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Abstract

Schmidt has shown that if r and s are positive integers and there is no positive integer power of r
which is also a positive integer power of s, then there exists an uncountable set of reals which are
normal to base r but not even simply normal to base s. We give a structurally simple proof of this
result.

1980 Mathematics subject classification (Amer. Math. Soc): 10 K 05, 10 K 25.

I. Introduction

For r , s £ Z + , w e write r ~ s if there exist m, n G Z + with r" = sm, otherwise

r r* s. (As subsequently, we put Z + = (1, 2, . . . }, Z = {0, ± 1, ± 2 , . . . }.) We

have the following well-known results:

THEOREM A. Assume r — s. Then any real normal to base r is normal to base s.

THEOREM B. If r -^ s, then the set of reals which are normal to base r but not

even simply normal to base s has the cardinality of the reals.

This theorem has been established by Schmidt (1960). Theorem B is also

established independently by Cassels (1959) for the case 5 = 3. Part A is trivial

and the treatments of Schmidt and Cassels of the non-trivial Part B utilise

chains of number-theoretic lemmas. As noted by Pelling (1980), no simple proof
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appears to exist. Theorem B admits an equivalent formulation in terms of weak
convergence of measures. In this paper, by combining a version of a theorem of
Serfling (1970) on almost sure convergence with two elementary number-theo-
retic lemmas of Schmidt we give a short and structurally simple proof of the
proposition. Schmidt's proofs for Theorem A and these two lemmas are short,
self-contained and do not involve his other lemmas.

Consider the set E c [0, 1] of points x with j-adic expansions

x=^ej(s-\)s-J, ej £{0, 1}.
j-i

The set E consists of an uncountable collection of points which are clearly not
even simply normal to base s if s > 2. Theorem B is established for s > 2 if we
can show that E has an uncountable subset of points which are normal to base r.

Suppose we define a map V from E onto [0, 1] by Vx = y, where

y-f, ep.

We note that this map is well-defined even thought a point with terminating
j-adic expansion has an alternative non-terminating j-adic representation.

Through the map V Lebesgue measure X and the Borel a-field on [0, 1] induce
a measure ju carried by E and an associated a-field <$.

Let Sx denote the measure concentrated at x and T the operator T: [0, 1) -»
[0, 1) defined by

Tx = rx (mod 1), x G[0, 1).

To establish Theorem B it suffices to show for r ̂  s that except for a /i-null
subset of E, points x of E have the sequence (x, Tx, T2x, . . . ) uniformly
distributed on [0, 1), that is

j n-i

~~ 2 r̂** ~* ^ weakly almost everywhere ( n)
n k=0

by Weyl's criterion (see Cassels (1957), Chapter 4).
A necessary and sufficient condition for this to hold is that for each / e

Z \ {0} we have

I »-i -
"" 2 /(Tkx) —* I fdX almost everywhere (ft)
n k=o J[0, i)

where

fix) = exp(27rilx),
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or equivalently that

<!> ~n

where

(2)

We shall derive the

On normal numbers

2 Xk —* 0 almost everyw]

Xk(x) = exp(2OT/r*x).

stronger

81

THEOREM 1. Suppose r -** s with s > 6. For Xk defined by (2), there exists an TJ,

0 <TJ < I, such that
n-\

(3) AT71 2 ** -* 0 a/woj/ etJery^^^ ( M)-

By virtue of the foregoing discussion, Theorem 1 has as an immediate
corollary that Theorem B holds for s > 6. The restiction s > 6 may then be
removed easily by an appeal to Theorem A, since s — sk and sk > 6 for all
sufficiently large k.

2. Preliminaries to proofs

Suppose (Xn)™_0 is a sequence of random variables on some probability space
(A', %, n) and Fan is the joint distribution function of Xa+X, .. . , Xa+n. Then
fore > 0,0 <S < 1,

(4) g(Fa,n) = cnl~S

is a trivial functional in the sense of Serfling (1970) for which an inequality of
the form

(5) g(Fa,n) < *>i2(log n log2 n)~2 (n > 1, a > 0)

is satisfied. A theorem of Serfling (1970) (see also Stout (1974), pp. 204-5)
establishes that if

( a + n

we have
n - l

(7) «"' ^ Xk^>0 almost everywhere (/x).
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It is easily seen that if (Xn) is replaced by a complex-valued sequence defined
on (X, $ , /i), relation (7) still holds provided (6) is replaced by

