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TAIL BEHAVIOR OF THE QUEUE SIZE
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DISCRETE AUTOREGRESSIVE ARRIVALS
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Abstract

Autoregressive arrival models are described by a few parameters and provide a simple
means to obtain analytical models for matching the first- and second-order statistics of
measured data. We consider a discrete-time queueing system where the service time of a
customer occupies one slot and the arrival process is governed by a discrete autoregressive
process of order 1 (a DAR(1) process) which is characterized by an arbitrary stationary
batch size distribution and a correlation coefficient. The tail behaviors of the queue length
and the waiting time distributions are examined. In particular, it is shown that, unlike
in the classical queueing models with Markovian arrival processes, the correlation in
the DAR(1) model results in nongeometric tail behavior of the queue length (and the
waiting time) if the stationary distribution of the DAR(1) process has infinite support.
A complete characterization of the geometric tail behavior of the queue length (and the
waiting time) is presented, showing the impact of the stationary distribution and the
correlation coefficient when the stationary distribution of the DAR(1) process has finite
support. It is also shown that the stationary distribution of the queue length (and the
waiting time) has a tail of regular variation with index −β − 1, by finding an explicit
expression for the tail asymptotics when the stationary distribution of the DAR(1) process
has a tail of regular variation with index −β.
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1. Introduction

In traffic modeling, it is crucial to concentrate on those traffic characteristics which can be
estimated efficiently from the measured data, can be given a meaningful physical interpretation,
and, finally, have a measurable and dominant impact on the performance of the network. We
believe that the time series models with relatively few parameters are well suited for ‘accurate
and meaningful’modeling of various traffic sources in high-speed applications. From that point
of view, the autoregressive model of order 1 (the AR(1) model) is a good candidate to model
input traffic in telecommunications networks.

The traditional time series models are driven by ‘white Gaussian noise’ sequences, resulting
in simple additive properties. The advantage of such models is that they are quite flexible in
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Tail behavior in a queue with DAR(1) inputs 1117

capturing different correlation structures. However, they allow the stationary distribution to be
Gaussian only. Furthermore, such models are mainly applicable in simulation experiments, or
to obtaining certain asymptotic results limited to a large number of multiplexed sources [1], [3].

In contrast, in the classical teletraffic theory, Markovian arrival processes are constructed
from exponential distributions, e.g. Markov-modulated Poisson processes. Teletraffic analysis
using such models is usually tractable, due to the memoryless property of the exponential
distributions. However, these models might be ‘over-parameterized’ if the aim is to capture
accurately both the distribution and the correlation structure of the measured data. Furthermore,
the model identification and estimation become a major task within this traditional framework.

In the continuous-time case, the Poisson process is the simplest Markovian arrival process.
This process has been generalized by Cox [6], Consul and Jain [5], and Drezner and Farnum [8].
Different correlation structures have been discussed, but the stationary distributions in the
proposed models were restricted to specific classes.

The non-Gaussian time series models have been extensively covered in the open literature.
In [7] and [20], the general framework for their statistical analysis was covered. In [13], [19],
and [17], time series generated by different innovation processes were discussed.

Despite their simplicity and their success in modeling complex data, there have been very
few exact analyses of queueing systems with time series models. In the continuous-time case,
Finch [10] and Finch and Pearce [11] considered an MA/M/1 system, which has a moving
average model for the interarrival process and an exponential server. In the cases of moving
average models of orders 1 and 2 for the interarrival times, explicit expressions for the tail
behavior of the queue length distribution were provided. The approach of Finch and Pearce can
be extended to any finite-order moving average model, although the complexity of computations
increases exponentially with the order of the moving average model. In [14], a discrete-time
moving average model was analyzed. Moving average models of orders 1 and 2 were both
considered. The general approach of Franken et al. [12] is in principle applicable to more
general arrival processes, but their results are more geared toward limit theorems and conditions
on the existence of the solution. Tin [22] and Szekli et al. [21] investigated Markov renewal
arrival processes with general service time distributions.

In this paper, we concentrate on the discrete-time case. In particular, we study the discrete
autoregressive process of order 1 (the DAR(1) process) source models where the service time
of a customer occupies one slot. The DAR(1) model has been shown to be a good model
for variable-bit-rate-coded teleconference traffic [9]. For a discrete-time single-server queue
with DAR(1) inputs, Hwang and Sohraby [15] and Hwang et al. [16] derived the probability
generating functions of the stationary queue size and the stationary waiting time, respectively.
Kim et al. [18] obtained the stationary distributions of the queue size and the waiting time
in transform-free form using an embedded Markov chain and the ‘Bernoulli arrivals see time
averages’ property. For a discrete-time multiserver queue with DAR(1) inputs, Choi et al. [4]
obtained the stationary distributions of the queue size and the waiting time using the matrix-
analytic method.

