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Abstract

Recentneuro-symbolic approaches have successfully extracted symbolic rule-sets from
Convolutional Neural Network-based models to enhance interpretability. However, applying sim-
ilar techniques to Vision Transformers (ViTs) remains challenging due to their lack of modular
concept detectors and reliance on global self-attention mechanisms. We propose a framework
for symbolic rule extraction from ViTs by introducing a sparse concept layer inspired by Sparse
Autoencoders (SAEs). This linear layer operates on attention-weighted patch representations
and learns a disentangled, binarized representation in which individual neurons activate for
high-level visual concepts. To encourage interpretability, we apply a combination of L1 sparsity,
entropy minimization, and supervised contrastive loss. These binarized concept activations are
used as input to the FOLD-SE-M algorithm, which generates a rule-set in the form of a logic
program. Our method achieves a 5.14 % better classification accuracy than the standard ViT
while enabling symbolic reasoning. Crucially, the extracted rule-set is not merely post-hoc but
acts as a logic-based decision layer that operates directly on the sparse concept representa-
tions. The resulting programs are concise and semantically meaningful. This work is the first to
extract executable logic programs from ViTs using sparse symbolic representations, providing a
step forward in interpretable and verifiable neuro-symbolic AI.

KEYWORDS: neuro-symbolic AI, mechanistic interpretability, Vision Transformers, explainable
AI (XAI), rule-based machine learning, Sparse Autoencoders

1 Introduction

Extracting logic-based rules from neural models has emerged as a central objective in

neuro-symbolic AI, driven by the growing demand for interpretability and verifiability

in machine learning. As deep learning models continue to scale, they are increas-

ingly deployed in critical applications such as autonomous driving (Kanagaraj et al.

(2021)), medical diagnosis (Sun et al. (2016)), and natural disaster prevention (Ko

and Kwak (2012)). In these sensitive domains, incorrect predictions can carry severe
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consequences, emphasizing the necessity for transparency in decision-making. Many of

these applications depend significantly on accurate image classification models, partic-

ularly Convolutional Neural Networks (CNNs). Recent frameworks such as NeSyFOLD

(Padalkar et al. (2024a, b)) and ERIC (Townsend et al. (2021)) have successfully demon-

strated the extraction of human-interpretable symbolic rule sets from CNNs, providing

insights into the underlying reasoning of predictions in vision tasks.

Most of this progress, however, has been concentrated on CNNs. CNNs are composed

of filters, that are trainable matrices that learn to detect patterns in local regions of

images. Their modular architecture, where individual filters often correspond to distinct

visual concepts, makes them particularly suitable for rule extraction. By binarizing the

activations of the final layer and using them as input to rule-based machine learning

algorithms such as decision trees or FOLD-SE-M (Wang and Gupta (2024)), it is possible

to extract the symbolic rule-sets.

In contrast, Vision Transformers (ViTs) (Dosovitskiy et al. (2021)) have remained

largely inaccessible to symbolic extraction techniques. While ViTs now dominate the

field of vision due to their superior performance and flexibility, their reliance on global

self-attention and lack of explicit concept detectors pose a significant challenge for rule-

based interpretability. ViTs encode information in a distributed and entangled manner,

making it unclear how to localize or discretize concept-level representations.

In this work, we take a step toward bridging this gap by introducing a framework –

NeSyViT – for extracting logic-based rule sets from ViTs. We modify the standard ViT

architecture by replacing the final fully connected classification head with a single linear

layer–sparse concept layer–trained to produce binarized outputs. The goal is to encourage

each neuron in this final layer to correspond to a few distinct high-level concepts. To

achieve this, we draw inspiration from Sparse Autoencoders (SAEs) (Ng et al. (2011)),

incorporating an L1 sparsity loss to ensure that only a small subset of neurons activates

for any given image.

To encourage binarization, we apply a sigmoid activation to the linear outputs, con-

straining them to the [0, 1] range, and introduce an entropy-based loss that pushes

activations toward binary extremes (0 or 1). This design enables us, after training, to

extract a binary vector for each image that reflects concept-level activations. These vec-

tors are then passed to the FOLD-SE-M rule-based machine learning algorithm Wang

and Gupta (2024) to generate a symbolic rule-set in the form of a stratified Answer Set

Program for classification. It is crucial that the representations corresponding to images

from the same class are well-clustered in the latent space. This promotes the forma-

tion of clear decision boundaries that can be effectively exploited by FOLD-SE-M. To

enforce this structure, we incorporate a supervised contrastive loss (SupCon) (Khosla et

al. (2020)), which encourages representations of images with the same label to lie closer

together while pushing apart those from different classes. This facilitates learning highly

accurate rules.

