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Abstract

The timing of the germination of seeds is highly responsive to inputs from the environment.
Temperature plays a key role in the control of germination, with low temperatures acting to
stimulate this developmental transition in many species. In Arabidopsis, extensive gene
expression changes have been reported at the whole seed level in response to cold, while
much less is known about their spatial distribution across the diverse cell types of the embryo.
In this study we examined the spatiotemporal patterns of promoter activity and protein abun-
dance for key gibberellic acid (GA) and abscisic acid (ABA) factors which regulate the deci-
sion to germinate both during a time course of germination and in response to cold. Low
temperature stimulated the spatial relocalization of these factors to the vasculature. The
response of these seeds to dormancy-breaking stratification treatments therefore stimulates
the distribution of both positive (GA) and negatively acting (ABA) components to this
same cell type. This altered spatial pattern persisted following the transfer of seeds to 22°C,
as well as after their rehydration, indicating that this alteration is persistent. These observa-
tions suggest that the vasculature plays a role in the low temperature-mediated stimulation
of germination in this species, while novel cell types are recruited to promote germination
in response to stratification.

Introduction

Seeds enable plants to move through both time and space, determining where and when plants
are established (Koornneef et al., 2002). The seed-to-seedling transition is therefore one of the
major shifts in the plant life cycle (Finch-Savage and Leubner-Metzger, 2006; Springthorpe
and Penfield, 2015).

Central to the control of the timing of the induction of germination is the role of the antag-
onistically acting hormones abscisic acid (ABA) and gibberellins (GA), which inhibit and pro-
mote this transition, respectively (Finkelstein et al., 2008; Holdsworth et al., 2008). The
hormone balance theory which describes this relationship provides a molecular thresholding
mechanism by which the development state of seeds is defined (Karssen and Lacka, 1986). The
most abundant hormone is thought to define whether or not a seed transitions to the germin-
ation programme (Bradford and Trewavas, 1994). Biosynthetic (Olszewski et al., 2002; Seo and
Koshiba, 2002) and signalling pathways for ABA (Park et al., 2009) and GA (Lee et al., 2002;
Murase et al., 2008) have been identified, enabling the mechanistic regulation of the molecular
agents which control dormancy and germination to be investigated.

Following the decision to germinate, the embryo within a seed commences growth
(Koornneef et al., 2002). This transition into a seedling is principally driven by cell expansion,
rather than cell division (Bassel et al., 2014; Sliwinska et al., 2009). This discrete induction of
growth following the initiation of the germination programme is promoted by GA (Groot and
Karssen, 1987; Koornneef and Van der Veen, 1980) and its induction of gene expression asso-
ciated with cell wall remodelling proteins which facilitate cell growth (Nakabayashi et al., 2005;
Dekkers et al., 2013; Narsai et al., 2017). These cell expansion-associated genes may be con-
sidered the downstream targets of the germination process in light of the central role they
play in the regulation of embryo growth (Bassel, 2016).

Spatially distinct domains of gene expression programmes have been identified within the
germinating Arabidopsis embryo using both gene expression analysis (Dekkers et al., 2013)
and the microscopic analysis of specific reporter constructs (Bassel et al., 2014). The cellular
sites of ABA and GA response and metabolism (Topham et al., 2017), and growth-promoting
cell wall-associated gene expression (Bassel et al., 2014) have also been defined at single-cell
resolution. In non-germinating Arabidopsis embryos, the radicle was found to be enriched
for both ABA- and GA-associated synthesis and response components, leading to the proposal
that this subdomain of the embryo acts as a decision-making centre in the control of seed

https://doi.org/10.1017/S0960258519000266 Published online by Cambridge University Press

https://www.cambridge.org/ssr
https://doi.org/10.1017/S0960258519000266
https://doi.org/10.1017/S0960258519000266
mailto:george.bassel@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3434-4499
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960258519000266&domain=pdf
https://doi.org/10.1017/S0960258519000266


dormancy (Topham et al., 2017). Examination of gene expression
associated with cell wall-associated gene expression revealed this
to be first induced within the embryo radicle (Bassel et al.,
2014). These results collectively suggest that the radicle is where
germination is initiated, a spatial site that overlaps with the
decision-making centre.