In this paper, we consider a discrete-time single-server queue with DAR(1) inputs. The main
contributions of the paper are as follows.

1. Using the theory of analytic functions and the probability generating functions of the
stationary queue size and the waiting time, we present a complete characterization of
the geometric tail behavior of the queue size and the waiting time when the stationary
distribution of the DAR(1) input process has finite support (see Theorem 3).
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2. When the stationary distribution of the DAR(1) input process has infinite support, we find
that the tail distributions of the stationary queue size and the waiting time do not have
geometric bounds. In particular, they are not asymptotically geometric (see Theorem 4).

3. When the stationary distribution of the DAR(1) input process has a tail of regular variation,
we find that the stationary distributions of the queue size and the waiting time also have
tails of regular variation, by finding asymptotics for the tail distributions of the stationary
queue size and waiting time (see Theorem 5).

2. Model description

LetB(t), t = 0, 1, . . . , be independent, identically distributed random variables. We assume
thatB(t) takes nonnegative integer values and writebi = P{B(t) = i}, i = 0, 1, . . . . A DAR(1)
process {Y (t) : t = 0, 1, . . . } is defined by the regression equation

Y (0) = B(0), Y (t) = (1 − α(t))Y (t − 1) + α(t)B(t), t = 1, 2, . . . ,

where α(t), t = 1, 2, . . . , are independent, identically distributed Bernoulli random variables
with P{α(t) = 0} = δ and P{α(t) = 1} = 1 − δ (for 0 < δ < 1), and {α(t) : t = 1, 2, . . . }
is assumed to be independent of {B(t) : t = 0, 1, . . . }. The following are basic properties of a
DAR(1) process (see, for example, [16]).

• {Y (t)} is stationary.

• The distribution of Y (t) is the same as the distribution of B(t), i.e.

P{Y (t) = i} = bi, i = 0, 1, . . . .

• The autocorrelation function for {Y (t) : t = 0, 1, . . . } is given by

r(t) := cov(Y (0), Y (t))

var(Y (0))
= δt , t = 0, 1, . . . .

We consider the DAR(1)/D/1 queue, where the time is divided into slots of equal size and
one slot is needed to serve a packet. We assume that packet arrivals occur at the beginnings of
slots and that departures occur at the ends of slots. In the DAR(1) process, Y (t), t = 0, 1, . . . ,
represents the number of packets that arrive at the beginning of the t th slot. The order of
service is assumed to be based on the first-come–first-served policy. A packet among those that
arrive at the beginning of a given slot can be served during that slot if there are no previously
arrived packets at the arrival epoch. Packets that find that the system is not empty at the arrival
epoch have to wait until the server becomes available. We assume that the stability condition
ρ := E[B(0)] < 1 holds.

3. Preliminaries

Let N(t) be the number of packets in the system immediately before possible arrivals at the
beginning of the t th slot. Then N(t) evolves according to the evolution equation

N(t + 1) = max{N(t) + Y (t) − 1, 0}, t = 0, 1, . . . .

Let
πn := lim

t→∞ P{N(t) = n}, n = 0, 1, . . . ,
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be the limiting probabilities of {N(t) : t = 0, 1, . . . }. It is known [18] that the πn, n = 0, 1, . . . ,
are given by

π0 = 1 − ρ

b0 + δā1
, πn+1 = 1

b0 + δā1

n∑
i=0

πi(ān+1−i − δān+2−i ), n = 0, 1, . . . , (1)

where

āi :=
∞∑

j=i

aj :=
∞∑

j=i

P{X(Y − 1) = j}, i = 0, 1, . . . , (2)

and X and Y are independent random variables whose distributions are given by P{X = i} =
(1 − δ)δi−1, i = 1, 2, . . . , and P{Y = i} = bi, i = 0, 1, . . . . By a standard manipulation
of (1), we obtain the following theorem.

