
TOPOLOGIES ON GENERALIZED INNER PRODUCT 
SPACES 

EDUARD PRUGOVECKI 

1. Introduction. In the present note we introduce a straightforward alge­
braic generalization of inner product spaces, which we appropriately name 
generalized inner product (GIP) spaces. In the same fashion in which different 
topologies :an be introduced in inner product spaces, adequate topologies can 
be introduced in GIP spaces in such a manner that topological vector spaces 
are obtained. We enumerate and derive some fundamental properties of 
different topologies in GIP spaces, having primarily in mind their possible 
later application to quantum physics. 

The desirability of having in quantum physics more general structures than 
Hilbert spaces (in which quantum mechanics is usually formulated) is sug­
gested by Dirac's formalism (2), which deals with "unnormalizable" vectors. 
Unfortunately, although this formalism is very elegant from the point of view 
of the facili ty of dealing with its symbolism, it completely lacks in mathematical 
rigour. Recent attempts (cf. 1 for detailed references) have been made to treat 
Dirac's formalism in the context of rigged Hilbert spaces. However, we believe 
that the GIP spaces introduced here might offer some advantages, since their 
definition is purely algebraic (like that of inner product spaces) as opposed to 
the définit on of rigged Hilbert spaces (1) which contains a topology insepar­
ably embedded in it. 

2. Algebraic properties of generalized inner product spaces. An inner 
product space is a linear space on which an inner (scalar) product (x, 3/) is 
defined. When the linear space is complex, we adopt the convention that 
(x, y) is anti-linear with respect to the first argument, and consequently 
linear witt respect to the second argument. 

Definition 2.1. A linear s p a c e d is a GIP space if and only if: 
1. There is a s u b s p a c e ^ of ££ which is an inner product space (which will 

be called the nucleus of the GIP space) ; 
2. There is a set^o/ of linear operators on«5f which is adequate with respect to 

J/', i.e., it has the following properties: 
(a) Each element of se maps^Sf i n t o ^ , i.e. se J£ C^', 
(b) The relation Ax = 0 is satisfied for all A £ s/ only by x = 0. 
We denote such a GIP space by the triple (J*f,s/,JV ). Clearly, every inner 

product space is also a GIP space in a trivial sense, i.e.jV — ££ andS$ = {1}, 
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where 1 denotes the identity operator on f£. A non-trivial example is the 
following. 

Example 2.1. Take i f = ^ ° [ ( - o o , + «>)], i.e., i f is the family of all real 
continuous functions on the real line. Choose the nucleus to consist of all 
square integrable functions in ^ ° [ ( —°°, +°° ) ] , and adopt the inner product 
mJY to be 

(x,y) = J x(t)y(t)dt. 

Takes/ to be the family of all projectors E(I), 

(E(I)x)(t) = X / ( 0 * ( 0 
(xs(0 denotes the characteristic function of the set S) corresponding to all the 
finite non-degenerate intervals. I t is straightforward to check that the present 
( i f , s $ , J / ) is a GIP space, which we denote by ^%-

The concept of GIP space is not general enough to cover all the instances 
which could be of real interest in quantum physics; hence, a more general 
definition is also desirable. 

Definition 2.2. A union i f = \Jr<iRf£ r of linear spaces f£* r over the same 
field is a composite GIP space if each of the spaces i f r is a GIP space and all 
i f \ have a common nucleus, i.e.j^V C Plrç^i?\> 

Such a GIP space will be denoted by {f£ r ,se r ,J / ), r Ç R, where sfr 

denotes the family of operators on f£ r which is adequate with respect X.oJV, 
and write 

$/ = U s/r. 
rÇR 

The following proposition follows immediately from Definitions 2.1 and 2.2. 

PROPOSITION 2.1. If Ax = 0 for all A G sf, then x = 0. 