The germination of seeds from an individual mother plant is
typically non-uniform, with bet-hedging strategies being imple-
mented (Bradford, 2002; Rowse and Finch-Savage, 2003;
Springthorpe and Penfield, 2015; Mitchell et al., 2016). This strat-
egy is believed to improve plant fitness, while mechanisms under-
pinning this bet-hedging behaviour have been proposed
(Johnston and Bassel, 2018).

In the context of food production systems, this bet-hedging trait
is not favourable. Uniformity is a key objective in field-based agri-
culture at all stages of these systems. In order to achieve this, the
germination of seeds must be synchronous once they have been
planted. This co-ordinated crop establishment leads both to the
suppression of weeds, and uniformity of the final product at harvest
(Finch-Savage and Bassel, 2015). In light of this important role for
uniformity in seed behaviour, procedures have been developed by
commercial seed vendors which increase this population trait
(Taylor et al., 1998; Paparella et al., 2015). In a process termed
‘seed priming’, seeds are held in suboptimal conditions for
extended periods to repress germination (Finch-Savage et al.,
2004). Following the release of the seeds from this inhibitory treat-
ment, the resulting germination profile of the seeds is more uni-
form. The mechanisms by which priming acts remain poorly
understood, with protocols largely focusing on the efficacy of treat-
ments rather than the mechanisms underpinning them. This limits
the potential to enhance seed quality using these approaches.

Residual dormancy represents an obstacle to germination uni-
formity, and priming treatments can relieve seeds of this intrinsic
block to germination. One method to eliminate dormancy in tem-
perate seeds, including Arabidopsis, is to apply a low temperature
treatment, termed ‘stratification’ (Yamauchi et al., 2004).
Widespread gene expression changes are associated with this
low temperature response, but it remains unclear where these
are located within the context of the multi-cellular embryo.

In this study we examined the spatiotemporal gene expression
events underpinning the seed-to-seedling transition in Arabidopsis.
We then compared these dynamic changes with those that occur
in a seed that has been subjected to dormancy-relieving low tem-
perature, in an effort to provide insight into the mechanism by
which this germination-enhancing treatment is acting within seeds.

Materials and methods

Plant growth conditions

All plants in this study are in the Columbia background of
Arabidopsis, and were grown in environmentally controlled cabi-
nets, using 16 h light (23°C) and 8 h dark at 22°C. Seeds were col-
lected when plants had stopped flowering, and placed in glassine
bags for 4 weeks to reduce primary dormancy. Seeds were then
cleaned by passing dried plant material through a fine mesh,
and seeds were collected for use in subsequent experiments.

Germination assays

Germination of Arabidopsis thaliana seeds was conducted by plat-
ing 30 seeds in triplicate. Seeds were scored for radicle emergence

(germination) every 4 h until 100% germination was reached. All
seeds were on sterilized with 10% bleach and germinated on ½
MS 0.8% (w/v) agar plates in a growth room conditions with a
16 h light/8 h dark photoperiod at 22°C.

Cold treatment protocol

Arabidopsis thaliana seeds were cold treated as described previ-
ously (Sano et al., 2017). Following 3 days of incubation at 4°C
in the dark, seeds were transferred to 22°C in the light for 12 h
before being dried. Seeds were dried by placing seeds between
two layers or filter paper for 24 h. Reimbibition of seeds was
done by plating them on ½ MS 0.8% (w/v) agar plates.