Theorem 1. The probability generating function, �(z), of the stationary distribution {πi : i =
0, 1, . . . } of the queue size {N(t)} is given by

�(z) = (1 − ρ)(z − 1)

(z − δ)(ā1 − A+(z)) + b0(z − 1)
, |z| ≤ 1, z �= 1, (3)

where

A+(z) :=
∞∑
i=1

aiz
i =

∞∑
i=2

bi

(1 − δ)zi−1

1 − δzi−1 , |z| ≤ 1. (4)

Remark 1. Let Ñ(t) be the number of packets in the system after possible arrivals at the
beginning of the t th slot. Denote by π̃n, n = 0, 1, . . . , the stationary probabilities of {Ñ(t)}.
From the relation N(t + 1) = max{Ñ(t) − 1, 0}, we have

π0 = π̃0 + π̃1, πn = π̃n+1, n = 1, 2, . . . . (5)

We note that
∑∞

n=1 π̃n, which is the probability that the server is busy, is the mean number of
customers in the service position. In addition, ρ is the mean number of customers that arrive
in any slot, and the sojourn time in the service position for a customer who enters the service
position is one slot (length). Hence, by applying Little’s formula (see, for example, [23]) to the
service position, we have

∞∑
n=1

π̃n = ρ. (6)

From (5) and (6), we obtain π̃n, n = 0, 1, . . . , as follows:

π̃0 = 1 − ρ, π̃1 = π0 − 1 + ρ, π̃n = πn−1, n = 2, 3, . . . . (7)

From (3) and (7), we find the probability generating function, �̃(z) := ∑∞
n=0 π̃nz

n, of the
distribution {π̃n : n = 0, 1, . . . }:

�̃(z) = z�(z) − (1 − ρ)(z − 1)

= (1 − ρ)(z − 1)[z − b0(z − 1) − (z − δ)(ā1 − A+(z))]
(z − δ)(ā1 − A+(z)) + b0(z − 1)

, |z| ≤ 1, z �= 1. (8)
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Since Ñ(t) evolves according to

Ñ(t + 1) = max{Ñ(t) − 1, 0} + Y (t + 1), t = 0, 1, . . . ,

the process {Ñ(t)} corresponds to the queue size process treated in [15]. Equation (8) is a
reproduction of a result of [15].

Now we consider the stationary distribution of the waiting time. Let wn, n = 0, 1, . . . ,
denote the stationary probabilities of the waiting time.

Theorem 2. ([18].) We have the following relation between the stationary distribution of the
queue size, {πn : n = 0, 1, . . . }, and the stationary distribution of the waiting time, {wn : n =
0, 1, . . . }:

w0 = 1

ρ
(a0 + (1 − ρ)ā1)π0,

wn = 1

ρ
πn, n = 1, 2, . . . . (9)

4. Geometric tails of the queue size and the waiting time

Suppose that the stationary distribution, {bi : i = 0, 1, . . . }, of the DAR(1) inputs has finite
support, i.e.

i∗ := sup{i ≥ 0 : bi > 0} < ∞.

We assume that i∗ ≥ 2, to exclude the trivial cases. Let f (z) denote the denominator of the
right-hand side of (3), i.e.

f (z) := (z − δ)(ā1 − A+(z)) + b0(z − 1), |z| ≤ 1. (10)

Substituting (4) and ā1 = ∑i∗
i=2 bi into (10) leads to

f (z) = (z − δ)

i∗∑
i=2

bi

1 − zi−1

1 − δzi−1 + b0(z − 1), |z| ≤ 1. (11)

From (11), we observe that f (z) has an analytic extension to {z ∈ C : |z| < x∗}, where

x∗ := δ−1/(i∗−1).

We also denote the extended analytic function by f (z), |z| < x∗.
We have the following lemma.

Lemma 1. Suppose that i∗ := sup{i ≥ 0 : bi > 0} < ∞.

(i) f (z) has a unique zero on the interval (1, x∗) of the real axis.

(ii) Let σ be the zero of f (z) on (1, x∗). Then there is an ε, 0 < ε < x∗ − σ , such that f (z)

has no other zeros on {z ∈ C : |z| < σ + ε} except the two simple zeros 1 and σ .

Proof. (i) Define an analytic function g(z) on {z ∈ C : |z| < x∗} by

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

f (z)

z − 1
, |z| < x∗, z �= 1,

lim
z→1

f (z)

z − 1
, z = 1.
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Since

ā1 − A+(z) =
∞∑
i=1

ai(1 − zi) = (1 − z)

∞∑
i=1

ai

i−1∑
j=0

zj = (1 − z)

∞∑
i=0

āi+1z
i,

(10) leads to

g(z) = 1 −
∞∑
i=0

(ai + (1 − δ)āi+1)z
i, |z| < x∗. (12)

By (12), g(z) is a strictly decreasing function of z on (0, x∗). Let X and Y be independent
random variables whose distributions are given by P{X = i} = (1 − δ)δi−1, i = 1, 2, . . . , and
P{Y = i} = bi, i = 0, 1, 2, . . . . Then

g(1) = 1 − ā0 − (1 − δ)

∞∑
i=1

āi

= b0 − (1 − δ) E[X(Y − 1) 1{Y>1}]
= b0 − E[(Y − 1) 1{Y>1}]
= − E[Y − 1]
= 1 − ρ

> 0. (13)

By (11), we have
lim

z→x∗− g(z) = −∞. (14)

The property that g(z) is strictly decreasing on (0, x∗), together with (13) and (14), implies that
g(z) has a unique zero on (1, x∗). Thus, (i) is proved.

