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Abstract. In this paper we study a perturbed sublinear elliptic problem in �N . In
particular, using variational methods, we establish a result that ensures the existence
of at least three weak solutions.
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1. Introduction. In this paper we are concerned with the following perturbation
problem {−�u = h(x)|u|s−2u + λ f (x, u) in �N

(Pλ)
u ∈ D1,2(�N)

where s ∈ ]1, 2[, N ≥ 3, λ ∈ �+, f : �N × � → � is a Carathéodory function, h ∈
L∞

loc(�
N) ∩ L

2N
2N−s(N−2) (�N) is a function almost everywhere nonnegative in �N such that,

for some set A ⊆ �N of positive measure, ess infA h > 0 and

D1,2(�N) =
{

u ∈ L
2N

N−2 (�N)/∇u ∈ L2(�N)
}

is the completion of

C0(�N) = {u ∈ C(�N) : supp(u) (support of u) is compact}
with respect to the norm

‖u‖ =
(∫

�N
|∇u|2 dx

) 1
2

,

induced by the scalar product

(u, v) =
∫

�N
∇u(x)∇v(x) dx.

Moreover, we assume that the function f satisfies the following conditions.
(a) There exist q ∈ [0, N + 2

N − 2 [, α ∈ Lt(�N) ∩ L∞
loc(�N), where we set t = 2N

N + 2 − q(N − 2) ,

β ∈ L
2N

N+2 (�N) ∩ L∞
loc(�N) such that

|f (x, t)| ≤ α(x)|t|q + β(x),

for a.e. x ∈ �N and all t ∈ �.
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(b) There exist three functions γ ∈ L
N
2 (�N, �+), δ ∈ L

2N
N+2 (�N, �+) and χ ∈

L1(�N, �+) such that

∫ t

0
f (x, s) ds ≤ γ (x)|t|2 + δ(x)|t| + χ (x),

for a.e. x ∈ �N and all t ∈ �.
For each u ∈ D1,2(�N),

E(u) = 1
2

∫
�N

|∇u(x)|2dx − 1
s

∫
�N

h(x)|u(x)|s − λ

∫
�N

(∫ u(x)

0
f (x, s) ds

)
dx

is the energy functional relative to problem (Pλ). In proving our result, we will show
that the above assumptions on h and f ensure, in particular, that E is continuously
differentiable on D1,2(�N). Hence the weak solutions of (Pλ) corresponds to the critical
points of E.

Our result is as follows.

THEOREM 1.1. Under the assumptions stated above there exist σ, λ̄ > 0 such that, for
each λ ∈ [0, λ̄[, problem (Pλ) admits at least three distinct solutions in D1,2(�N) whose
norms are not greater than σ .

In the literature, most of the papers that deal with multiple solutions for elliptic
equations on �N consider particular types of nonlinearities as power functions,
convex or concave functions; see for instance [4, 9]. This is due to the lack of
compact embeddings for Sobolev spaces on unbounded domains which, in many cases,
represents the main difficulty in using a variational approach. Such a difficulty is often
overcome by exploiting the particular properties of the nonlinearity as homogeneities
or symmetries.

In this paper, we consider a nonlinearity which is a pertubation of a particular
symmetric sublinear nonlinearity (i.e. h(x)|t|s−2t) by a function f that must satisfy only
the growth conditions (a) and (b). This kind of nonlinearity allows us to study our
problem by means of variational methods and, in particular, to apply a consequence
(Theorem 2.1 in [1]) of a variational principle stated in [6].

The paper is organized into three sections. In Section 2 some preliminary results
are stated and proved. Section 3 contains the proof of Theorem 1.1.

2. Preliminary lemmas. For the reader’s convenience, we begin this section with
the following known result.

LEMMA 2.1. Let {un}n∈� be a sequence weakly converging to u in D1,2(�N). Then, for
p ∈ [1, 2N

N − 2 [ and for any bounded measurable set 	 ⊆ �N, {un|	}n∈� strongly converges
to u|	 in Lp(	).

Proof. Consider {un}n∈� weakly converging to u in D1,2(�N). We note that un → u
weakly in L

2N
N−2 (RN). Hence, in particular, for every v ∈ C∞

0 (�N), one has

lim
n→∞

∫
�N

un(x)v(x) dx =
∫

RN
u(x)v(x) dx. (2.1)
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Fix R > 0, p ∈ [1, 2N
N − 2 [ and set BR = {x ∈ RN : |x| ≤ R}. We prove that un → u strongly

in Lp(BR).
Indeed, denote by u|BR the restriction of u to BR and suppose that {un} does not

converge to u|BR weakly in W 1,2(BR). Since {un} is norm bounded in W 1,2(BR), there
exist a subsequence {unk} and ū ∈ W 1,2(BR), with ū �= u|BR , such that unk → ū weakly
in W 1,2(BR). By the Rellich-Kondrachov’s Theorem, unk → ū strongly in Lp(BR).

