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Abstract

Schmidt has shown that if 7 and s are positive integers and there is no positive integer power of r
which is also a positive integer power of s, then there exists an uncountable set of reals which are
normal to base r but not even simply normal to base s. We give a structurally simple proof of this
result.

1980 Mathematics subject classification (Amer. Math. Soc): 10 K 05, 10 K 25.

L. Introduction

Forr,s € Z*, we write r ~ s if there exist m, n € Z* with r* = s™, otherwise
r = s. (As subsequently, weput Z* = {1,2,...},Z={0, =1, £2,...}.) We
have the following well-known results:

THEOREM A. Assume r ~ s. Then any real normal to base r is normal to base s.

THEOREM B. If r ~ s, then the set of reals which are normal to base r but not
even simply normal to base s has the cardinality of the reals.

This theorem has been established by Schmidt (1960). Theorem B is also
established independently by Cassels (1959) for the case s = 3. Part A is trivial

and the treatments of Schmidt and Cassels of the non-trivial Part B utilise
chains of number-theoretic lemmas. As noted by Pelling (1980), no simple proof

© Copyright Australian Mathematical Society 1982
79

https://doi.org/10.1017/51446788700024423 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700024423

80 C. E. M. Pearce and M. S. Keane [2]

appears to exist. Theorem B admits an equivalent formulation in terms of weak
convergence of measures. In this paper, by combining a version of a theorem of
Serfling (1970) on almost sure convergence with two elementary number-theo-
retic lemmas of Schmidt we give a short and structurally simple proof of the
proposition. Schmidt’s proofs for Theorem A and these two lemmas are short,
self-contained and do not involve his other lemmas.

Consider the set £ C [0, 1] of points x with s-adic expansions

o0
x= X e(s—1)s?, ¢€{01).
J=1
The set E consists of an uncountable collection of points which are clearly not
even simply normal to base s if s > 2. Theorem B is established for s > 2 if we
can show that £ has an uncountable subset of points which are normal to base r.
Suppose we define a map V from E onto [0, 1] by Vx = y, where

2
y =2 27
J=1
We note that this map is well-defined even thought a point with terminating
s-adic expansion has an alternative non-terminating s-adic representation.
Through the map V Lebesgue measure A and the Borel o-field on [0, 1] induce
a measure p carried by E and an associated o-field 6 .
Let 8, denote the measure concentrated at x and 7 the operator T: [0, 1) -
[0, 1) defined by
Tx = rx (mod 1), x €[0, 1).

To establish Theorem B it suffices to show for r ~ s that except for a p-null
subset of E, points x of E have the sequence (x, Tx, T, ...) uniformly
distributed on [0, 1), that is

1 n—1
- > 874 —A weakly almost everywhere ( )
k=0
by Weyl’s criterion (see Cassels (1957), Chapter 4).
A necessary and sufficient condition for this to hold is that for each / €
Z \ {0} we have

lll
w2

—1
AT*x) - f fd\  almost everywhere ( )
-0

[0.1)
where

J(x) = exp(2milx),
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or equivalently that

n-1

1) —1'; > X, —»0 almost everywhere ( ),
k=0

where

) X, (x) = exp(2milr*x).

We shall derive the stronger

THEOREM 1. Suppose r ~ s with s > 6. For X, defined by (2), there exists an 0,
0 <7n < 1, such that
n—1

3) n > X, -0 almost everywhere ().
k=0

By virtue of the foregoing discussion, Theorem 1 has as an immediate
corollary that Theorem B holds for s > 6. The restiction s > 6 may then be
removed easily by an appeal to Theorem A, since s ~ s* and s*¥ > 6 for all
sufficiently large k.

2. Preliminaries to proofs

Suppose (X,);2, is a sequence of random variables on some probability space
(X, B, p) and F,, is the joint distribution function of X,,,, ..., X,4, Then
forc >0,0<8 <1,

(4) g(F,,) =cn*™?
is a trivial functional in the sense of Serfling (1970) for which an inequality of
the form
5) g(F,,) < Kn*(lognlog,n)> (n > 1,a > 0)
is satisfied. A theorem of Serfling (1970) (see also Stout (1974), pp. 204-5)
establishes that if
a+n 2
(6) E ( 2 Xu) ] < g(Fa,n),
i=a+1

we have

n—1
@) n' > X, >0 almost everywhere ().