(ii) Let σ be the zero of f (z) and, hence, of g(z) on (1, x∗). By (12), for |z| < σ we have

|g(z)| ≥ 1 −
∞∑
i=0

(ai + (1 − δ)āi+1)|z|i > 1 −
∞∑
i=0

(ai + (1 − δ)āi+1)σ
i = 0.

Hence, g(z) has no zeros on {z ∈ C : |z| < σ }. Since ai + (1 − δ)āi+1 > 0, i = 0, 1, . . . ,
and σ > 0 is a positive zero of g(z), it can easily be shown from (12) that g(z) has no zeros on
{z ∈ C : |z| = σ, z �= σ }. Hence, there is an ε, 0 < ε < x∗ − σ , such that g(z) has no zeros
on {z ∈ C : |z| < σ + ε, z �= σ }. By (12), (d/dz)g(z)|z=σ < 0, which implies that the positive
zero σ of g(z) is simple. Thus, (ii) is proved.

Theorem 3. Suppose that i∗ := sup{i ≥ 0 : bi > 0} < ∞. Then the function f (z) in (11) has
a unique positive zero, σ , between 1 and x∗ := δ−1/(i∗−1).

(i) The stationary distribution, {πn : n = 0, 1, . . . }, of the queue size before possible arrivals,
{N(t)}, has the following asymptotic tail behavior:

πn = cσ−n + o(σ−n) as n → ∞. (15)

Here

c = (1 − ρ)(σ − 1)(σ − δ)

σ [(σ − δ)2A+′(σ ) − b0(1 − δ)] (16)

and A+′
(σ ) := (d/dz)A+(z)|z=σ .
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(ii) The stationary distribution of the waiting time, {wn : n = 0, 1, . . . }, has the following
asymptotic tail behavior, where c is given by (16):

wn = c

ρ
σ−n + o(σ−n) as n → ∞. (17)

Proof. By Lemma 1(i), f (z) has a unique positive zero, σ , between 1 and x∗. By Lemma
1(ii), the probability generating function �(z) in (3) can be decomposed as

�(z) = −σc

z − σ
+ 	(z), |z| < σ + ε, z �= σ, (18)

where 	(z) is an analytic function on {z ∈ C : |z| < σ + ε}. We obtain (15) by the Taylor
series expansion of (18) around z = 0. We obtain (17) from (15) and (9).

Remark 2. 1. From (7), the stationary distribution, {π̃n : n = 0, 1, . . . }, of the queue size after
possible arrivals, {Ñ(t)}, has the following asymptotic tail behavior, where c̃ = cσ :

π̃n = c̃σ−n + o(σ−n) as n → ∞.

2. Hwang et al. [16] obtained an approximation for the decay rate of the virtual waiting time
under the condition that X(Y − 1) has a finite moment generating function around the origin,
where X and Y are independent random variables whose distributions are given by

P{X = i} = (1 − δ)δi−1, i = 1, . . . , P{Y = i} = bi, i = 0, 1, . . . .

By careful observation, it can be shown that this condition of Hwang et al. is identical to the
condition that the stationary distribution, {bi : i = 0, 1, . . . }, of the DAR(1) inputs have finite
support. Since the virtual waiting time is the queue size before possible arrivals, {N(t)}, the
decay rate of the virtual waiting time is σ−1. Therefore, the result of Hwang et al. [16] is an
approximation for σ−1 under the condition that {bn : n = 0, 1, . . . } have finite support.

Now we consider the case in which the stationary distribution of the DAR(1) inputs does
not have finite support. The tail distribution of a random variable Z taking nonnegative integer
values is said to have a geometric bound if there exist positive numbers c1 and α1 < 1 such
that P{Z ≥ n} ≤ c1α

n
1 , n = 0, 1, . . . . It can easily be shown that the tail distribution of Z

has a geometric bound if and only if there exist positive numbers c2 and α2 < 1 such that
P{Z = n} ≤ c2α

n
2 , n = 0, 1, . . . . The following theorem shows that the tail distributions of

the stationary queue size and the stationary waiting time do not have geometric bounds unless
{bi : i = 0, 1, . . . } has finite support.