Finally, each predicate in the extracted rule-set is “semantically labelled,” that is each

predicate in the rule-set that corresponds to a neuron is matched to the concepts that

the neuron represents. Padalkar et al., introduced an algorithm for automatic semantic

labelling of the predicates in the rule-sets extracted from a CNN using FOLD-SE-M
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Symbolic Rule Extraction From Attention-Guided Sparse Representations 3

Fig 1. The NeSyViT framework.

Padalkar et al. (2024a). We adopt the same algorithm for semantic labelling of the rule-

sets we generate. Figure 1 illustrates the NeSyViT framework.

The final Neuro-Symbolic (NeSy) model is a combination of the ViT based feature

extractor that generates the binary vector for each image and the rule-set generated by

FOLD-SE-M, which classifies the image into a particular class based on which neurons

were activated/deactivated (1/0). We demonstrate through our experiments that the

NeSy model produced by our framework outperforms the vanilla ViT in terms of classifi-

cation accuracy, achieving an average improvement of 5.5%. Notably, this performance

gain is achieved while also generating interpretable rule-sets – a significant result, as prior

neuro-symbolic frameworks that extract rule-sets from neural models often suffer a drop

in accuracy. Our contributions are as follows:

1. We introduce a training method that combines supervised contrastive loss, L1 spar-

sity, and entropy loss to learn compact and binarized concept-level representations.

2. We propose an end-to-end neuro-symbolic framework, NeSyViT , for generating a

rule-set from a modified ViT using FOLD-SE-M.

3. We show through experiments that our NeSyViT framework achieves classification

accuracy better than the vanilla ViT, while also producing concise rule-sets

2 Background

2.1 Vision Transformers

The ViT (Dosovitskiy et al. (2021)) is a deep learning architecture that applies the

Transformer model, originally developed for natural language processing, to image

classification tasks. Unlike CNNs, which operate on local receptive fields using convo-

lutional filters, ViTs treat an image as a sequence of tokens derived from fixed-size
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non-overlapping image patches. Specifically, an input image is divided into equal-sized

patches (e.g., 16× 16 pixels), and each patch is flattened into a vector and linearly

projected into a higher-dimensional embedding space.

At the core of these encoder blocks lies the multi-head self-attention mechanism

(Vaswani et al. (2017)), which enables the model to learn long-range dependencies and

contextual relationships between all image patches. Each self-attention layer allows every

patch to interact with every other patch, thereby capturing global contextual information

at every level of the model. This contrasts with CNNs, where information is typically

propagated through hierarchical layers with limited receptive fields.

The self-attention mechanism operates by computing three learned vectors for each

patch token: a query (Q), a key (K), and a value (V ). The attention score between a

given pair of tokens is calculated by taking the dot product of their corresponding query

and key vectors. These scores are then scaled and normalized using the softmax function,

yielding attention weights that indicate the importance of each patch relative to every

other patch in the sequence. The final representation of each patch is obtained as a

weighted sum of the value vectors, with the weights determined by the attention scores.

This mechanism allows the ViT to dynamically focus on the most relevant parts of

the image depending on the task, thereby enabling rich and flexible modeling of spatial

dependencies. Thus, the self-attention layers not only encode contextual information for

each patch but also play a central role in determining which visual features contribute

most significantly to the model’s decision. A special learnable token, known as the [CLS]

token, is prepended to the patch sequence before being passed into the Transformer.

Unlike the patch tokens that represent image regions, the [CLS] token acts as a summary

placeholder. During self-attention, it aggregates information from all other patches by

attending to them across multiple layers. After the final Transformer layer, the embedding

corresponding to the [CLS] token is typically used for classification, as it encapsulates a

global representation of the image.

While this architecture allows ViTs to capture long-range dependencies and global

structure, it also presents a major challenge for interpretability. In CNNs, individual

filters often learn to detect localized visual patterns or objects (e.g., corners, textures,

faces), enabling a degree of modularity and conceptual traceability. In contrast, attention

heads are distributed, context-sensitive, and dynamically influenced by the full set of

tokens – including the [CLS] token. This makes it difficult to associate specific heads or

tokens with interpretable visual concepts. Consequently, extracting symbolic, modular

representations from ViTs is significantly more challenging than from CNNs. Hence, in

this work, we take the [CLS] vector and pass it through the sparse concept layer that

is optimized to produce sparse outputs, allowing the information encoded in the [CLS]

token to be disentangled into a small set of active neurons. Each neuron is encouraged

to specialize and activate primarily for images of a specific class. This design is inspired

by the core principles of Sparse Autoencoders (SAEs) (Ng et al. (2011)), which promote

compact and interpretable representations through sparsity.