k=0
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It is easily seen that if (X,) is replaced by a complex-valued sequence defined
on (X, B, p), relation (7) still holds provided (6) is replaced by

at+n 2
J < g(F,,)-

2 X
i=a+1

In fact, given the tighter constraint (4) in place of (5), the proof of Serfling’s

result may be modified to tell us that if

4(n) = n®/(log n)"'~**(l0g, n) 1 *¥/2
for ¢ an arbitrary positive constant, then (8) entails that

8 E

n—1

[a(m)] kZ X, —» 0 almost everywhere (p).
=0

It follows at once that there exists an 7, 0 <% < 1, such that
n—1

n™ > X, >0 almost everywhere ().
k=0

Thus to prove Theorem 1, it suffices to show that for (X,) defined by (2),

a+n

2 X

i=a+1

® E,

2
} <cn*™® foralll € Z\ {0}

for some 8,0 <6 < 1.
The argument is conveniently carried out in terms of the Fourier-Stieltjes
coefficients fi(n) corresponding to the measure p and given by

f(n) = f lexp(—2'm'nx) dp.
0

The set E is of Cantor type and the Fourier-Stieltjes coefficients corresponding
to its natural measure p are well known. We have

(10) ji(n) = (—1)"(277)“1(13l cos[(s — D)an/s"]

(see Zygmund (1959), page 196).
In terms of the Fourier-Stieltjes coefficients,

a+n 2 a+n a+n ) )
EF[ S x ]= S S e - o,
i=a+1 i=a+1 j=a+1

so that by (10) we have

2

a+n n—la+n—i
(11) Ell 2 X |<nt+ta' 3 X |u((r' = 1),
i=g+1 i=] j=a+1
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where

[oe]

(12) u(q) = I cos[(s —~ V)mgr'/s*], g€ Z.

k=1
From (9) and (11), Theorem 1 follows as a consequence of

THEOREM 2. If s > 6, r ~ s, then for each | € Z \ {0} there exists a ¢ > 0,
0 <& < 1such that

n—1a+n—i

(13) SO gl - ) < e,

i=1 jma+1

It is clear from (12) that without loss of generality we may take/ € Z *.
The proof of Theorem 2, which is derived in section 4, utilises three simple
number-theoretic lemmas given in the next section.

3. Number-theoretic notation and lemmas

For m, n € Z*, denote by ord, m the order of m mod n, that is, the smallest
positive integer ¢ such that

m' = 1 (mod n).
Following Schmidt, we use the notation (m), for the “n part” of m, the largest

power of n dividing m, so that for some positive integers k, m’

m=n*m’, (m),=n*  nim.

LEMMA 1. Assume p is a prime with p | r. Then for all positive integers k
ord,« r > ¢\(r, p)pk,

where, as subsequently the notation c,(r, p) is used to denote a constant depending
only on r and p, not on k.

COROLLARY 1. Let n run through a residue system modulo p*. Then at most
cy(r, p) of the numbers r" will fall into the same residue class modulo pk.

COROLLARY 2. For p, r as above and any positive integer n
(r* = 1), < c5(r, p)n.

ProoFs. Lemma 1 and Corollary 1 are Lemma 4 of Schmidt and its corollary,
proved by him (page 666) by elementary number theory.
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For Corollary 2, suppose (r" — 1), = p*. Then r” = 1 (mod p*) and hence
ord,« r|n.
Thus
ord«r <n

from which the result follows from the lemma.

In (12) we may, without loss of generality, replace by the number p; defined
as r’ /(r/),, that is,

(14) r=()p sip-
This gives
(15) u(q) = ki—:il cos[(s - l)'rrqu/s"], q€ Z.

Suppose r, s factorise as
r = pldlpzdz « o o p’:‘l’
S =plelp2ez . e pheh’

where we may assume that never both d; =0, ¢, = 0. The primes p, are so
ordered that e, /d, > e,/d, > - - - > ¢,/d,, and we put ¢;/d, = +o0 if d, = 0.

LEMMA 2. Suppose r < s and q € Z*. If j runs through a complete residue
system modulo s™, then at most c,(r, p)(s/p)"q, of the numbers qp; are in the same
residue class modulo s™. Here p; is defined by (14) and p is the prime p, defined
above.

PrOOF. This is Theorem SA of Schmidt (1960) and is deduced by him (page
667) from Corollary 1 above.

LemMMA 3. If e, f€{0,1,...,5 — 1} and e #f, then |cos[(s — I)m X 0.
ef -+ - ]| < 8 =cos(m/s?).

