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Abstract. In this paper we study a perturbed sublinear elliptic problem in R". In
particular, using variational methods, we establish a result that ensures the existence
of at least three weak solutions.
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1. Introduction. In this paper we are concerned with the following perturbation
problem

—Au = h(xX)|ul*"u+ A f(x, u) in RY
(P3)

u e D'2RY)

where se]l, 2[ N >3, reRy, f:RY xR— R is a Carathéodory function, & €

L (RN) N L¥=0=2 == 1(RY) is a function almost everywhere nonnegative in R" such that,
for some set 4 € RY of positive measure, essinf 4 /# > 0 and

D'YRY) = {u e L¥2(RY)/Vu e L2(RN)}
is the completion of
Co(RY) = {u € C(RY) : supp(u) (support of u) is compact}

with respect to the norm

1

2
||u||=(/ |Vu|2dx> ,
RN

(u,v) = ‘/RN Vu(x)Vu(x) dx.

induced by the scalar product

Moreover, we assume that the function /" satisfies the following conditions.

(a) There exist ¢ € [0, 5[, o« € L'(RY) N Li5,(RY), where we set 7 = x>0,
B e L7 (RY) N L2 (RY) such that

If (e, D] < a(x)|t]? 4 B(x),

fora.e.x e R¥N and all r € R.
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(b) There exist three functions y € L¥(RY,R,), § € L¥»(RY,R,) and x €
L'(RY, R,) such that

/0 16, 8)ds < y (Ol + 8GOl + x (),

fora.e.x € RV and all 7 € R.
For each u € DV2(RV),

u(x)
E(u) = %/RN [Vu(x)|*dx — %/RN h(x)|u(x)|® — k/w ( 5 f(x, s)ds) dx

is the energy functional relative to problem (Py). In proving our result, we will show
that the above assumptions on /4 and f ensure, in particular, that E is continuously
differentiable on D'2(RY). Hence the weak solutions of (P; ) corresponds to the critical
points of E.

Our result is as follows.

THEOREM 1.1. Under the assumptions stated above there exist o, .. > 0 such that, for
each » € [0, X[, problem (P;)) admits at least three distinct solutions in D“*(R") whose
norms are not greater than .

In the literature, most of the papers that deal with multiple solutions for elliptic
equations on R™ consider particular types of nonlinearities as power functions,
convex or concave functions; see for instance [4, 9]. This is due to the lack of
compact embeddings for Sobolev spaces on unbounded domains which, in many cases,
represents the main difficulty in using a variational approach. Such a difficulty is often
overcome by exploiting the particular properties of the nonlinearity as homogeneities
or symmetries.

In this paper, we consider a nonlinearity which is a pertubation of a particular
symmetric sublinear nonlinearity (i.e. 4(x)|¢|*~2¢) by a function f that must satisfy only
the growth conditions (a) and (b). This kind of nonlinearity allows us to study our
problem by means of variational methods and, in particular, to apply a consequence
(Theorem 2.1 in [1]) of a variational principle stated in [6].

The paper is organized into three sections. In Section 2 some preliminary results
are stated and proved. Section 3 contains the proof of Theorem 1.1.

2. Preliminary lemmas. For the reader’s convenience, we begin this section with
the following known result.

LEMMA 2.1. Let {u,},en be a sequence weakly converging to uin D'*(RN). Then, for

pell %[ and for any bounded measurable set Q@ € RY, {tnj@}nen Strongly converges

to ujg in LP(Q).

Proof. Consider {u,},en Weakly converging to u in DV2(RY). We note that u, — u
weakly in L5 (RM). Hence, in particular, for every v € C5°(RY), one has

lim u(x)v(x)dx = / u(x)v(x) dx. 2.1
N RV

n—>o0 Jpi
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FixR>0,pe]l, %[ and set Bg = {x € R" : |x| < R}. We prove that u, — u strongly
in LP(BR).

Indeed, denote by up, the restriction of u to Bg and suppose that {u,} does not
converge to u, weakly in W12(Bg). Since {u,} is norm bounded in W'?(Bg), there
exist a subsequence {u, } and i € W'2(Bg), with & # up,, such that u, — i weakly
in W'2(Bg). By the Rellich-Kondrachov’s Theorem, u,, — i strongly in 1”(Bg).

Taking into account (2.1), we obtain

/ u(x)v(x)dx = lim / Uy, (X)v(x) dx = / u(x)v(x) dx,

BR k— o0 BR BR

for every v € Cg°(Bg). Then u(x) = u(x), for almost all x € Bg, against the fact that
it # up,. Hence {u,} weakly converges to u;p, in W'?(Bg). Applying the Rellich-
Kondrachov’s Theorem again, we conclude that {u,} strongly converges to u in
L?(Bg). g

LEMMA 2.2. Condition (a) implies that the functional
u(x)
d:u— f(x,0)dt ) dx,
rY \Jo

is well-defined, strongly continuous and Gatedux differentiable in D"*(RN) with compact
Gatedux derivative.