2.2 FOLD-SE-M

The FOLD-SE-M algorithm Wang and Gupta (2024) that we employ in our framework,

learns a rule-set from data as a default theory . Default logic is a non-monotonic logic
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Symbolic Rule Extraction From Attention-Guided Sparse Representations 5

used to formalize commonsense reasoning. A default D is expressed as:

D=
A :MB

Γ
(1)

Equation 1 states that the conclusion Γ can be inferred if pre-requisite A holds and

B is justified. MB stands for “it is consistent to believe B.” Normal logic programs can

encode a default theory quite elegantly (Gelfond and Kahl (2014)). A default of the form:

α1 ∧ α2 ∧ . . .∧ αn :M¬β1,M¬β2 . . .M¬βm

γ

can be formalized as the normal logic programming rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents negation-as-failure. We call

such rules default rules . Thus, the default

bird(X) :M¬penguin(X)

flies(X)

will be represented as the following default rule in normal logic programming:

flies(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion that

X flies, the default part of the rule, and not penguin(X) the exception part of the rule.

FOLD-SE-M (Wang and Gupta (2024)) is a Rule Based Machine Learning algorithm. It

generates a rule-set from tabular data, comprising rules in the form described above. The

complete rule-set can be viewed as a stratified answer set program (a stratified Answer

Set Programming (ASP) rule-set has no cycles through negation (Baral (2003))). It uses

special abx predicates to represent the exception part of a rule where x is a unique

numerical identifier. FOLD-SE-M incrementally generates literals for default rules that

cover positive examples while avoiding covering negative examples. It then swaps the

positive and negative examples and calls itself recursively to learn exceptions to the

default when there are still negative examples falsely covered.

FOLD-SE-M has been shown to produce more compact rule-sets than even decision

tree algorithms, while matching or surpassing them in classification accuracy (Wang and

Gupta (2024)). It has also demonstrated competitive performance compared to state-

of-the-art models such as XGBoost and Multi-Layer Perceptrons. The succinctness of

the rule-sets generated by FOLD-SE-M stems from its decision-list-like representation,

which imposes a strict top-down execution order. This means that the rule interpreter

sequentially evaluates each rule – starting from the top – and stops as soon as a rule

fires, reducing redundancy and improving interpretability. This structure is particularly

advantageous because the resulting rule-sets can be directly used as input to the s(CASP)

goal-directed ASP interpreter, which inherently follows a top-down execution strategy.

As a result, FOLD-SE-M not only produces interpretable and compact models but also

serves as a bridge between tabular data and symbolic knowledge representation within a

powerful formalism like ASP. However, applying FOLD-SE-M directly to image data is

not straightforward due to its original design for tabular inputs. In this work, we take a
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significant step beyond prior efforts such as NeSyFOLD by enabling image classification

using ViTs within the symbolic domain. We achieve this by transforming image repre-

sentations into sparse binary vectors that can be interpreted by FOLD-SE-M, thereby

generating ASP rule-sets. Notably, FOLD-SE-M consistently produces some of the most

succinct rule-sets among symbolic learners, which directly enhances interpretability in

this neurosymbolic pipeline.

There are 2 tunable hyperparameters, ratio, and tail. The ratio controls the upper

bound on the number of false positives to the number of true positives implied by the

default part of a rule. The tail controls the limit of the minimum number of training

examples a rule can cover.

3 Methodology

Our aim is to extract a symbolic rule-set from the ViT and use it for final classification.

To this end, we first modify the architecture of a standard ViT by replacing the final

classification head – placed after the last self-attention layer– with a single linear layer

of dimension D. The [CLS] token’s vector which has the aggregated global information

feeds directly into this layer. This layer outputs a D-dimensional vector, to which we

apply a sigmoid function element-wise, constraining all values to lie in the range [0, 1].

Each value in this vector could then be interpreted as the activation of a distinct neuron.

There are three key objectives in designing this representation:

1. The model needs to produce similar binary vectors for images of the same class, and

dissimilar ones for different classes, to allow the FOLD-SE-M rule-based machine

learning alogrithm to identify meaningful decision boundaries.

2. The output values had to be pushed as close as possible to either 0 or 1, since after

training, we binarize these vectors by rounding. Values near 0.5 would introduce

ambiguity and loss of information.

3. The output vectors need to be sparse, with most values being 0 and only a few

being 1. This sparsity ensures that rule-sets remain compact and interpretable, as

fewer neurons would appear as predicates in the learned rules.

We enforce these three properties using a combination of supervised contrastive loss,

entropy minimization, and L1 sparsity loss, described in detail below.

Supervised Contrastive Loss: To ensure that images from the same class produce

similar sparse representations, we incorporate the Supervised Contrastive Loss (SupCon)

(Khosla et al. (2020)). This loss encourages the D-dimensional vectors corresponding

to samples of the same class to cluster together in the latent space, while pushing apart

those from different classes. Such class-wise clustering is essential for enabling a rule-based

learner, such as FOLD-SE-M, to identify clean symbolic decision boundaries.