Taking into account (2.1), we obtain∫
BR

u(x)v(x) dx = lim
k→∞

∫
BR

unk (x)v(x) dx =
∫

BR

ū(x)v(x) dx,

for every v ∈ C∞
0 (BR). Then u(x) = ū(x), for almost all x ∈ BR, against the fact that

ū �= u|BR . Hence {un} weakly converges to u|BR in W 1,2(BR). Applying the Rellich-
Kondrachov’s Theorem again, we conclude that {un} strongly converges to u in
Lp(BR). �

LEMMA 2.2. Condition (a) implies that the functional


 : u →
∫

�N

(∫ u(x)

0
f (x, t) dt

)
dx,

is well-defined, strongly continuous and Gateâux differentiable in D1,2(�N) with compact
Gateâux derivative.

Proof. By standard arguments, 
 is proved to be well-defined, strongly continuous
and Gateâux differentiable in D1,2(�N) and so we limit ourselves to prove that the
Gateâux derivative 
′ is compact.

Let {un} be a bounded sequence in D1,2(�N). There exist ū ∈ D1,2(�N) and a
subsequence, which we denote by {un} again, weakly converging to ū in D1,2(�N). Now,
fix ε > 0 arbitrarily and choose M > 0 such that

‖α‖Lt(|x|>M) < ε, ‖β‖
L

2N
N+2 (|x|>M)

< ε.

For every v ∈ H with ‖v‖ = 1 and n ∈ �, one has

|(
(un) − 
(ū))(v)| ≤
∣∣∣∣
∫

|x|≤M
( f (x, un(x)) − f (x, ū(x)))v(x) dx

∣∣∣∣
+

∣∣∣∣
∫

|x|>M
f (x, un(x)) − f (x, ū(x)))v(x) dx

∣∣∣∣
≤C1

(∫
|x|≤M

| f (x, un(x)) − f (x, ū(x))| 2N
N+2

) N+2
2N

+ C2‖α‖
N+2
2N

Lt(|x|>M) + C3‖β‖
L

2N
N+2 (|x|>M)

,

where C1, C2, C3 are suitable positive constants. By Lemma 2.1, {un} converges strongly
in Lq+1(|x| ≤ M), so that f (·, un(·)) → f (·, ū(·)) strongly in L

2N
N+2 (|x| ≤ M). Hence, there

exists ν ∈ � such that, for n > ν, one has

‖
(un) − 
(ū)‖H∗ = sup
v∈H,‖v‖=1

|(
(un) − 
(ū))(v)| ≤ C1ε + C2ε
N+2
2N + C3ε.

This proves that 
′ is a compact operator. �
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LEMMA 2.3. Let 
 : D1,2(�N) → � be defined by


(u) = 1
2
‖u‖2 − 1

s

∫
�N

h(x)|u(x)|s dx.

There exists a unique u0 ∈ D1,2(�N) ∩ C(�N), with u0 > 0 in �N, such that


(u0) = inf
u∈D1,2(�N )


(u). (2.2)

Proof. By Lemma 2.2, the functional

u →
∫

�N
h(x)|u(x)|s dx

has compact Gateâux derivative in D1,2(�N). Hence, in particular, it follows that 
 is
weakly sequentially lower semicontinuous. Since 
 is also coercive, 
(u) = 
(|u|) and
infD1,2(�N ) 
 < 0, there exists u0 ∈ D1,2(�N)\{0} such that


(u0) = inf
D1,2(�N )


, (2.3)

with u0 ≥ 0 almost everywhere in �N . Consequently u0 is a weak solution of the
problem {−�u = h(x)|u|s−2u in �N,

(P0)
u ∈ D1,2(�N).

From Lemma B.3 in [8] and Theorem 8.22 in [3], it follows that u0 ∈ C(�N). Moreover
the strong maximum principle ensures that u0(x) > 0, for all x ∈ �N .

Now, for each R > 0, set BR = {x ∈ �N : |x| < R} and let uR ∈ W 1,2
0 (BR) such that


(uR) = inf
u∈W 1,2

0 (BR)

(u),

and uR ≥ 0 a.e. in BR. The function uR exists and is unique. Also the net {uR}R>0 is
increasing with respect to R; see [2]. Moreover, by definition, the net {
(uR)} is not
increasing with respect to R and is bounded below by infD1,2(�N ) 
. We deduce that

lim
R→+∞


(uR) ≥ inf
u∈D1,2(�N )


(u).