Theorem 4. Suppose that i∗ := sup{i ≥ 0 : bi > 0} = ∞. Then the tail distributions of
the stationary queue size and the stationary waiting time do not have geometric bounds. In
particular, they are not asymptotically geometric.

Proof. Recall that the arrival process is represented by a DAR(1) process, {Y (t) : t =
0, 1, . . . }, whose stationary distribution is {bi : i = 0, 1, . . . }. For a positive integer M > 1, let

Y (M)(t) = min{Y (t), M}.
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Then {Y (M)(t) : t = 0, 1, . . . } is a DAR(1) process with the stationary distribution {b(M)
i : i =

0, 1, . . . }, where

b
(M)
i :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bi, if i < M,

∞∑
j=M

bj , if i = M,

0, if i > M.

Consider the DAR(1)/D/1 queue in which arrivals occur according to the DAR(1) process
{Y (M)(t)}. Let N(M)(t) be the queue size at the beginning of the t th slot immediately before
possible arrivals, and let

π(M)
n := lim

t→∞ P{N(M)(t) = n}, n = 0, 1, . . . .

By Theorem 3,
π(M)

n = c(M)(σ (M))−n + o((σ (M))−n) as n → ∞,

for some c(M) > 0 and σ (M) ∈ (1, δ−1/(M−1)). Hence,

∞∑
i=n

π
(M)
i = c(M)σ (M)

σ (M) − 1
(σ (M))−n + o((σ (M))−n) as n → ∞. (19)

From the recursions

N(t + 1) = max{N(t) + Y (t) − 1, 0}, t = 0, 1, . . . ,

N(M)(t + 1) = max{N(M)(t) + Y (M)(t) − 1, 0}, t = 0, 1, . . . ,

we have P{N(t) ≥ n} ≥ P{Ñ(t) ≥ n}, n = 0, 1, . . . , if N(0) = Ñ(0) in distribution. Letting
n → ∞, we have

∞∑
i=n

πi ≥
∞∑

i=n

π
(M)
i , n = 0, 1, . . . . (20)

From (19) and (20), there exists a c
(M)
1 > 0 such that

∞∑
i=n

πi ≥ c
(M)
1 (σ (M))−n, n = 0, 1, . . . . (21)

Since σ (M) ∈ (1, δ−1/(M−1)), we have σ (M) → 1 as M → ∞. Hence, (21) implies that there
exist no c1 > 0 and α1, 0 < α1 < 1, such that

∞∑
i=n

πi ≤ c1α
n
1 , n = 0, 1, . . . .

Therefore, the tail distribution of the stationary queue size before possible arrivals cannot have
a geometric bound. Because of (9), the tail distribution of the stationary waiting time also
cannot have a geometric bound.

From Theorems 3 and 4, we have the following corollary.
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Corollary 1. The following statements are equivalent.

(a) The stationary distribution of the DAR(1) process has finite support.

(b) The stationary distribution of the queue size is asymptotically geometric.

(c) The tail distribution of the stationary queue size has a geometric bound.

(d) The stationary distribution of the waiting time is asymptotically geometric.

(e) The tail distribution of the stationary waiting time has a geometric bound.

5. Regularly varying tails for the queue size and the waiting time

In this section, we consider the DAR(1)/D/1 queue where the stationary distribution of the
DAR(1) input process has a regularly varying tail. A random variable Z is said to have a tail
distribution of regular variation with index −γ, γ > 0, if its tail distribution has the following
asymptotic behavior:

P{Z ≥ x} ∼ x−γ L(x) as x → ∞.

Here L(·) is a slowly varying function, i.e. L(·) is a Lebesgue-measurable function that is
ultimately positive and such that limx→∞ L(λx)/L(x) = 1 for all λ > 0.

The following result is the main theorem in this section.

Theorem 5. Suppose that the stationary distribution of the DAR(1) process has a tail of regular
variation with index −β − 1, β > 0, i.e.

∞∑
i=n

bi ∼ n−β−1L(n) as n → ∞, (22)

for some slowly varying function L(·). Then the stationary distributions of the queue size and
the waiting time have tails of regular variation with index −β, as follows.