(8) 2 x,
a+\

21

In fact, given the tighter constraint (4) in place of (5), the proof of Serfling's
result may be modified to tell us that if

q{n) = ^ ( l o g / i r ' - ^ O o g , * ) - 0 ^ 7 2

for <f> an arbitrary positive constant, then (8) entails that
n - l

[ q(n) ] " ' 2 Xk-*Q almost everywhere ( n).
k = 0

It follows at once that there exists an TJ, 0 < TJ < 1, such that
n-l

n^ 2 Xk —»0 almost everywhere (ju).
*=o

Thus to prove Theorem 1, it suffices to show that for (A )̂ defined by (2),

(9) 2 • < cn2~s for all / E Z \ {0}

for some 5,0 <S < 1.
The argument is conveniently carried out in terms of the Fourier-Stieltjes

coefficients (L(n) corresponding to the measure /i and given by

(/i) = I exp(-2irinx) dp.Jo
The set E is of Cantor type and the Fourier-Stieltjes coefficients corresponding
to its natural measure n are well known. We have

(10)
k~\

- \)m/s"]

(see Zygmund (1959), page 196).
In terms of the Fourier-Stieltjes coefficients,

a + n

so that by (10) we have

(11) 2 x,
i' = a + 1

a+n a+n

i-fl+iy-o+i

n—1 a + n — i
, -l *Ĉ  ^^ I

i - l 7 - f l + l
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where
00

(12) Uj(q) = II cos[(* - l)«gr>/**], ? 6 Z .

From (9) and (11), Theorem 1 follows as a consequence of

THEOREM 2. If S > 6, r r^ S, then for each I e Z \ {0} there exists a c > 0,
0 < S < 1 such that

n—\ a + n — t

(13) 2 2 |«,((r'
1=1j-a+l

It is clear from (12) that without loss of generality we may take I & Z+.
The proof of Theorem 2, which is derived in section 4, utilises three simple

number-theoretic lemmas given in the next section.

3. Number-theoretic notation and lemmas

For m, n G Z + , denote by ordn m the order of m mod n, that is, the smallest
positive integer / such that

m' = 1 (mod n).

Following Schmidt, we use the notation (m)n for the "n part" of m, the largest
power of n dividing m, so that for some positive integers k, rri

m = nkm', (m)n = nk, n\m'.

LEMMA 1. Assume p is a prime with p \ r. Then for all positive integers k

ordptr >cl(r,p)pk,

where, as subsequently the notation cx(r,p) is used to denote a constant depending
only on r and p, not on k.

COROLLARY 1. Let n run through a residue system modulo pk. Then at most
c2(r,p) of the numbers r" will fall into the same residue class modulo pk.

COROLLARY 2. For p, r as above and any positive integer n

(rn - l)p < c3(r,p)n.

PROOFS. Lemma 1 and Corollary 1 are Lemma 4 of Schmidt and its corollary,
proved by him (page 666) by elementary number theory.
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For Corollary 2, suppose (r" — l)p = pk. Then r" = 1 (mod/>*) and hence

Thus

'P

r\n.

ordp* r < n

from which the result follows from the lemma.

In (12) we may, without loss of generality, replace r' by the number pj defined
as rJ'/(r'X, that is,

(14) n-Wfy s\Pj.
This gives

(15) Uj(q) = II cos[(j - \)irqpj/sk], q £ Z.

Suppose r, s factorise as

r=pfp£- • -pf,
S=PVP?- • • p?,

where we may assume that never both a) = 0, e, = 0. The primes pt are so
ordered that el/dl > e2/d2 > • • • > eh/dh, and we put e , /4 = +oo if ^ = 0.

LEMMA 2. Suppose r o^ s and q e Z + . If j runs through a complete residue
system modulo sm, then at most c4(r, p\s/p)mqp of the numbers qpj are in the same
residue class modulo sm. Here pj is defined by (14) and p is the prime px defined
above.

PROOF. This is Theorem 5A of Schmidt (1960) and is deduced by him (page
667) from Corollary 1 above.

LEMMA 3. / / e, f E {0, 1, . . . , 5 - 1} and e ¥=f, then \cos[(s - l)ir X 0.
ef • • • ]| < 9 = cos(n/s2).