Since 
 is coercive, there exist a subsequence {Rn}, with limn→∞ Rn = +∞, and ũ ∈
D1,2(�N) such that uRn → ũ weakly in D1,2(�N) as n → ∞. Hence, we exploit the
sequentially weak lower semicontinuity of 
 and obtain


(ũ) ≤ lim
n→∞ 


(
uRn

) = lim
R→+∞


(uR).

Furthermore, by Lemma 2.1 and the monotony of {uR}R>0, we also have that

lim
R→+∞

uR(x) = lim
n→∞ uRn (x) = ũ(x),

for a.e. x ∈ �N .
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We claim that 
(ũ) = infD1,2(�N ) 
. Suppose that


(ũ) > inf
D1,2(�N )


.

Consequently, there would exist v ∈ C∞
0 (�N) such that


(v) < 
(ũ). (2.4)

On the other hand, if we choose R̄ > 0 such that supp(v) ⊆ BR̄, we also have


(v) ≥ inf
u∈W 1,2

0 (BR̄)

(u) = 
(uR̄) ≥ 
(ũ),

contradicting (2.4).
Let ū ∈ D1,2(�N) be such that


(ū) = inf
D1,2(�N )


,

with ū ≥ 0 a.e. in �N . It turns out that ū = ũ.
Indeed, for each R > 0, ū is a supersolution for the problem{−�u = h(x)us−1 in BR

u = 0 on ∂BR,

so that uR ≤ ū a.e. in �N . Passing to the limit as R → +∞, we find that

ũ(x) ≤ ū(x), (2.5)

for a.e. x ∈ �N . From the fact that ũ and ū are, in particular, critical points of 
 such
that 
(ũ) = 
(ū), it follows that∫

�N
h(x)[(ũ(x))s − (ū(x))s] dx = 0. (2.6)

Consequently, from (2.5) and (2.6), ũ(x) = ū(x) for a.e. x ∈ �N . �
LEMMA 2.4. Let 
 and u0 be as in Lemma 2.3. For every u ∈ D1,2(�N), the real

function

r → inf
‖w‖=r


(u + w)

is continuous in �+. Moreover, there exists r0 > 0 such that, for every 0 < r < r0, we
have


(±u0) < inf
‖v‖=r


(v ± u0).

Proof. Fix u ∈ D1,2(�N). For each r > 0, one has

inf
‖v‖=r


(u + v) = 1
2

r2 + 1
2
‖u‖2 − sup

‖v‖=r

(
(u, v) − 1

s

∫
�N

h(x)|u(x) + v(x)|s dx
)

.
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Hence the continuity follows from the weak sequential continuity of the function

v → (u, v) − 1
s

∫
�N

h(x)|u(x) + v(x)|s dx.

See Lemma 6 of [7].
Let r0 = 2‖u0‖ and suppose that, for some 0 < r̄ < r0, we have


(u0) = inf
‖v‖=r̄


(u0 + v). (2.7)

Then, we can find a sequence {uk} in D1,2(�N) with ‖uk‖ = r̄, for all k ∈ �, such that

lim
k→+∞


(u0 + uk) = 
(u0).

Up to a subsequence, we can suppose that uk → ū weakly in H. In particular, we
have ‖ū‖ ≤ r̄,

(uk, u0) =
∫

	

∇uk(x)∇u0(x) dx →
∫

�N
∇ū(x)∇u0(x) dx = (ū, u0) (2.8)

and ∫
�N

h(x)|uk(x) + u0(x)|s dx →
∫

�N
h(x)|ū(x) + u0(x)|s dx, (2.9)

as k → ∞.
Consequently, from (2.2), (2.7), (2.8) and (2.9), one has

inf
D1,2(�N )


 = 
(u0) = lim
k→+∞


(u0 + uk)

= lim
k→+∞

(
1
2
‖u0‖2 + 1

2
r̄2 + (uk, u0) − 1

s

∫
�N

h(x)|uk(x) + u0(x)|s dx
)

= 1
2
‖u0‖2 + 1

2
r̄2 + (ū, u0) − 1

s

∫
�N

h(x)|ū(x) + u0(x)|s dx

≥ 1
2
‖u0‖2 + 1

2
‖ū‖2 + (ū, u0) − 1

s

∫
�N

h(x)|ū(x) + u0(x)|s dx = 
(ū + u0).