Proof. By standard arguments,  is proved to be well-defined, strongly continuous
and Gatedux differentiable in D'>(R") and so we limit ourselves to prove that the
Gateaux derivative @’ is compact.

Let {u,} be a bounded sequence in D'2(RY). There exist it € D"*(R") and a
subsequence, which we denote by {u,} again, weakly converging to i in D">(R"). Now,
fix € > 0 arbitrarily and choose M > 0 such that

ol zeu=ny < € B €.

<
LN+2(|x|>M)

For every v € H with ||[v|| = 1 and n € N, one has

[(®(un) — P@)(V)] =

/ | M(f(x, un(x)) — f (x, u(x)))v(x) dx

+ S un(x)) — f(x, @(x))v(x) dx

|x|>M

SC&(/ Lﬂ&uA@)fﬂxﬁu»ﬁ%>
[x|<=M

N+
2N

I

+ Collall o nny + GBI

N s
N+2(|x|>M)

where Cy, C,, C; are suitable positive constants. By Lemma 2.1, {u,} converges strongly
in L971(|x| < M), so that f(-, u,(-)) — f(-, ii(-)) strongly in L (Jx| < M). Hence, there
exists v € N such that, for n > v, one has
_ _ Nt2
[®(un) — P@llg = sup  [(P(un) — P@)(v)] < Cre + Cre W + Cse.
veH,|v|=1
This proves that @’ is a compact operator. ]
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LEMMA 2.3. Let ¥ : DV2(RY) — R be defined by
I v
WG = 3P = 5 [ o dx.
S JRN

There exists a unique uy € DV>(RY) N C(RY), with uy > 0 in RN, such that

W)= inf V(). 2.2)
ueDL2(RV)

Proof. By Lemma 2.2, the functional
u— / A(x)|u(x)|* dx
RY

has compact Gateaux derivative in D"">(R"). Hence, in particular, it follows that W is
weakly sequentially lower semicontinuous. Since W is also coercive, W(u) = W(|u|) and
infpiagyy ¥ < 0, there exists up € D?(RV)\{0} such that

Wue) = inf W, 2.3)
DLZ(RN)

with up > 0 almost everywhere in RY. Consequently u, is a weak solution of the
problem
—Au = h(x)|ul*u in RV, o)
0
u € DV2(RM).

From Lemma B.3 in [8] and Theorem 8.22 in [3], it follows that uy € C(R"). Moreover
the strong maximum principle ensures that uy(x) > 0, for all x € RV,
Now, foreach R > 0,set Bg = {x € R" : |x| < R}andletuy € W(}‘Z(BR) such that

W(ug) = inf W(w),
ue W, (Bg)

and ug > 0 a.e. in Bg. The function uy exists and is unique. Also the net {ug}g-o is
increasing with respect to R; see [2]. Moreover, by definition, the net {W(ug)} is not
increasing with respect to R and is bounded below by inf pi2@y) W. We deduce that

Iim W(ug)> inf ().
Jim )= inf W

Since W is coercive, there exist a subsequence {R,}, with lim, ., R, = +00, and & €
D'(R") such that ug, — & weakly in D"?>(R") as n — oco. Hence, we exploit the
sequentially weak lower semicontinuity of W and obtain
() < lim lIJ(uR") = lim W(ug).
n—oo R—+00
Furthermore, by Lemma 2.1 and the monotony of {ug} -0, we also have that

lim wug(x) = lim wug, (x) = @(x),
R—+00 n—00

fora.e. x € RV.
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We claim that W (i) = inf pio@yy W. Suppose that

W(iH) > inf W.
DI2RN)

Consequently, there would exist v € C3°(RV) such that
W(v) < W(@). 2.4
On the other hand, if we choose R > 0 such that supp(v) C By, we also have

V()= inf W) =W(ug) = V@),

ueWy*(Bg)

contradicting (2.4).
Let ii € D“*(R") be such that

(i) = inf W,
DI,Z(RN)

with & > 0 a.e. in RY. It turns out that i = .
Indeed, for each R > 0, i is a supersolution for the problem

—Au = h(x)u*"' in Bg
u=20 on dBg,

so that ug < i a.e. in RY. Passing to the limit as R — +oo, we find that
u(x) < u(x), (2.5)

for a.e. x € RY. From the fact that & and @ are, in particular, critical points of ¥ such
that W(z2) = W(&), it follows that

/R )" = (@(x)]dx = 0. (2.6)

Consequently, from (2.5) and (2.6), ii(x) = ii(x) for a.e. x € RV. O

LEMMA 2.4. Let V and ug be as in Lemma 2.3. For every u € DV*(RN), the real
function

r— inf W(u+ w)

lwll=r

is continuous in Ry. Moreover, there exists ro > 0 such that, for every 0 < r < ry, we
have

W(tug) < |inf V(v = up).

[vll=r

Proof. Fix u € D"*(R"). For each r > 0, one has

inf W(u+v)= %rz + %||u||2 — sup ((u, v) — % / h(x)|u(x) + v(x)|° dx).
RN

llvll=r Ilvll=r
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Hence the continuity follows from the weak sequential continuity of the function

v— (4, v) — % /RN h(x)|u(x) + v(x)|° dx.