(i) The stationary distribution, {πn : n = 0, 1, . . . }, of the queue size before possible arrivals,
{N(t)}, satisfies

∞∑
k=n

πk ∼ d

β
n−βL(n) as n → ∞, (23)

where

d = 1 − δ

1 − ρ

∞∑
k=1

(1 − δ)δk−1kβ+1. (24)

Furthermore,
πn ∼ dn−β−1L(n) as n → ∞. (25)

(ii) The stationary distribution, {wn : n = 0, 1, . . . }, of the waiting time satisfies

∞∑
k=n

wk ∼ d

ρβ
n−βL(n) as n → ∞,

where d is given by (24). Furthermore,

wn = d

ρ
n−β−1L(n) as n → ∞.
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To prove Theorem 5, we need a series of lemmas.

Lemma 2. Suppose that L(·) is a slowly varying function. Then there exist C, D, and x0 such
that

L(x) ≤ CλDL(λx) if λ ≥ 1 and x ≥ x0.

Proof. See Corollary 2.0.5 of [2].

Lemma 3. LetZ1 andZ2 be independent random variables. Suppose thatZ1 takes nonnegative
integer values and that E[Zn

1 ] < ∞ for all n > 0. If

P{Z2 ≥ x} ∼ x−γ L(x) as x → ∞,

for some γ > 0 and a slowly varying function L(·), then

P{Z1Z2 ≥ x} ∼ x−γ E[Zγ
1 ]L(x) as x → ∞.

Proof. Without loss of generality, we assume that

P{Z2 ≥ x} = x−γ L(x), x > 0.

By Fatou’s lemma,

lim inf
x→∞

P{Z1Z2 ≥ x}
x−γ L(x)

= lim inf
x→∞

∑∞
k=1 P{Z1 = k} P{Z2 ≥ x/k}

x−γ L(x)

= lim inf
x→∞

∑∞
k=1 P{Z1 = k}kγ L(x/k)

L(x)

≥ E[Zγ
1 ].

Choose an α such that α > γ . For x > 0, let

K(x) := inf{n ≥ 1 : P{Z1 ≥ n} ≤ x−α}. (26)

Let K1 be an arbitrary positive integer. Since

P{Z1Z2 ≥ x} =
min{K1,K(x)}∑

k=1

P{Z1 = k} P

{
Z2 ≥ x

k

}

+
K(x)∑

k=min{K1,K(x)}+1

P{Z1 = k} P

{
Z2 ≥ x

k

}

+
∞∑

k=K(x)+1

P{Z1 = k} P

{
Z2 ≥ x

k

}
,

https://doi.org/10.1017/S0001867800001476 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001476


1126 B. KIM AND K. SOHRABY

we have

lim sup
x→∞

P{Z1Z2 ≥ x}
x−γ L(x)

≤ lim sup
x→∞

K1∑
k=1

P{Z1 = k}kγ L(x/k)

L(x)
+ lim sup

x→∞

K(x)∑
k=K1+1

P{Z1 = k}kγ L(x/k)

L(x)

+ lim sup
x→∞

P{Z1 ≥ K(x) + 1}
x−γ L(x)

=
K1∑
k=1

P{Z1 = k}kγ + lim sup
x→∞

K(x)∑
k=K1+1

P{Z1 = k}kγ L(x/k)

L(x)

+ lim sup
x→∞

P{Z1 ≥ K(x) + 1}
x−γ L(x)

. (27)

By (26),

lim sup
x→∞

P{Z1 ≥ K(x) + 1}
x−γ L(x)

≤ lim sup
x→∞

x−α

x−γ L(x)
= 0.

Hence, (27) leads to

lim sup
x→∞

P{Z1Z2 ≥ x}
x−γ L(x)

≤ E[Zγ
1 ] + lim sup

x→∞

K(x)∑
k=K1+1

P{Z1 = k}kγ L(x/k)

L(x)
. (28)

According to Lemma 2, there exist C, D, and x0 such that

L(x/k)

L(x)
≤ CkD if

x

k
≥ x0.

Hence, if x/K(x) ≥ x0 then

K(x)∑
k=K1+1

P{Z1 = k}kγ L(x/k)

L(x)
≤ C

K(x)∑
k=K1+1

P{Z1 = k}kγ+D ≤ C

∞∑
k=K1+1

P{Z1 = k}kγ+D.

Therefore, if

lim inf
x→∞

x

K(x)
> x0 (29)

then

lim sup
x→∞

K(x)∑
k=K1+1

P{Z1 = k}kγ L(x/k)

L(x)
≤ C

∞∑
k=K1+1

P{Z1 = k}kγ+D.