Generation of reporter constructs

Reporter constructs for EXPANSIN genes were generated using 2
kb of sequence upstream of the ATG start codon for each gene as
previously described (Bassel et al., 2014). Other reporter con-
structs come from previous publications, including XTH18 and
XTH19 (Vissenberg et al., 2005), GID1A::GID1A-GUS and
GID1C::GID1C-GUS translational fusions (Suzuki et al., 2009),
GA3ox1::GUS and GA3ox2::GUS reporters (Hu et al., 2008),
SCL3::GUS (Zhang et al., 2011), AAO3::AAO3-GUS and ABA2::
ABA2-GUS (Seo et al., 2006), and RAB18::GUS (Ghassemian
et al., 2000).

GUS histochemical staining

Arabidopsis thaliana embryos were dissected from seeds using a
scalpel and forceps using a Leica SD6 binocular microscope.
Embryos were stained in 5-bromo-4-chloro-3-indolyl-beta-
D-glucuronic acid, cyclohexylammonium salt (X-Gluc) solution
with 0.1 M sodium phosphate buffer (pH 7.0), 0.1% Triton
X-100 and 2 mM X-Gluc (Sigma). Embryos were stained at
37°C until the blue substrate became visible, or for 24 h.
Samples were fixed in a 3:1 ethanol/acetic acid, 500:1 DMSO,
1% Tween 20 fixative solution for 24 h and cleared in a chloral
hydrate solution until embryos were clear for imaging. Embryos
were imaged using a Leica DM500 light microscope.

Results

Cold treatment of Arabidopsis seeds

The impact of cold treatment on the speed of germination in
Arabidopsis seeds was investigated by imbibing seeds in the
dark at 4°C for 3 days. Seeds were then transferred to 22°C in
the light for 12 h before being dried, then reimbibed. This proto-
col was selected based on its inclusion of a low temperature treat-
ment and increase in the speed at which Arabidopsis seeds
germinate (Sano et al., 2017). Using both the Col and Ler eco-
types, we confirmed that the speed at which germination is com-
pleted is reduced following this process (Fig. 1).

Visualizing molecular dynamics within germinating
Arabidopsis embryos

Underpinning the transition from seed to seedling is a sequence
of dynamic molecular events that unfold with the germinating
embryo. These dynamic gene expression and epigenetic changes
have been characterized previously on a genome-wide scale
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(Nakabayashi et al., 2005; Dekkers et al., 2013; Narsai et al., 2017).
We sought to build upon this work by investigating the spatio-
temporal dynamics of candidate genes using reporter constructs
and light microscopy. The visualization of key reporters across
the developmental sequence from seed to seedling enables the
dynamic processes underpinning this transition to be understood.
Comparing the expression pattern of these reporters in seeds
across the cold treatment process may therefore provide insight
into the stage at which the treatment is arresting this dynamic
developmental programme, or associated changes in the molecu-
lar programme.

Three major classes of reporter were selected. The first
represent genes that encode proteins targeted to the cell wall,
and promote cell expansion (Cosgrove, 2005). The other two
classes represent genes and proteins associated with ABA and
GA synthesis, perception and response. The optical heterogeneity

Fig. 2. Spatial and temporal dynamics of the GID1A::GID1A-GUS reporter during the seed-to-seedling transition in Arabidopsis. GID1A protein abundance in the
germinating embryo at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) just testa ruptured (JTR), (G) late testa rupture (STR), and germinated seedlings
just after the completion of germination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of GID1A::
GID1A-GUS activity in an embryo following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibi-
tion. Black bars indicate the scale in each image.

Fig. 1. Germination percentage of primed and unprimed Col-0 and Ler seeds at 22°C.
Values are mean germination (%), and error bars are SE (n = 3). HAI, Hours after
imbibition.
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of mature Arabidopsis embryos makes it not possible to visualize
fluorescent proteins deep within samples (Moreno, 2006). In
order to achieve this, samples can be clarified and the
β-glucuronidase (GUS) reporter (Jefferson, 1989) observed
throughout all cells of the tissue (Truernit et al., 2008). We
made use of this system to examine the spatial and temporal
changes that occur in germinating Arabidopsis seeds.