Example 2.2. Let ff' denote the space of all Schwartz distributions on the 
space ^ of all infinitely difïerentiable functions on the real line of faster than 
polynomial decrease at infinity (5). Denote by f/y the regular (in the 
Gel'fand (3) sense) distributions which can be represented by piecewise con­
tinuous bounded functions, and by ff '«/ those whose Fourier transforms can 
be represented by piecewise continuous bounded functions, i.e. x £ S^p if 

and y G 5*7 if 

where 

/•+00 

*(/)= x(s)Mdq, fey, 
«J -co 

/»+co 

y(g)= y(P)g(P)dp, g t y , 
• ' - c o 

/»+oo 

lip) = (2x)-1/2 J_ e^g{q) dq, 
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while x(q) and y(p) are bounded and piecewise continuous. L e t ^ 7 ^ / be the 
union oiSfp and J^7/. TakeJf = Sf<p,q) and choose the n u c l e u s ^ to consist 
of those regular distributions in y ^ , ^ ' which can be represented by square 
integrable functions. hetJ^p and J ^ denote, respectively, the sets of all the 
projectors E(I) and F (I) corresponding to finite non-degenerate intervals 

(E{I)x)(p) = XAP)X(P), (F(I)y)(q) = xMyiq). 

The resulting structure is a composite GIP space. 
Note that the eigenfunctions of the operators Q and P, 

(Qx)(q) = qx(q), (Py)(p) = py(p), 

belong to Sf(p,q)'] we have that 

Qd(q - q') = q'b(q - qf) and Pd(p - p') = p'h(p - p'). 

PROPOSITION 2.2. If f£ is a GIP space, and for some x G j£f we have that 
(y, Ax) = 0 for all y G Jf > A £s/, then x = 0. 

Proof. For any given A 6 s/ and given x G <££ we have that Ax G JV. 
Hence, (y, Ax) = 0 for all y G ^V implies that Ax = 0. Since this is true for 
any A G *$/, we obtain, from Proposition 2.1, that x = 0. 

PROPOSITION 2.3. If S£ is a GIP space and for some x G S£ we have that 
(Ax, Ax) = 0 for all A G s/, then x = 0. 

Proof. If (Ax, Ax) = 0, then Ax = 0. As this is true for any A G s/, it 
follows from Proposition 2.1 that x = 0. 

3. Strong topologies. There are obviously many convenient ways to 
introduce a topology in a GIP space in order to obtain a topological vector 
space. We can discriminate among all the alternatives by choosing those 
topologies which could make a GIP space of use in quantum physics. 

As far as composite GIP spaces are concerned, we can either introduce a 
topology which would make it into a topological space (in general not linear) 
or we can treat each of its component GIP spaces separately. 

We shall introduce in GIP spaces strong topologies by constructing neigh­
bourhood bases of some point xÇi f 7 from sets of the form 

V(x;Au . . . ,An; e) = 

{;y: \\A1(y - x)\\ < e, . . . , \\An(y - x)\\ < e, y G ^} 

for all e > 0, Ai, . . . , An G J^and n = 1, 2, . . . . We deduce a few important 
features of these topologies by establishing some properties of the sets 
V(x; Ai, . . . , An; e) in the following two lemmas. 

LEMMA 3.1. Each V(0; A\, . . . , An\ e) is balanced and convex, and therefore 
absolutely convex. 
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Proof. If x e 7(0; ^ i , . . . , An\ e), then 

p i * | | < e , . . . , \\Anx\\ < e, 

and consequently, for |X| ^ 1, 

P*(Xx)| | = |X| \\Akx\\ < e, k = 1, . . . ,n, 

i.e., Xx G V(0;Ai,...,An;e). Thus, 7(0; Aly . . . , An; e) is balanced. 
Furthermore, it is convex since, if Xi, x2 G V(0; Ai, . . . , An; e) and 0 ^ X ^ 1, 
then 

|M*(Xxi + (1 - X)x2)|| ^ Xp**i | | + (1 - X)p*x2 | | < e, 
i.e., 

Xxx+ (1 - \)x2 G V(0;Au...,An;e). 

LEMMA 3.2. If in a GIP space (££ ,sé ,J/ ) a topology is introduced in which 
the sets V(x;A; e) are neighbourhoods of x for all e > 0, A (is/, then the 
resulting topological space is Hausdorff. 

Proof. If the topological space is not Hausdorff, then there are at least two 
elements Xi, x2 G J£, Xi ^ x2, for which any two neighbourhoods have common 
points. Thus, for any V(xi;A; l/n) and V(x2;A; 1/n) there is at least one 
yn G Jzf such that 

ynev{x1;A;^v(x,;A;^). 