Let zi ∈R
D denote the normalized sparse representation of sample i in a batch B,

and let yi be its corresponding class label. In contrastive learning, we refer to zi as the

anchor , and we compare it to the remaining samples in the batch. Those with the same

label are treated as positives , while the rest are considered negatives .
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The SupCon loss for a single anchor i is defined as:

Li
supcon =− 1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2)

where:

• P (i) is the set of indices in the batch with the same label as i (i.e., the positives for

anchor i),

• A(i) is the set of all indices in the batch excluding i itself,

• τ > 0 is a temperature parameter that controls the sharpness of the distribution.

The total loss is averaged over all anchors in the batch:

Lsupcon =
1

N

∑

i∈B
Li
supcon (3)

where N is the number of images in the batch B. By minimizing this loss, the model is

encouraged to produce sparse vectors that are tightly clustered for images of the same

class and distinct from those of other classes. This structure makes the representations

well-suited for interpretable rule extraction.

Entropy Minimization: To encourage the sparse representations to become binarized

– that is close to either 0 or 1 – we apply an entropy minimization loss on the output

of the sigmoid-activated linear layer. Since this linear layer uses a sigmoid function, each

neuron’s activation lies in the range [0, 1]. Ideally, we want these activations to converge

toward discrete values (0 or 1) to allow lossless binarization post-training.

We treat each neuron’s output as a Bernoulli random variable and compute its entropy

using the standard binary entropy formula. Given a batch of N images where zi ∈R
D is

the D-dimensional output for image i, the entropy loss is computed as:

Lentropy =− 1

ND

N∑

i=1

D∑

j=1

[zi,j log(zi,j + ε) + (1− zi,j) log(1− zi,j + ε)] , (4)

where zi,j is the activation of neuron j for image i, and ε is a small constant added for

numerical stability.

Minimizing this entropy term encourages each activation to move closer to either 0 or 1,

making the final binarization step more reliable. This is especially important for down-

stream symbolic rule extraction, where crisp binary features are essential for learning

accurate and interpretable logic programs.

L1 Sparsity Loss: To promote interpretability and ensure that only a few neurons

activate for each image, we incorporate an L1 sparsity loss on the output of the final

linear layer. Sparse representations are crucial for generating concise rule-sets, as they

limit the number of active predicates per image, reducing the complexity of the learned

logic programs.
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Formally, given a batch ofN vectors z1, . . . , zN , where zi ∈R
D is the sigmoid-activated

output for image i, the L1 sparsity loss is defined as:

Lsparsity =
1

ND

N∑

i=1

D∑

j=1

|zi,j | (5)

This loss penalizes large activation values and encourages most neurons to remain close

to zero, allowing only a few dimensions to be active for any given input.

The total loss then becomes:

LTotal = αLsupcon + βLentropy + γLsparsity (6)

where α, β and γ are weights to control the impact of each loss term. Finally, after training

the model using the combined loss LTotal, we collect the sparse representation vectors for

all images in the training set. These vectors are binarized – each value thresholded at 0.5

– to form a binary table, where each row corresponds to an image and each column to

a neuron in the final linear layer. This binarization table is used as input to the FOLD-

SE-M algorithm, which generates a symbolic rule-set in the form of a stratified Answer

Set Program. Each predicate in the resulting rule-set corresponds directly to a neuron in

the final layer, enabling symbolic reasoning over the learned representations.

Semantic Labelling Algorithm: To assign human-understandable meanings to these

predicates, we employ the semantic labeling algorithm introduced by Padalkar et al.,

(Padalkar et al. (2024a)). For each neuron, we identify the top-10 images that activate

it most strongly. We then compute attention-based heatmaps for these images to local-

ize the spatial regions that the neuron focuses on. These heatmaps are intersected with

the corresponding pre-annotated semantic segmentation masks. A semantic segmentation

mask is a pixel-level annotation of an image where each individual pixel is assigned a

specific semantic category label, such as bed, refrigerator, or sink. These masks provide

a fine-grained understanding of the objects and regions present in the image. By overlap-

ping the neuron’s activation heatmap with these masks, we can accurately measure how

much a particular neuron responds to specific visual concepts, based on the spatial align-

ment between the activated regions and the labeled object areas in the image. For each

neuron, we compute the average Intersection-over-Union (IoU) between its heatmaps

and each available concept label. The label with the highest average IoU is then assigned

to the predicate corresponding to that neuron, thus grounding the symbolic rule-set in

interpretable visual concepts.