Hence, by (28),

lim sup
x→∞

P{Z1Z2 ≥ x}
x−γ L(x)

≤ E[Zγ
1 ] + C

∞∑
k=K1+1

P{Z1 = k}kγ+D

if (29) holds. Letting K1 → ∞ leads to

lim sup
x→∞

P{Z1Z2 ≥ x}
x−γ L(x)

≤ E[Zγ
1 ]

if (29) holds. Therefore, it remains to prove (29).
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We prove (29) by showing that

lim
x→∞

K(x)

x
= 0. (30)

Since E[Zα+1
1 ] < ∞, we have

∑∞
n=1 nα P{Z1 ≥ n} < ∞, whence limn→∞ P{Z1 ≥ n}/n−α =

0. Therefore,

lim
x→∞

P{Z1 ≥ εx}
x−α

= 0 for any ε > 0.

Hence, there exists an M(ε) such that P{Z1 ≥ εx} ≤ x−α if x ≥ M(ε). So, if x ≥ M(ε) then
K(x) ≤ εx, which implies that

lim sup
x→∞

K(x)

x
≤ ε.

Since ε > 0 is arbitrary, (30) holds and the proof is complete.

Lemma 4. Suppose that (22) holds. Then the elements of the sequence {ān : n = 0, 1, . . . },
which were defined in (2), have the following asymptotic behavior:

ān ∼ n−β−1
∞∑

k=1

(1 − δ)δk−1kβ+1L(n) as n → ∞.

Proof. By (2), ān = P{X(Y − 1) ≥ n}, n = 0, 1, . . . . By (22), P{Y ≥ n} ∼ n−β−1L(n) as
n → ∞. The result thus follows from Lemma 3.

For probability distributions {pn : n = 0, 1, . . . } and {qn : n = 0, 1, . . . } on the set of non-
negative integers, let {(p ∗ q)n : n = 0, 1, . . . } denote the convolution of the two distributions,
i.e.

(p ∗ q)n :=
n∑

k=0

pkqn−k, n = 0, 1, . . . .

Lemma 5. Suppose that {pn : n = 0, 1, . . . } and {qn : n = 0, 1, . . . } are probability distribu-
tions on the set of nonnegative integers, and that

pn ∼ n−γ c1L(n) as n → ∞, qn ∼ n−γ c2L(n) as n → ∞, (31)

for some c1 > 0, c2 > 0, and γ > 1 and a slowly varying function L(·). Then

(p ∗ q)n ∼ n−γ (c1 + c2)L(n) as n → ∞.

Proof. By the uniform convergence theorem for slowly varying functions [2],

lim
x→∞

L(λx)

L(x)
= 1 uniformly in λ ∈

[
1

2
, 1

]
. (32)

By (31) and (32),

lim sup
n→∞

sup
0≤k≤n/2

qn−k

n−γ L(n)
= lim sup

n→∞
sup

0≤k≤n/2

qn−k

(n − k)−γ L(n − k)

(
n

n − k

)γ
L((1 − k/n)n)

L(n)

= c22γ .
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Hence, by the Lebesgue dominated convergence theorem, we have

lim
n→∞


n/2�∑
k=0

pkqn−k

n−γ L(n)
= c2,

where 
n/2� denotes the largest integer which is not greater than n/2. By interchanging the
roles of pk and qk , we obtain

lim
n→∞

n∑
k=
n/2�+1

pkqn−k

n−γ L(n)
= lim

n→∞


(n−1)/2�∑
k=0

pn−kqk

n−γ L(n)
= c1,

and the proof is complete.

Let {pn : n = 0, 1, . . . } be a probability distribution on the set of nonnegative integers.
For k = 0, 1, . . . , let {p∗k

n : n = 0, 1, . . . } denote the k-fold convolution of the distribution
{pn : n = 0, 1, . . . }, i.e.

p∗0
n =

{
1, n = 0,

0, n = 1, 2, . . . ,

and, for k = 1, 2, . . . ,

p∗k
n =

n∑
i=0

p
∗(k−1)
i pn−i , n = 0, 1, . . . .