Therefore, 

IM(*i -30 l l < - , \\A(pct -yn)\\ <-, 
and we have that 

2 
I \A (xi - x2) 11 ̂  | \A (xi - yn) 11 + | \A (x2 - yn) \ \ < -. 

Since the above is true for any positive integer n, it follows that A (xi — x2) = 0. 
Since this conclusion is true for any A G s/, we obtain from Definition 2.1 
that Xi — x2 = 0, i.e. x± — x2, contrary to the assumption. 

THEOREM 3.1. In the strong topology on the GIP space (£? ,s/,JV ), defined 
as the topology in which the family of all sets V(x; Aly . . . , An; e), x G <=£f, 
e > 0, Ai, . . . , An G s/, n = 1, 2, . . . , constitute a neighbourhood basis,* the 
space ££ is a locally convex Hausdorff linear space. 

Proof. The above topology is compatible with the vector operations. For 
instance, the operation of vector summation is continuous since for any 
V(xi + x2; Ai, . . . , An; e) we have that 

yi + y* G V(xi + x2;A1, . . . , An; e) 

*If the GIP space is an inner product space with s/ = {1 j , this strong topology is the norm 
topology in ££. 
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whenever 

yi G V(XÛ Alt . . . , An; |e) , y2 G V(x2\Alt . . . , 4„ ; |e) 

since 

\\Ak(yi + J2 - X! - x2)\\ ^ \\Ak(yi - Xl)\\ + \\Ak(y2 - x2)\\ < | e + h = e, 

k = 1, . . . , n. 

Similarly, it is easy to show that the operation of multiplication by a scalar is 
continuous. 

In the resulting topology, *£ is Hausdorff according to Lemma 3.2, and is 
locally convex due to Lemma 3.1. 

COROLLARY. The sets V(0; A ; e) are absorbent. 

For the proof cf. (2, Chapter 1, Proposition 3(i)). 

THEOREM 3.2. The GIF space (J£,sif,J^) with the ultra-strong topology, in 
which the family of all sets 

CO 

F ( x ; i i , i 2 , . . . ; e ) = O V(x;Ak;e), Akes/,e>0, 
k=l 

form a neighbourhood basis, is a locally convex linear Hausdorff space. 

The proof of the above theorem is a slightly altered version of the proof of 
Theorem 3.1. 

Clearly, the ultra-strong topology is finer than the strong topology. 
In settling the important question of completion, it is very convenient when 

a topological vector space is metrizable. The following theorem covers a great 
number of practically important instances of GIP spaces. 

THEOREM 3.3. A GIP space with strong {ultra-strong) topology is metrizable if 
there is a countable subset 3§ of s/ which has the property that for any A G s/ 
there is a B in the linear manifold LB generated by 3!, such that 

(1) l|-Btf|| ^ \\M\ 

for all x G «jSf. 

Proof. We shall show that the family 

(2) J V(0', Bu . . . , Bk\ £ ) ; Blt . . . , Bk G ^ , k, n = 1, 2, . . . [ 

is a neighbourhood basis of the origin in the strong topology. 
For every A G s/ we can find, due to (1), a S G LB for which 

V(0;B;e) C V(0;A;e). 

As âê generates LBj we have that 

B = XiBi + . . . + X*B*, Bl9...,BkÇ:&, 
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and consequently 

P * | | è |Xi| \\B1x\\ + ... + |X*|||S**|| 

for all x 6 f£. Thus, if we choose an integer n such that 

i<-^- i< 
&|Xi| ' ' ' " ' M k\\k 

we have that 

F ( 0 ; 5 ; e ) D V[0;B1;2)r\...r\V[0;Bk; 

which shows that the family (2) is a neighbourhood basis of the origin. As the 
set (2) is obviously countable since 38 is countable, it follows (cf. 4, Chapter 1, 
Theorem 4) that ^£ is metrizable in the strong topology. 

The proof for the ultra-strong topology can be obtained in the same manner. 
In general, a composite GIP space is not a linear space. When we introduce 

topologies separately in each of the GIP spaces constituting a composite 
GIP space, then a special case is very desirable. 

Definition 3.1. The topologies on the GIP spaces constituting a composite 
GIP space are compatible if the corresponding topologies induced on the 
n u c l e u s ^ of the GIP space are equivalent. 

4. Strong topologies in special cases. 

PROPOSITION 4.1. The GIP space ^ 0 (Example 2.1) is metrizable in the strong 
and ultra-strong topology. 