GA synthesis and signalling during the seed-to-seedling
transition

GA is required for the induction of germination of intact
Arabidopsis seeds (Koornneef and Van der Veen, 1980). The pat-
terns of gene expression associated with this induction of GA syn-
thesis show cell type-specific profiles (Yamaguchi et al., 2001;
Ogawa et al., 2003), which are modulated by cold temperatures
(Yamauchi et al., 2004) and light (Yamaguchi et al., 2001). This

in turn leads to GA responses that act to promote downstream
cell wall-associated gene expression in seeds (Cao et al., 2006).
Central to this induction are the GIBBERELLIN INSENSITIVE
DWARF (GID) receptors (Ueguchi-Tanaka et al., 2005), DELLA
proteins (Lee et al., 2002) and the SCARECROW-LIKE3 (SCL3)
transcription factor which controls germination responses
(Zhang et al., 2011). GUS reporters for GA-synthesis, -signalling
and -response components were examined to understand the
spatiotemporal events underpinning this hormone response that
stimulates the germination process.

The hormone GA is perceived by the GID1 receptors
(Ueguchi-Tanaka et al., 2005). The presence of GID1A or
GID1C proteins is a primary requirement for a cell to be able to
respond to this hormone. We examined the distribution of these
receptors using GUS translational fusions (Gallego-Giraldo et al.,
2014). During the germination process, both of these proteins
were broadly distributed across the embryo, with a slight bias

Fig. 3. Spatial and temporal dynamics of the GID1C::GID1C-GUS reporter during the seed-to-seedling transition in Arabidopsis. GID1C protein abundance in the
germinating embryo at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) early testa rupture, (G) late testa rupture, and germinated seedlings just after
the completion of germination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of GID1C::GID1C-GUS activ-
ity in an embryo following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibition. Black bars
indicate the scale in each image.
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towards the axis (Figs 2 and 3). Following 1 day of cold treatment
in the dark at 4°C, both of these proteins became enriched to the
vascular cells of the embryo (Figs 2L and 3L). The localization per-
sisted until 3 days in the cold at 4°C and in the light at 22°C for a
further 12 h (Figs 2M–N and 3M–N). Dehydration and rehydra-
tion of seeds did not alter the localization of GA receptors to the
vasculature (Figs 2O and 3O). Cold treatment, therefore, altered
the cellular site of perception of the germination-stimulating hor-
mone GA from across the embryo to principally within the
vasculature.

The SCL3::GUS reporter acts as a useful proxy to understand the
cellular sites where GA responses are occurring (Zhang et al.,
2011). Activity of this reporter is enriched in the radicle during
the early stages of seed germination (Fig. 4A–E) and progressively
moves along the hypocotyl and into the cotyledons until the com-
pletion of germination (Fig. 4F–H). Following germination, SCL3::
GUS activity is enriched in the root (Fig. 4I–K), and presumably in

the endodermis where it has been reported previously to be present
(Zhang et al., 2011). SCL3::GUS activity was enriched within the
vasculature from the earliest stage of cold treatment sampled
until the rehydration of seeds (Fig. 5L–O). GA response as indi-
cated by this reporter therefore closely followed the pattern of
GA perception indicated by the GID1A and GID1C reporters.

The final step and rate-limiting of GA synthesis is catalysed by
the enzyme GIBBERELLIN 3 β-HYDROXYLASE (GA3ox)
(Olszewski et al., 2002). Examination of the GA3ox1::GUS pro-
moter reporter (Mitchum et al., 2006) indicated a broad initial
induction across the embryo radicle, followed by movement into
the hypocotyl as germination progresses (Supplementary
Fig. S1A–G). In response to cold, a broad domain of activity of
this promoter was observed across the embryo (Supplementary
Fig. S1L–N). This GA-synthesis promoter therefore does not
become enriched within the vasculature as do the perception
and response components.