Lemma 6. Let {pn : n = 0, 1, . . . } be a probability distribution on the set of nonnegative
integers. Suppose that pn > 0, n = 0, 1, . . . , and that

pn ∼ n−γ L(n) as n → ∞,

for some γ > 0 and a slowly varying function L(·). Then, for any ε > 0, there exists a C(ε) > 0
such that

p∗k
n ≤ C(ε)(1 + ε)kpn, n, k = 0, 1, . . . . (33)

Proof. Let ε > 0 be given. Choose a positive integer m such that (1 + ε)m > 2. By
Lemma 5, p

∗(2m)
n ∼ 2p∗m

n as n → ∞. Hence, there exists an M > 0 such that

p∗(2m)
n ≤ (1 + ε)mp∗m

n for any n ≥ M. (34)

Let C1 = (min{p∗m
0 , . . . , p∗m

M−1})−1.
We will show that

p∗(im)
n ≤ C1(1 + ε)imp∗m

n , n = 0, 1, . . . , (35)

for i = 0, 1, . . . , using induction on i. Trivially, (35) holds for i ≤ 1. Suppose that (35) holds
for i = k with k ≥ 1. By the induction hypothesis,

p∗(k+1)m
n = (p∗(km) ∗ p∗m)n ≤ C1(1 + ε)kmp∗2m

n , n = 0, 1, . . . .

Hence, by (34), p
∗(k+1)m
n ≤ C1(1 + ε)(k+1)mp∗m

n , n = M, M + 1, . . . . Trivially, p
∗(k+1)m
n ≤

1 ≤ C1p
∗m
n ≤ C1(1 + ε)(k+1)mp∗m

n , n = 0, . . . , M − 1. Thus, (35) holds for i = k + 1 and,
therefore, for all i = 0, 1, . . . .
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By Lemma 5, p
∗(m+j)
n ∼ (m + j)pn as n → ∞, for j = 0, . . . , m − 1. Hence, there exists

a C2 such that

p
∗(m+j)
n ≤ C2pn for j = 0, . . . , m − 1 and n = 0, 1, . . . . (36)

By (35) and (36), for i = 0, 1, . . . and j = 0, . . . , m − 1 we have

p
∗(im+j)
n ≤ C1C2(1 + ε)impn, n = 0, 1, . . . .

Hence, (33) holds with C(ε) = C1C2.

Lemma 7. Let {pn : n = 0, 1, . . . } and {qn : n = 0, 1, . . . } be probability distributions on the
set of nonnegative integers. Suppose that

∑∞
n=0 pn(1 + ε)n < ∞ for some ε > 0, that qn > 0

for n = 0, 1, . . . , and that qn ∼ n−γ L(n) as n → ∞, for some γ > 0 and a slowly varying
function L(·). Then

∞∑
k=0

pkq
∗k
n ∼ n−γ

∞∑
k=1

kpkL(n) as n → ∞.

Proof. By Lemma 5,

lim
n→∞

q∗k
n

qn

= k, k = 0, 1, . . . .

According to Lemma 6, there exists a C such that, for k = 0, 1, . . . ,

q∗k
n

qn

≤ C(1 + ε)k, n = 0, 1, . . . .

By the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

∑∞
k=0 pkq

∗k
n

qn

=
∞∑

k=0

kpk,

which completes the proof.

Lemma 8. Suppose that a sequence {gn : n = 0, 1, . . . } satisfies

gn ∼ n−γ L(n) as n → ∞,

where γ > 1 and L(·) is a slowly varying function. Then

∞∑
i=n

gi ∼ n1−γ 1

γ − 1
L(n) as n → ∞.

Proof. See Theorem 1.5.11 of [2].

Now we are ready to prove Theorem 5.

Proof of Theorem 5. (i) From (3), we have

�(z) = 1 − ρ

b0 + (δ − z)(ā1 − A+(z))/(1 − z)

= 1 − ρ

b0 + (δ − z)
∑∞

n=0 ān+1zn

= 1 − ρ

1 − ρ
∑∞

n=0(ān − δān+1)zn/ρ
.
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Hence,

πn =
∞∑

k=0

(1 − ρ)ρkq∗k
n , n = 0, 1, . . . ,

where

qn = ān − δān+1

ρ
, n = 0, 1, . . . .

By Lemma 4,

qn ∼ 1 − δ

ρ

∞∑
k=1

(1 − δ)δk−1kβ+1n−β−1L(n) as n → ∞.

From Lemma 7, we obtain (25). In addition, (23) is obtained from Lemma 8.

(ii) The result follows from part (i) of this theorem and (9).

Remark 3. We have shown that the stationary distributions of the queue size and the waiting
time in the DAR(1)/D/1 queue have asymptotically geometric tails if the stationary distribution
of the DAR(1) process has finite support, and have regularly varying tails if the stationary
distribution of the DAR(1) process has a regularly varying tail. We now have a natural question:
how heavy are the tails of the queue size and the waiting time when the stationary distribution
of the DAR(1) process has a moderate tail, such as a geometric tail? This requires further study.
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