From this we deduce that ū + u0 as well as |ū + u0| are global minima for 
 and that
‖ū‖ = r̄. Using the same arguments to prove regularity and positivity of u0, we have
|ū + u0|, ū + u0 ∈ C(�N) and |ū(x) + u0(x)| > 0, for all x ∈ �N . Note that ū ∈ C(�N),
being ū = (ū + u0) − u0. By applying Lemma 2.3, we obtain

|ū(x) + u0(x)| = u0(x), (2.10)

for all x ∈ �N . At this point, put

A = {x ∈ �N : ū(x) = 0}

and

B = {x ∈ �N : ū(x) = −2u0(x)}.
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By (2.10), A ∪ B = �N and, because u0 > 0 in �N , A ∩ B = ∅. Moreover, the continuity
of ū, u0, implies that A and B are closed sets in �N . Since �N is connected, it results
that A = �N or B = �N .

In the former case, it should be ū = 0 against the fact that ‖ū‖ = r̄ > 0. In the
latter case, it should be ū = −2u0 and hence ‖ū‖ = 2‖u0‖ contrary to r̄ < 2‖u0‖.

Taking into account that 
(−u0) = 
(u0), the same conclusion holds with −u0 in
place of u0, as can be easily checked. �

3. Proof of Theorem 1.1. Consider the functionals 
,
 : D1,2(�N) → � defined
as follows:


(u) = 1
2
‖u‖2 − 1

s

∫
�N

h(x)|u(x)|s dx,


(u) = −
∫

�N

(∫ u(x)

0
f (x, t) dt

)
dx.

By Lemma 2.2, it follows that 
 is weakly sequentially continuous and 
 is weakly
sequentially lower semicontinuous in D1,2(�N). By condition (b), it also follows that
there exists λ1 > 0 such that, for every λ ∈ [0, λ1[, the functional 
 + λ
 is coercive.

Put x1 = u0, x2 = −u0 and fix 0 < r̄ < min{‖u0‖, r0}. By Lemma 2.4 it follows
that the hypotheses of Theorem 2.1 in [1] are satisfied and so there exists 0 < λ̄ < λ1

such that, for every λ ∈]0, λ̄[, 
 + λ
 admits two distinct local minima u(λ)
1 , u(λ)

2 ∈ H,
with ‖xi − u(λ)

i ‖ < r̄, for i = 1, 2. Fix λ ∈ [0, λ̄[. Since 
 + λ
 satisfies the Palais-Smale
condition (see Example 38.25 in [10]), Theorem 1 of [5] implies the existence of a third
critical point u(λ)

3 , distinct from u(λ)
1 and u(λ)

2 , that satisfies



(
u(λ)

3

) + λ

(
u(λ)

3

) = φ(λ),

where

φ(λ) = inf
ψ∈�λ

sup
t∈[0,1]

(
(ψ(t)) + λ
(ψ(t))),

and

�λ =
{
ψ ∈ C([0, 1], H) : ψ(0) = u(λ)

1 and ψ(1) = u(λ)
2

}
.

We note that, for every λ ∈ [0, λ̄[, the function ψλ : t ∈ [0, 1] → u(λ)
1 + (1 − t)u(λ)

2
belongs to �λ. Moreover, it follows that

sup
λ∈[0,λ̄[

sup
t∈[0,1]

‖ψλ(t)‖ ≤ 2(‖u0‖ + r̄).

Exploiting the fact that 
 is the sum of the norm squared and a sequentially
weakly continuous functional and that 
 is sequentially weakly continuous, one has

sup
λ∈[0,λ̄[

φ(λ) ≤ sup
λ∈[0,λ̄[

sup
t∈[0,1]

(
(ψλ(t)) + λ
(ψλ(t)))

≤ sup
‖v‖≤2(‖u0‖+r̄)


(v) + λ̄ sup
‖v‖≤2(‖u0‖+r̄)


(v) < +∞. (3.11)
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At this point, we can prove that supλ∈[0,λ̄[ ‖u(λ)
3 ‖ < ∞. In fact, if

sup
λ∈[0,λ̄[

∥∥u(λ)
3

∥∥ = +∞,

there would exist a bounded sequence {λn} ⊂ [0, λ̄[ such that ‖u(λn)
3 ‖ → +∞, as n → ∞.

Consequently, we should have

lim
n→∞ φ(λn) = lim

n→∞
(



(
u(λn)

3

) + λn

(
u(λn)

3

))
≥ lim

n→∞
(



(
u(λn)

3

) + λ̄ min
{
0,


(
u(λn)

3

)}) = +∞,

contradicting (3.11).
Hence, set

σ = max

{
2(‖u0‖ + r̄), sup

λ∈[0,λ̄[

∥∥u(λ)
3

∥∥}
.

The conclusion follows.
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