See Lemma 6 of [7].
Let ro = 2||up|l and suppose that, for some 0 < 7 < ry, we have

W(ug) = H?”l; W(ug + v). 2.7)

Then, we can find a sequence {u;} in D"*(R") with |lux|| = 7, for all k € N, such that
lim W(uo + ur) = WV(uo).
k—+o00

Up to a subsequence, we can suppose that u; — u weakly in A. In particular, we
have ||| <7,

(g, up) = /Q Vu(x)Vug(x) dx — /RN Vii(x)Vuy(x) dx = (@1, ug) (2.8)

and
/RN h(x) ur(x) + up(x)|* dx — /RN h(x)|u(x) + uo(x)|* dx, 2.9

as k — oo.
Consequently, from (2.2), (2.7), (2.8) and (2.9), one has

inf W =Wu)= lim W+ u)
DI2(RN) k0o

. 1 1_ 1 )
= lim (—IIM0||2+ —F + (ug, up) — ~ / h(x) ur(x) + uo(x)| dx)
k—+oo0 \ 2 2 S JrN

1 1 1
“Nuoll* + =7 + (@, up) — - f h(x)|i(x) + uo(x)I* dx
2 2 R} RN

\%

1 1 1
= 2ol + S0l + @ ) — - / B ) + u0(0)|* dx = W(@ + o).
RV

From this we deduce that & + 1 as well as |z + 1| are global minima for ¥ and that
|liz]l = 7. Using the same arguments to prove regularity and positivity of uy, we have
lit + ug|, it + uy € C(RY) and |it(x) + uo(x)| > 0, for all x € RY. Note that i1 € C(RY),
being i = (& + up) — up. By applying Lemma 2.3, we obtain
|u(x) + uo(x)| = uo(x), (2.10)
for all x € RY. At this point, put
A={xeR":iux)=0}

and

B={xeR" :ii(x) = —2uy(x)}.
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By (2.10), A U B = R" and, because uy > 0in RV, 4 N B = . Moreover, the continuity
of i, ug, implies that 4 and B are closed sets in RY. Since RY is connected, it results
that 4 = RN or B=R".

In the former case, it should be # = 0 against the fact that ||u|| =7 > 0. In the

latter case, it should be # = —2u and hence |iZ|| = 2|up|| contrary to 7 < 2|ju]|.
Taking into account that W(—uy) = W (up), the same conclusion holds with —ug in
place of u, as can be easily checked. ]

3. Proof of Theorem 1.1. Consider the functionals ¥, ® : D">(RY) — R defined
as follows:

W(u) = %nuu2 - % /R M)l dx,

u(x)
Dd(u) = _/RN ( ; f(x, l)dl) dx

By Lemma 2.2, it follows that ® is weakly sequentially continuous and W is weakly
sequentially lower semicontinuous in D'?(R"). By condition (b), it also follows that
there exists A; > 0 such that, for every A € [0, A{[, the functional ¥ + A ® is coercive.

Put x; = uy, x, = —up and fix 0 < 7 < min{||uy||, ro}. By Lemma 2.4 it follows
that the hypotheses of Theorem 2.1 in [1] are satisfied and so there exists 0 <A <X
such that, for every A €10, A[, ¥ 4+ A® admits two distinct local minima “1 , u(zx) e H,
with ||x; — ud || <7 fori=1,2.Fix » € [0, A[. Since ¥ + A® satisfies the Palais-Smale
condition (see Example 38.25in [10]), Theorem 1 of [5] implies the existence of a third

critical point u ), distinct from u(“ and u(z’\), that satisfies
( (/\)) + MD( (A)) (L),

where

P(1) = mf sup (‘I’(lﬂ(l))+)»<1>(¢(l)))

T refo,

and

T, = |1/f e C([0, 11 H) : %(0) = ' and w(1) = M} .

We note that, for every A € [0, A[, the function v, :t € [0, 1] — u(lk) +(1 - t)u(;)
belongs to I';. Moreover, it follows that

sup sup ([ (DIl < 2([luoll + 7).
re[0.3] 1€l0.1]

Exploiting the fact that W is the sum of the norm squared and a sequentially
weakly continuous functional and that ® is sequentially weakly continuous, one has

sup ¢(i) < sup sup (W (Ya(2) + A P(Y2(1))

2€[0,A] 2€[0,2] 7€[0,1]
< sup W) +A  sup  P(v) < +oo. (3.11)
ol =2(lluoll+7) vl =<2(lluolI+7)
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At this point, we can prove that sup; .o 3 ||ug'\) || < oo. In fact, if

sup Hug'\) || = +00,
1€[0,2]

there would exist a bounded sequence {%,,} C [0, A[ such that || u(f") || = 4+o00,asn — o0.

Consequently, we should have
lim ¢(r,) = lm (¥(") + 2,0 (u5™))

> lim (W(u{") + A min {0, @(u(;”))}) = 400,

n—oo

contradicting (3.11).
Hence, set

- :max{2(||uol| +7), sup ||u§“||}-
1€[0,A]

The conclusion follows.
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