction, so we assume from here on that $ψ_∞(β_1, β_2)$ is analytic in $β_1$ and $β_2$ on the entire half-line $L = \{(β_1^*, β_2^*): β_2 < 0\}$, where $β_2^*$ is arbitrary but fixed. We will find a contradiction, which will prove the existence of the function $s(β_1)$. Consider the function
\[
C(β_1, β_2) := \left(\frac{∂ψ_∞}{∂β_1}(β_1, β_2) \right)^k - \frac{∂ψ_∞}{∂β_2}(β_1, β_2),
\]
where k is the number of edges in H_2. Note that $C(β_1, β_2)$ is analytic on L, since $ψ_∞(β_1, β_2)$ is.

Proposition 3.2 of [15] proves that, for all $β_2 < 0$, there is a unique solution $u^*(β_1, β_2)$ to the optimization of
\[
β_1u + β_2u^k - \frac{1}{2}u \ln u - \frac{1}{2}(1 - u) \ln(1 - u)
\]
for $u \in [0, 1]$. Then from Theorems 6.1 and 4.2 of [2] we can use the same argument as used to prove Equations (33) and (34) of [15] to prove that, for $-2/[k(k - 1)] < β_2 < 0$,
\[
\frac{∂}{∂β_1}ψ_∞(β_1, β_2) = \lim_{N → ∞} E[t_1(G_N)] = t_1(u^*) = u^*(β_1, β_2),
\]
\[
\frac{∂}{∂β_2}ψ_∞(β_1, β_2) = \lim_{N → ∞} E[t_2(G_N)] = t_2(u^*) = (u^*(β_1, β_2))^k.
\]
It follows that $C(β_1^*, β_2) = t_1(u^k) - t_2(u^*) = 0$ for $-2/[k(k - 1)] < β_2 < 0$. Since a function of one variable which is analytic on L and constant on a subinterval must be constant on L, it follows that
\[
C(β_1^*, β_2) = 0 \quad \text{on } L,
\]
and so C is identically 0 on the whole high temperature phase. (Any point in the phase can be connected to the $β_1$ axis by an analytic curve.)

Fix $ε > 0$ and $i \in \{1, 2\}$. Recall that $β_1 = β_1^*$ is fixed arbitrarily. Write $\tilde{F}^*(β_2)$ for the set $\tilde{F}^*(β_1, β_2) ⊂ \tilde{W}$ defined above. Using Theorem 7.1 of [2], choose $β_2^*$ sufficiently negative so that, for every $β_2 < β_2^*$,
\[
\sup_{j ∈ F^*(β_2)} δ_{\square}(j, \tilde{p}_{G}) < \frac{ε}{3k},
\]
where $p = e^{2β_1}/(1 + e^{2β_1})$ and $g(x, y) = 1$ unless $|[χ(H_2) - 1]x] = |(χ(H_2) - 1)y|$, in which case $g(x, y)$ has value 0.

Let $β_2 < β_2^*$. Using Theorem 3.2 of [2], choose $N_0(β_2)$ such that $N > N_0(β_2)$ implies that
\[
\mathbb{P}(δ_{\square}(\tilde{G}_N, \tilde{F}^*(β_2)) ≥ \frac{ε}{3k}) < \frac{ε}{3k}.
\]
Let $N > N_0(β_2)$ and $A_{ε,N} = \{G_N: δ_{\square}(\tilde{G}_N, \tilde{F}^*(β_2)) < ε/(3k)\}$. There exist $h_{\tilde{G}_N} ∈ \tilde{F}^*(β_2)$ corresponding to each $G_N ∈ A_{ε,N}$ such that
\[
δ_{\square}(\tilde{G}_N, h_{\tilde{G}_N}) < \frac{ε}{3k}.
\]
Write $\mathbb{E}|_A$ for the restriction of the expectation to the set A. Using (8) and (10), we have

$$
\mathbb{E}|_{A_{\epsilon,N}}[\delta\square(\tilde{G}_N, p\tilde{g})] = \sum_{G_N \in A_{\epsilon,N}} \delta\square(\tilde{G}_N, p\tilde{g}) \mathbb{P}(G_N)
\leq \sum_{G_N \in A_{\epsilon,N}} [\delta\square(\tilde{G}_N, \tilde{h}_N) + \delta\square(\tilde{h}_N, p\tilde{g})] \mathbb{P}(G_N)
\leq \sum_{G_N \in A_{\epsilon,N}} \left[\varepsilon\frac{1}{3k} + \varepsilon\frac{1}{3k} \right] \mathbb{P}(G_N)
\leq \frac{2\varepsilon}{3k}
$$

(11)

for $N > N_0(\beta_2)$.