Using the rule-set for image classification: After training, each new image is clas-

sified using the learned symbolic rule-set in the following way. First, the image is passed

through the modified ViT, which outputs a D-dimensional latent vector from the sparse

concept layer. Each of the D dimensions corresponds to a specific neuron, which may be

associated with a visual concept. This vector is then binarized by applying a threshold of

0.5 to each dimension – values greater than 0.5 are treated as True, and others as False.

This binary vector effectively represents the presence or absence of the learned concepts

in the image.
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Symbolic Rule Extraction From Attention-Guided Sparse Representations 9

The binarized vector is then input to the FOLD-SE-M rule interpreter. The symbolic

rule-set consists of logic rules of the form target(X, ‘class’) :- predicate1(X),

not predicate2(X), . . .. Each predicate in the rule corresponds to a specific neuron (or

concept) in the sparse vector. During inference, FOLD-SE-M checks each rule sequen-

tially, determining whether its body is satisfied based on the current binary vector. As

soon as a rule evaluates to true, its head – containing the predicted class – is returned

as the final prediction.

This symbolic classification process is not only accurate but also interpretable, as one

can trace exactly which predicates (neurons) triggered the classification. Furthermore,

the resulting rule-set can be fed into the s(CASP) (Arias et al. (2018)) goal-directed ASP

interpreter, which provides justifications or explanations in the form of symbolic deriva-

tions for the predicted label. This end-to-end approach tightly integrates deep visual

features with symbolic reasoning, enabling verifiable and explainable image classification.

4 Experiments

We conducted experiments to address the following research questions:

Q1: How does the classification accuracy of the neuro-symbolic model produced by the

NeSyViT framework compare to that of a standard vanilla ViT?

Q2: What is the typical size of the rule-set generated by the NeSyViT framework, and

how compact are the resulting rules?

Q3: How does our framework scale as the number of classes increases?

Q4: What do the neuron activation patterns look like for each class, and how well do

they align with human-interpretable semantic concepts?

Q5: How well can the semantic labelling algorithm meant for CNN-based frameworks

such as NeSyFOLD, be directly adopted for our NeSyViT framework?

[Q1, Q2, Q3] Classification Accuracy, Rule-set Size and Scalability The central

goal of the NeSyViT framework is to produce a neuro-symbolic model that maintains

high classification accuracy while offering symbolic interpretability through a compact

rule-set. Ideally, the accuracy of the interpretable model should match or exceed that

of its purely neural counterpart (i.e., the vanilla ViT), and the resulting rule-set should

remain as concise as possible. We use rule-set size as a proxy for interpretability, based on

the findings of Lage et al. (2019), who demonstrated through human-subject evaluations

that larger rule-sets are significantly more difficult to interpret. Thus, achieving high

accuracy alongside a small rule-set is critical for balancing performance and human-

understandability.

Setup: We use the ViT-Base architecture from the timm library, which processes input

images of size 224× 224 using non-overlapping 16× 16 patches. The model consists of 12

Transformer blocks, each with 12 attention heads, and produces a [CLS] token embedding

of dimension 768. As described earlier, we modify this architecture by removing the final

classification head and replacing it with a single linear layer of output dimension 128.
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Table 1. Comparison between the NeSyViT and the Vanilla ViT. Bold values are
better

Data Model Accuracy (%) Rules Unique Predicates Size

P2 NeSyViT 100± 0.00 2± 0.00 2± 0.00 2± 0.00
Vanilla 99± 0.00 - - -

P3.1 NeSyViT 99± 0.00 3± 0.00 3± 0.00 3± 0.00
Vanilla 98± 0.00 - - -

P3.2 NeSyViT 99± 0.00 3± 0.00 3± 0.40 3± 0.00
Vanilla 97± 0.00 - - -

P3.3 NeSyViT 98± 0.00 5± 0.40 3± 0.49 5± 0.40
Vanilla 91± 0.00 - - -

P5 NeSyViT 98± 0.00 5± 0.00 5± 0.40 5± 0.80
Vanilla 90± 0.00 - - -

P10 NeSyViT 94± 0.00 10± 0.49 12± 1.47 14± 1.67
Vanilla 76± 0.00 - - -

GT43 NeSyViT 98± 0.00 43± 0.00 44± 1.90 51± 3.12
Vanilla 99± 0.00 - - -

Mean Stats NeSyViT 98± 0.00 10.14± 0.13 10.30± 0.67 11.85± 0.86
Vanilla 92.86± 0.00 - - -

All experiments are conducted using this configuration with weights pretrained on

ImageNet-1k to construct the NeSy model. The vanilla ViT refers to the same base

architecture without any modifications. We used the AdamW optimizer along with a

cosine annealing learning rate scheduler. The model was trained for 50 epochs using the

combined loss consisting of supervised contrastive loss, entropy minimization, and L1

sparsity, as previously described. For rule-set generation, we employed the FOLD-SE-M

algorithm. The weights assigned to each loss component, as well as additional training

and architectural hyperparameters, are provided in the Appendix.