Fig. 4. Spatial and temporal dynamics of the SCL3::GUS reporter during the seed to seedling transition in Arabidopsis. Promoter activity in the germinating embryo
at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) early testa rupture, (G) late testa rupture, and germinated seedlings just after the completion of ger-
mination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of SCL3::GUS promoter activity in an embryo
following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibition. Black bars indicate the scale
in each image.
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Cell growth-associated gene expression during the
seed-to-seedling transition

Gene expression for enzymes that promote cell wall weakening
act as a proxy to understand which cells are having their
growth promoted (Cosgrove, 2005). These downstream targets
of the germination process have been demonstrated to play a
regulatory role in the control of this transition (Lü et al., 2013).
Proteins encoded by EXPANSIN (EXPA) and XYLOGLUCAN
ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes pro-
mote cell expansion in Arabidopsis cells (Vissenberg et al.,
2005). We examined the activity of the promoters encoding mem-
bers of the EXPA and XTH multigene families that are condition-
ally unregulated in response to the induction of the germination
program (Nakabayashi et al., 2005; Bassel et al., 2008; Dekkers
et al., 2013).

The spatiotemporal patterns of gene expression associated with
growth-promoting cell wall modifying gene expression may serve

as a proxy to understand spatial control of cell expansion
(Cosgrove, 2005). A series of expansin genes are induced in ger-
minating Arabidopsis embryos (Nakabayashi et al., 2005) and
promoter-GUS reporters to these genes have been generated pre-
viously (Bassel et al., 2014; Stamm et al., 2017). These lines were
examined using light microscopy over the time course of seed ger-
mination and early seedling establishment to explore the genetic
control of cell expansion. EXPA1::GUS is first induced in cells
of the embryonic radicle, and spreads progressively up the axis
and into the cotyledons during germination (Fig. 5A–F).
Following germination, promoter activity is increasingly focused
to the root tip and cotyledons, being excluded from the majority
of the root and hypocotyl (Fig. 5G–K).

During cold treatment, the EXPA1::GUS promoter becomes
enriched within the vascular cells of the embryo. This follows
the pattern of upstream GA perception and response (Figs 2–4).
Following the cold exposure, the spatiotemporal pattern observed

Fig. 5. Spatial and temporal dynamics of the EXPA1::GUS reporter during the seed-to-seedling transition in Arabidopsis. Promoter activity in the germinating embryo
at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) early testa rupture, (G) late testa rupture, and germinated seedlings just after the completion of ger-
mination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of EXPA1::GUS promoter activity in an embryo
following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibition. Black bars indicate the scale
in each image.
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between 3–6 hours after imbibition (HAI) of regular germination
(Fig. 5B,C). The GA-responsive promoter EXPA1::GUS therefore
follows the vasculature relocalization of gene expression asso-
ciated with stratification. This is, however, not strictly true for
all cell wall remodelling enzyme promoters, and was not observed
for either EXPA15::GUS (Supplementary Fig. S2) or XTH19::GUS
(Supplementary Fig. S3).

ABA synthesis and signalling during the seed-to-seedling
transition

ABA plays a central role in the control of seed dormancy, and in
mediating stress responses, limiting the germination of non-
dormant seeds (Kushiro et al., 2004). We examined the expression

of reporters associated with ABA synthesis and response over the
time course of germination and compared this with the pattern in
cold-treated seeds to determine at which stage low temperature
arrests the ABA programme.

The final step of ABA synthesis is catalysed by the enzyme
ALDEHYDE OXIDASE 3 (AAO3) (Seo et al., 2006). The distribu-
tion of this protein is principally localized to the embryo axis dur-
ing germination (Fig. 6A–G). During the early stages of cold
treatment, the protein becomes enriched in the vasculature
(Fig. 6L), where it becomes progressively less abundant. A similar
pattern of ABA synthesis protein redistribution is with the
ABA-synthesis protein ABA DEFICIENT 2 (ABA2), which cata-
lyses the penultimate step in hormone synthesis. During the
early stages of germination, the protein is most abundant in the