The proof is elementary.

Let Y be the set of all ordered m-tuples y = (y,,_ys - - - s V1 Vo) With y; €
{0,1,...,s— 1} and let : Z* Uy {0} > Y be the natural projection operator
defined as follows:

If n € Z* U {0} has the representation

n=e+es+es’+---, ¢g€{0,1,...,5s—1},
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in the scale of s, thenn = (e, _,, . . ., ,, ¢;). Further, define
o(n) = card{i: ¢, # ¢, i > 0},
oo(y) = card{i:y; #y,,,,0<i <m—1}.
With this notation we are in a position to establish Theorem 2.

4. Proof of Theorem 2

By definition oy(tv) > o entails o(v) > ¢ for any v € Z* U {0}. From (15)
and Lemma 3, we thus have that oy(7(qp;)) > o implies |u(q)| < 6°. Equation
(15) also gives that |u(g)| < 1 forallj, g € Z* so that

lu(q)l < 0°{1 = H[o = ag(7(qn))]} + H[o — o(7(ap))]
<0° + H[o — oi(1(qp))] foralljeZ*, 0 €Z* u (0},

where H denotes the Heaviside function H(x) = 1(x > 0), 0 otherwise. Hence,

forallo > 0
a+n a+n
nt Y ulg) <8°+ 0t Y H[o — oo('r(qu))].
J=a+1 j=a+l1
By Lemma 2, we have for n = s™ that
a+n
> H[o - oo('r(qu))] < cy(r,5)(s/p)"q, card{y Y: o4(y) < o}
Jj=a+1

[

= el )s/p 2 (™ ot - 1.

j=0
It follows that forn > s™ and e > 0

a+n

nt D |u(q)l < 8° + 2¢r, s)(s/P)7,
Jj=a+1

(16) i 1 ; .
x S (") = sy

j=0
If we choose m = [log, n], the constraint n » s™ is automatically satisfied and
we have (16) holding for all n € Z *. We shall further choose

| «log,n

77" log, 0
with a > 0 small and certainly a < -log, 8 so that ¢ <m. Since s8 =
s cos(m/s?) > 1 for s > 2 we have in any case that & < —log, # implies a < 1.

The normal approximation to the binomial distribution supplies the asymptotic
estimate

(17) 2¢(r, 5)(s/p)"g,®[ - {(1 — B)(s — D)(m — 1)}"/*]
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for the second term on the right hand side of (16), where
[>o]
d(-x) = 27)/? f exp(~12/2) dt ~ x7" exp(-x2/2) for x large,

X

and B can be made as small as we please by taking « sufficiently smali. Hence
the estimate (17) is bounded above by

(18) gycs(r, 5) exp[ (m — 1){log, (s/p) — (1 = B(s — 1)/2)} ],
or,asp > 2, by
(19) 9,¢6(r, 5) exp(R log, n)
for m(n) large and suitable constants cs, ¢;, Where
R =[log, (s/2) — (1 = B)(s — 1)/2]/log, s.
The expression R is strictly monotone decreasing in s for s > 2 and for y > 0
we have R < -1 — y for all sufficiently large s. In fact, if we take 8 <1 —
(2/Mlog, 32 == 0.0098 R is bounded above away from -1 for s > 7.

Thus for s > 7 we can, if B is sufficiently small, replace the upper bound (19)
by

(20) q,cen 1=y

for all n sufficiently large and some y > 0. In fact, for s = 7 we have p = 7 and
arguing directly from the tighter bound (18) we see that (18) may be replaced by
a bound of form (20) in this case also.

Thus for s > 6 and suitable choice of m, o the second term on the right hand
side of (16) can be made less than an expression of the form qpc7n""7 for all
n > 1. Our choice of o also implies 8° =~ n™. Taking these estimates together we
have that if s > 6, then for a > 0 sufficiently small and some y > 0

a+n

P ()] < cgn' ™ + c,q,n7
Jj=a+1l
for all n, ¢ > 1. Hence
n—la+n—i . n—1 -
S 3 (" = DD < I [egln— )T+ (77 = DI,/ (- i)']
i=1 j=a+1 i=1

n—1
<cgn®’ *+¢y D if(n— i)’ (byCorollary 2)
i=1
n—1
<cgn® 4+ con Y, (n— i)

i=1
<cn?® foralln > 1

for 8§ = min (a, v) and some ¢ = ¢(/, r, s). This establishes Theorem 2.
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