We evaluated both our NeSy model and the vanilla ViT on subsets of two bench-

mark datasets (1): the Places dataset (Zhou et al., 2018), which contains images of

various indoor and outdoor scenes, and the German Traffic Sign Recognition Benchmark

(GTSRB) (Stallkamp et al., 2012), which consists of images of traffic signposts. From

the Places dataset, we constructed multiple class subsets of increasing number of classes

to gauge the scalability of NeSyViT: two classes (P2 ), three classes (P3.1 ), five classes

(P5 ), and ten classes (P10 ). The P2 subset includes bathroom and bedroom images.

P3.1 extends this by adding kitchen, while P5 further incorporates dining room and

living room. P10 adds five additional classes: home office, office, waiting room, confer-

ence room, and hotel room. Additionally, we include two alternative three-class subsets:

P3.2 with desert road , forest road , and street , and P3.3 with desert road , driveway , and

highway . For each class, we sampled 5, 000 images, creating a 4k/1k train-test split, and

used the official validation set without modification.

The GTSRB (GT43 ) dataset contains 43 traffic sign classes. We used the official test

set of 12.6k images and performed an 80/20 train-validation split on the remaining data,

resulting in approximately 21k training and 5k validation images.
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Table 2. Comparison of relative % accuracy change w.r.t. the vanilla
model and rule-set size between NeSyFOLD and NeSyViT

Data % Accuracy Change Rule-set Size
NeSyFOLD NeSyViT NeSyFOLD NeSyViT

P2 −4 +1 12 2
P3.1 −7 +1 16 3
P3.2 −4 +2 7 3
P3.3 −7 +7 23 5
P5 −15 +8 30 5
P10 −21 +18 65 14
GT43 −13 −1 99 51
Mean Stats −10.14 +5.14 36 11.85

We run each experiment 5 times with random train-test splits and then report the aver-

age metrics in Table 1. We closely follow the experimental setup proposed by Padalkar

et al. (2024a) for evaluating the NeSyFOLD framework, which uses FOLD-SE-M to

extract rule-sets from CNNs. Specifically, we compare the drop (or gain) in accuracy

observed while using NeSyFOLD as compared to the vanilla CNN, against the corre-

sponding change in accuracy when using NeSyViT as compared to the Vanilla ViT. This

relative comparison highlights the effectiveness of our approach and is summarized in

Table 2.

Result: Table 1 presents a comparison between the NeSy model generated using

NeSyViT and the Vanilla ViT. All metrics are reported over five independent runs.

Accuracy is computed on the test set for both models. The “Rules” column reports the

average and standard deviation of the number of rules generated. “Unique Predicates”

indicates the number of distinct predicates used across the rule-set, and “Size” refers

to the total number of predicate occurrences in the bodies of all rules. Recall that we

use rule-set size as a proxy for interpretability – smaller rule-sets are generally easier to

understand.

The most significant observation is that our method achieves higher average accuracy

than the Vanilla ViT. This is particularly noteworthy, as extracting interpretable rule-sets

by binarizing internal representations typically results in some loss of information and

a subsequent drop in performance. However, our approach mitigates this issue through

the use of an entropy loss, which encourages the outputs of the sparse concept layer

to be close to either 0 or 1 during training. As a result, thresholding these outputs at

0.5 post-training introduces minimal distortion. Furthermore, the supervised contrastive

loss ensures that the resulting binary vectors are well-clustered by class, enabling FOLD-

SE-M to learn accurate and class-discriminative rule-sets. Finally, the L1 sparsity loss

encourages only a small subset of neurons to activate for each image, resulting in compact

and interpretable rule-sets. Notice that for the P10 dataset, the accuracy improvement

over vanilla is 18%, which is a huge improvement and shows the merit of our approach

when scaling to larger number of classes.
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Fig 2. a) The top-5 images overlayed with activation heat-maps for neurons 106, 43 and 105

when rules are extracted for the P3.1 dataset containing classes “bathroom,” “bedroom” and
“kitchen.” b) The raw rule-set and the labelled rule-set when NeSyViT is employed on the

P3.1 dataset.

To provide context for the significance of our results, Table 2 presents the percentage

change in accuracy of the NeSy model relative to its vanilla counterpart for both NeSyViT

and NeSyFOLD (which uses a CNN instead of a ViT). We also report the average rule-set

size generated by each framework. Notably, NeSyViT improves upon the accuracy of the

Vanilla ViT by an average of 5.14% – a substantial gain, especially when contrasted with

NeSyFOLD, which suffers an average accuracy drop of 10.14% compared to the vanilla

CNN. Additionally, NeSyFOLD shows a consistent degradation in performance as the

number of classes increases, largely due to the information loss introduced by post-hoc

binarization. In contrast, our method consistently yields accuracy improvements across

datasets, with the sole exception of GT43 , where we observe a minor drop of 1 percentage

point.