The proof is elementary.
Let Y be the set of all ordered m-tuples y = {ym-\,. • • ,y\,y^ with yt G

(0, 1, . . . , s — 1} and let T: Z + u {0} -» Y be the natural projection operator
defined as follows:

If n G Z + u {0} has the representation

n = e0 + e,5 + e2s
2 + • • • , etf E {0, 1, . . . , s - 1},
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in the scale of s, then rn = (em_l,. . . ,ex, e0). Further, define

a(n) = card{/: e, ¥=ei+l, i > 0},

°o(>0 = card{i: y, ¥=yi+l, 0 < / < m - 1}.

With this notation we are in a position to establish Theorem 2.

4. Proof of Theorem 2

By definition ao(rv) > a entails a(v) > o for any c £ Z + u {0}. F r o m (15)

and Lemma 3, we thus have that o0(T(qpj)) > a implies \uj(q)\ < 9". Equation

(15) also gives that \uj(q)\ < 1 for ally, q G Z + so that

\uj(q)\ <9'{l- H[a - ao(r(qPj))]} + H[a - ao(r(qPj))]

<9° + H[a - o0(T(qPj))] for ally G Z + , a e Z + u {0},

where H denotes the Heaviside function H(x) = l(x > 0), 0 otherwise. Hence,
for all a > 0

a+n a+n
""' 2 \uj(q)\ < 9° + n~l 2 H[a - o0(T(qPj))].

y-a+l j—a+\

By Lemma 2, we have for n = sm that
a + n
2 / / [a - a^riqpj))] < c4{r, s)(s/p)mqp card{>> Y: ao(y) < a)

j - a + l

J-0

It follows that for n > sm and a > 0

(16)

X if"1,.
7-0\ J

If we choose w = [log^ n], the constraint « > 5m is automatically satisfied and
we have (16) holding for all n e Z + . We shall further choose

« log, n
\ogs9

with a > 0 small and certainly a < -log, 0 so that a < m. Since s0 =
s cos(w/j2) > 1 for j > 2 we have in any case that a < -log, 9 implies a < 1.
The normal approximation to the binomial distribution supplies the asymptotic
estimate

(17) 2c4(r, s)(s/p)mqp<b[- {(1 -
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for the second term on the right hand side of (16), where

&(-x) = (2T7)"1/2 C exp(-r2/2) dt ^ x~ll exp(-x2/2) for x large,

and /? can be made as small as we please by taking a sufficiently small. Hence
the estimate (17) is bounded above by

(18) qc5(r, s) exp[(m - l){loge (s/p) - (1 - j8(* - l)/2)}],

or, asp > 2, by

(19) qpc6(r, s) exp(R log, n)

for m(n) large and suitable constants c5, c6, where

R = [log, (5/2) - (1 - /?)(* - l) /2]/log. *.

The expression /? is strictly monotone decreasing in s for $ > 2 and f or y > 0
we have R < -1 — y for all sufficiently large 5. In fact, if we take p < 1 —
(2/7)loge 32 =; 0.0098 R is bounded above away from -1 for s > 7.

Thus for 5 > 7 we can, if /? is sufficiently small, replace the upper bound (19)
by

(20) qpCfp-1'7

for all n sufficiently large and some y > 0. In fact, for j = 7 we have/> = 7 and
arguing directly from the tighter bound (18) we see that (18) may be replaced by
a bound of form (20) in this case also.

Thus fors>6 and suitable choice of m, a the second term on the right hand
side of (16) can be made less than an expression of the form qpc1n~l~y for all
n > 1. Our choice of a also implies 9" =* /i~". Taking these estimates together we
have that if s > 6, then for a > 0 sufficiently small and some y > 0

a + n

2 \u/q)\ < c^-" + c7qpn-y

for all n, q > 1. Hence

"2 a+i"H(r' - l)/)l < "S [c.(n - if- + c7((r" - 1)/),/(» - 0Y]
1 = 1 j = a+\ i-\

n-\

< c8n
2~a + c9 2 / / (« - 0Y (by Corollary 2)

i-i

n - l

< c8«
2-« + c9n 2 (« - 'TY

1 - 1

< c/i2"8 for all n > 1

for S = min (a, y) and some c = c(/, r, s). This establishes Theorem 2.
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