From Lemma 4.1 of [10], it is easy to see that

$$
|t_i(G_N) - t_i(pg)| \leq k\delta\square(\tilde{G}_N, p\tilde{g}).
$$

(12)

Write $\tilde{A}_{\epsilon,N} = \{G_N : \delta\square(\tilde{G}_N, \tilde{F}^*(\beta_2)) \geq \varepsilon/(3k)\}$. From (9), (11), (12), and the fact that $\delta\square(\cdot, \cdot) \leq 1$,

$$
|\mathbb{E}[t_i(G_N)] - t_i(pg)| \leq \mathbb{E}[|t_i(G_N) - t_i(pg)|]
\leq k\mathbb{E}[\delta\square(\tilde{G}_N, p\tilde{g})]
= k(\mathbb{E}|_{\tilde{A}_{\epsilon,N}}[\delta\square(\tilde{G}_N, p\tilde{g})] + \mathbb{E}|_{\tilde{A}_{\epsilon,N}}[\delta\square(\tilde{G}_N, p\tilde{g})])
\leq k\left(\frac{2\varepsilon}{3k} + \frac{\varepsilon}{3k} \right)
= \varepsilon
$$

(13)

for $N > N_0(\beta_2)$. Direct computation of (3) shows that

$$
\frac{\partial\psi_N}{\partial\beta_i}(\beta_1^*, \beta_2) = \mathbb{E}[t_i(G_N)].
$$

(14)

Combining (14) with (4), we may take the limit $N \to \infty$ in (13) to obtain

$$
|t_i(pg) - \frac{\partial\psi}{\partial\beta_i}(\beta_1^*, \beta_2)| < \varepsilon.
$$

Since $\varepsilon > 0$ was arbitrary,

$$
\lim_{\beta_2 \to -\infty} \frac{\partial\psi}{\partial\beta_i}(\beta_1^*, \beta_2) = t_i(pg).
$$

(15)

Direct computation using Equation (2.10) of [2] yields

$$
t_2(pg) = 0 \quad \text{and} \quad t_1(pg) = \frac{e^{2\beta_1}(\chi(H) - 2)}{1 + e^{2\beta_1}(\chi(H) - 1)} > 0.
$$

(16)

Now, by combining (6) with (15)–(16), we find that $\lim_{\beta_2 \to -\infty} C(\beta_1^*, \beta_2) > 0$, in contradiction with (7), which proves the theorem.
3. Conclusion

Consider any of the two-parameter exponential random graph models with repulsion covered by our theorem. We have proven that the high temperature phase is separated from the low energy regime by a phase transition. Our proof is based on the traditional modeling of equilibrium statistical mechanics using analyticity and an order parameter [7], [14], [17]. We also emphasize that this method could not have been used to prove the transition found in [15] for attractive exponential random graph models since there is a critical point for that transition: indeed, there is only one phase for $\beta_2 > 0$.

There remain many open questions. Perhaps the most pressing is the character of the singularity of $\psi_\infty(\beta_1, \beta_2)$ at the boundary of the high energy phase. In the attractive case there is only one phase, but there are jump discontinuities, in the first derivatives of $\psi_\infty(\beta_1, \beta_2)$ (namely, the average edge and energy densities), across a curve where two regions of the phase abut, while the edges are independent in the probabilistic sense throughout the phase [15]. We do not know the nature of the singularity at the boundary of the high energy phase for the case of repulsion studied in this paper, though we expect the first derivatives of $\psi_\infty(\beta_1, \beta_2)$ to be discontinuous across the boundary. In analogy with equilibrium materials there may be multipartite phases with different numbers of parts at low energy, though this may require more complicated interactions [2].

Acknowledgements

It is a pleasure for CR to acknowledge useful discussions with Mei Yin, and support at a workshop of The American Institute of Mathematics in August 2011.

References