Furthermore, the rule-sets generated by NeSyViT are significantly more compact, with

an average size of 11.85, which is 67% smaller than those produced by NeSyFOLD –

further emphasizing the interpretability of our approach.

[Q4, Q5] Neuron Activation Patterns and Automatic Semantic Labelling

Efficacy: A key component of interpretability in neuro-symbolic frameworks is the align-

ment of individual neurons with semantically meaningful concepts relevant to specific

classes.
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Setup: To evaluate this alignment, we apply the previously described, semantic labelling

algorithm to assign human-interpretable concept names to each predicate in the rule-set,

where each predicate corresponds to a neuron in the final sparse concept layer. Initially,

the raw rule-set produced by the FOLD-SE-M algorithm uses only neuron indices as

predicate names. The semantic labelling process replaces these with descriptive concept

labels derived by analyzing the top-10 most activating images per neuron. These images

are overlaid with attention-based heatmaps and compared with pre-annotated semantic

segmentation masks to identify the dominant concept for each neuron.

In Figure 2a), we visualize the top-5 most activating images for each predicate in the

labelled rule-set for the P3.1 dataset, which contains the classes “bathroom,” “bedroom,”

and “kitchen.” Figure 2b) shows a side-by-side comparison of the raw and semanti-

cally labelled rule-sets, illustrating how the abstract neuron indices are transformed into

interpretable concept-based rules.

Result: Examining the labelled rule-set in Figure 2b), we observe that just three

rules are sufficient to achieve a classification accuracy of 99%. Consider Rule 2:

target(X, ‘bathroom’) :- not water_cooler1_tray1_refrigerator1_range1(X).

At first glance, this rule may appear counterintuitive – why would the absence of

several kitchen-related concepts imply that the image depicts a bathroom rather than

a bedroom? The explanation lies in the execution strategy of FOLD-SE-M, which

evaluates rules in a top-down fashion. Rule 2 only activates if Rule 1 fails to fire. Rule

1 is: target(X, ‘bedroom’) :- bed1(X). Thus, if the image lacks the “bed” concept,

Rule 1 is bypassed, and Rule 2 checks for the absence of kitchen concepts; if none are

present, the image is classified as a “bathroom.” Rule 3: target(X, ‘kitchen’) :-

refrigerator2(X) fires only if the previous two rules do not apply and the “refrigerator”

concept is present, thereby classifying the image as kitchen.”

While the logical flow of the rules is valid, the quality of semantic labelling is less

reliable. The labelling pipeline we adapted from NeSyFOLD was designed for CNNs,

where modular filters make concept isolation more straightforward. In ViTs, however,

neurons often attend to multiple regions and concepts simultaneously, making the learned

representations less disentangled. As a result, some neuron labels can be misleading. This

limitation is evident in Figure 2a: neuron 106 consistently activates for the “bed” concept

in bedroom images, but neurons 43 and 105 do not display clear concept selectivity and

instead respond to mixed features. This highlights the challenge of isolating concepts in

self-attention-based architectures.

While the automatic labelling approach may have limitations, the visualization of

neuron activation heatmaps remains a powerful tool. These heatmaps allow for manual

inspection of concept associations and provide valuable interpretability cues. We believe

this combination of automated rule generation and visual validation offers a promising

direction. Also, since the extracted rule-set is an Answer Set Program we can get justi-

fication of any prediction using the s(CASP) (Arias et al. (2018)) ASP interpreter. For

completeness, we provide the labelled rule-sets for all datasets used in our experiments

in Table 1, in the Appendix.
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5 Related works

The original ViT architecture (Dosovitskiy et al. (2021)) demonstrated that with suf-

ficient data and computational resources, self-attention mechanisms could outperform

CNNs in vision tasks. Since then, numerous variants have improved upon ViT’s design.

DeiT (Touvron et al. (2021)) introduced a data-efficient training strategy enabling ViTs

to perform well even without massive datasets. Swin Transformer (Liu et al. (2021))

proposed a hierarchical design with shifted windows, improving both efficiency and per-

formance on dense prediction tasks. Another notable extension includes ConvNeXt (Liu

et al. (2022)), which bridges the gap between convolutional and transformer-based archi-

tectures while being faithful to the original CNN. These models aim to balance accuracy,

parameter efficiency, and computational cost.

Although newer ViT variants often achieve higher accuracy on large-scale benchmarks

such as ImageNet-1k and ImageNet-21k, the base ViT model remains a widely used

and standardized backbone for evaluating interpretability methods. Since our primary

goal is to explore interpretability through rule extraction – not to push state-of-the-art

classification accuracy – we adopt the base ViT to isolate and evaluate the neurosymbolic

contributions of our framework. Our results remain valid and meaningful in the context

of interpretability research and can easily be extended to stronger ViT variants in future

work.