Fig. 6. Spatial and temporal dynamics of the AAO3::AAO3-GUS reporter during the seed to seedling transition in Arabidopsis. AAO3 protein abundance in the
germinating embryo at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) early testa rupture, (G) late testa rupture, and germinated seedlings just after
the completion of germination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of AAO3::AAO3-GUS activity
in an embryo following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibition. Black bars
indicate the scale in each image.
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radicle (Fig. 7A–G), yet during low temperature exposure
becomes enriched within the vasculature (Fig. 7L–O). The sites
of ABA synthesis overlap with those of GA perception and
response during and following Arabidopsis seed stratification.

The RESPONSE TO ABA18 (RAB18) promoter has been char-
acterized previously as responsive to ABA, and acts as a useful
proxy to determine where ABA-mediated transcriptional
responses are occurring (Lång and Palva, 1992). Over the early
stages of germination, this reporter is principally concentrated
in the radicle, with some activity present on the outer margins
of the cotyledons (Fig. 8A–D). This pattern continues until the
seed has completed germination (Fig. 8E–H), where it then
becomes focused first in the root of the early seedling (Fig. 8J)
then the lower hypocotyl at a later stage of seedling development
(Fig. 8K). Embryos from seeds that are being stratified at 4°C in
the dark show RAB18::GUS in the vasculature, but this then
changes to a spotty pattern in the axis and cotyledons once

seeds are moved to 22°C in the light (Fig. 8L–O). ABA response
therefore follows a vascular localization, but only at low
temperatures.

Discussion

This study sought to investigate how low germination-stimulating
temperatures impact the spatiotemporal dynamics of GA and
ABA. By characterizing the sequential steps underlying seed ger-
mination for gene expression associated with cell growth, and
hormone synthesis and response, a molecular developmental
chronology was established. This was compared with seeds during
the low temperature treatment to determine whether spatial
changes were invoked by this treatment.

Generally speaking, molecular components and promoter
activities were redistributed to the vascular cells of the embryo
after low temperature treatment. This was observed for

Fig. 7. Spatial and temporal dynamics of the ABA2::ABA2-GUS reporter during the seed to seedling transition in Arabidopsis. ABA2 protein abundance in the ger-
minating embryo at (A) 1 HAI, (B) 3 HAI, (C) 6 HAI, (D) 18 HAI, (E) 24 HAI, (F) early testa rupture, (G) late testa rupture, and germinated seedlings just after the
completion of germination (H), (I) hook stage seedling, (J) recently expanded cotyledons and (K) a fully established seedling. Pattern of ABA2::ABA2-GUS activity
in an embryo following (L) 1 day and (M) 3 days of priming treatment at 4°C in the dark, (N) 12 h at 22°C in the light, and (O) following reimbibition. Black bars
indicate the scale in each image.
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GA-perception, GA-response, cell wall modifying gene expres-
sion, ABA-synthesis and ABA-response-associated genes and
proteins. The reason why this redistribution occurs remains
unclear; however, the ubiquity with which it happens across a
broad range of reporters suggests that placing all components
into a single cell type is consistent.

In primary dormant Arabidopsis seeds, the cells that respond
to each ABA and GA are enriched within the radicle, and sepa-
rated in the vasculature and root cap, respectively (Topham
et al., 2017). This spatial separation endowed the system with
the ability to process alternating temperatures. This ability to pro-
cess changing temperature was lost in models where hormone
responses are contained within the same cell. The spatial reloca-
lization of both ABA- and GA-signalling components to the vas-
culature following cold treatment suggests that this complex
temperature processing capacity is absent. This may be a conse-
quence to residual dormancy being alleviated and this no longer

being needed. This work sheds light on the molecular and cellular
basis of cold-stimulated seed germination, and may provide cellu-
lar targets for genetic manipulation to enhance seed quality.

Supplementary Material. To view Supplementary Material for this article,
please visit: https://doi.org/10.1017/S0960258519000266.
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