The integration of symbolic reasoning with deep learning has led to various approaches

for extracting interpretable rules from neural networks. While initial efforts focused on

CNNs, recent studies have begun exploring ViTs. VisionLogic (Geng et al. (2025)) intro-

duces a framework that transforms neurons in the final fully connected layer of deep

vision models into predicates, grounding them into visual concepts through causal vali-

dation. ViT-NeT (Kim et al. (2022)) presents a neural tree decoder that interprets the

decision-making process of ViTs. By routing images hierarchically through a tree struc-

ture, it provides transparent and interpretable classifications, addressing the trade-off

between model complexity and interoperability. These methods primarily focus on post-

hoc interpretability or rely on additional structures for explanation. In contrast, our

approach integrates a sparse linear layer directly into the ViT architecture, enabling the

extraction of executable logic programs without auxiliary components.

Enhancing the interpretability of ViTs has been a subject of extensive research, lead-

ing to various methodologies. INTR (Paul et al. (2024)) proposes a proactive approach,

asking each class to search for itself in an image. This idea is realized via a Transformer

encoder-decoder where “class-specific” queries (one for each class) are learnt as input to

the decoder, enabling each class to localize its patterns in an image via cross-attention.

Each class is attended to very distinctly hence the cross-attention weights provide a

interpretation of the prediction. LeGrad (Bousselham et al. (2024)) introduces an explain-

ability method specifically designed for ViTs. By computing gradients with respect to

attention maps and aggregating signals across layers, LeGrad produces explainability

maps that offer insights into the model’s focus areas during decision-making. While

these approaches enhance the transparency of ViTs, they do not produce symbolic or

executable explanations. Our method differs by generating logic programs that serve as
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the final decision layer, enabling symbolic reasoning directly from the model’s internal

representations.

The pursuit of sparse and disentangled representations in ViTs has led to innova-

tive methodologies. Recent work integrates sparse autoencoders (SAEs) with ViTs to

improve interpretability. Joseph et al. (2025) trained SAEs on CLIP’s ViT and found

that manipulating a small set of steerable features can enhance performance and robust-

ness. PatchSAE (Lim et al. (2025)) introduces method to extract granular visual concepts

and study how these influence predictions, showing that most adaptation gains stem from

existing features in the pre-trained model. Our approach builds upon these concepts by

integrating a sparse linear layer into the ViT architecture and using it for extracting a

symbolic rule-set which gives a global explanation of the model and a justification can

be obtained for each prediction.

6 Conclusion and future work

In this work, we proposed a novel neuro-symbolic framework for interpretable image clas-

sification using ViTs. By replacing the final classification layer with a linear layer (sparse

concept layer) producing sigmoid outputs, and introducing a unified loss function – com-

prising supervised contrastive loss for better class separation in latent space, entropy loss

for sharper binarization, and sparsity loss for concept selectivity – we generated sparse

binary vectors that represent images in a disentangled manner. These vectors serve as

inputs to the FOLD-SE-M algorithm, which produces stratified Answer Set Programs in

the form of concise rule-sets. The resulting neuro-symbolic (NeSy) model, composed of

the modified ViT and the learned rule-set, outperforms the vanilla ViT by an average of

5.4% in accuracy.

We compared our framework, NeSyViT, with NeSyFOLD, a similar approach

for CNNs, and found that NeSyViT produces rule-sets that are 67% smaller on

average while improving upon the baseline ViT’s accuracy – whereas NeSyFOLD suf-

fers a 10.14% drop in performance compared to its CNN counterpart. These results

demonstrate the potential of attention-based architectures for interpretable, logic-driven

classification.

Finally, we investigated the semantic interpretability of neurons in our framework.

We observed that the automatic semantic labelling algorithm used in NeSyFOLD –

based on overlap with segmentation masks – struggles in ViTs due to limited neuron

monosemanticity. However, we argue that this challenge can be partially mitigated by

visualizing attention-guided heatmaps for the small set of neurons that appear in the

rule-set, enabling manual inspection and insight into the learned concepts.

Future work will focus on improving neuron disentanglement and enhancing monose-

manticity using architectural or training refinements. Another promising direction

explored in CNN-based interpretability methods is bias correction using extracted rule-

sets (Padalkar et al. (2024c)) which could be the natural next step for this work along

with counterfactual generation (Dasgupta et al. (2025)). We also plan to explore using

multimodal LLMs like GPT-4o for concept labeling, enabling an automatic semantic

annotation pipeline that does not rely on pixel-level segmentation masks.
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