Proof. Select the countable family 

SB = {£([», n + 1)): n = 0, ± 1 , ± 2 , . . .} 

of projectors from s/. We prove the proposition by showing that £8 fulfills 
condition (2) appearing in Theorem 3.3. 

If E(I) Ç s$, then / is a finite interval, and consequently, integers m\ and 
m2, m2 > mi, can be found so that 

mi 

/ C U [«,« + 1). 
n=m\ 

Therefore, we obviously have that for any x G f£ 

mi 

\\EiX)x\\ Ik \\Bx\\, B=Y. £ ( [ » , » + 1)), 
n=mi 

where B evidently belongs to the linear manifold generated by â&. 
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For the strong and ultra-strong topologies on the component GIP spaces 
S/*v and 5 ^ / oîS^(p,q)f in Example 2.2, we can prove the following results in a 
similar manner. 

PROPOSITION 4.2. The spaces S^p and Sf q
f are metrizable in the strong and 

ultra-strong topology. 

PROPOSITION 4.3. The ultra-strong topologies onff'/ and£fv' in the GIP space 
(q,P)f are compatible (cf. Definition 3.1 at the end of § 3) ; injV they are both 

equivalent to the norm topology. 

Proof. We prove the proposition by showing that the ultra-strong topology 
onS^v induces 'mJV a topology equivalent to the norm topology; the case of 
£fv

r can be treated in a very similar manner. 
In the norm topology of JV, the family of all sets TV(e) = {x: \\x\\ < e,x Ç:JV\ 

corresponding to all e > 0 constitutes a neighbourhood basis of the origin. 
Since | |£(7)x| | ^ ||x|| for any A = E(I) Ç J / ? , it follows that 

N(e) C F0(0; A ; e) for all i f < e > 0, 
where 

(3) V0(0;A;e) = {x: \\Ax\\ < e, x Ç,JV\, 

and consequently the norm topology is finer than the ultra-strong topology 
induced on 

On the other hand, 

lim \\Anx — x\\ = 0, An = E([ — n, n]), 

and consequently 

Vo(0\ AhA2,... ;e/2) = O V0(0;An; e/2) CiV(e), 

i.e., the induced ultra-strong topology is finer than the norm topology. Thus, 
they are equivalent. 

PROPOSITION 4.4. The strong topologies of y J and S^p in Sf (P,q) are not 
compatible, nor does one of these topologies induce onJV a topology which is finer 
than the topology induced by the other. 

Proof. If the topologies of Sf q and Sfp were compatible, then they would 
induce in J/ equivalent topologies. Thus, if, using the notation (3), 
Fo(0; E(I) ; e) is a neighbourhood of the origin oi^V in the topology induced in 

JV by the topology on JT'V, then it should contain some neighbourhood of the 
topology induced \w^¥ by the topology of j ^ 7 / . Such a neighbourhood has the 
most general form 

Ô V0(0;F(Ik);ek), F(Ik)£s*p. 
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But then we also have that 

(4) Vo(0; F(J); 5) C F0(0; £ ( / ) ; e), 

where 
n 

ô = min e*, J = U /*• 
k=l,...,n fc=l 

In order to see that (4) is not true, note that any x 6 ^K satisfying 

(5) ||£(/)x||2= J |x(£)|2# < € 

lies within F0(0; E(7) ; e). As / is a finite interval, we can consider functions 
x(p) which satisfy (5) but have a 5-like behaviour with a sharp peak outside I. 
The more such a function resembles the <5-function, the more will its inverse 
Fourier transform x{q) behave almost like a constant. By choosing an x\{p) 
satisfying (5) with a sufficiently high and sharp peak outside / , we can satisfy 
the inequality 

l*i(ff)I > W\J\)m for all g G 7, 

where \J\ is the sum of the lengths of all disjoint intervals constituting / . 
Consequently, we have that 

ll*V)*i|| = J \xi(q)\2dq> 8, 
and therefore 

* i € Fo(0; £ ( / ) ; € ) , x1 <g V0(P; F(J);ô), 

proving that (4) is false. Thus, the strong topology induced in<yK from 5 ^ / is 
not finer than the topology induced i n ^ fromj/V ; the converse can be proved 
in precisely the same manner. 

5. Dual spaces. If (J£\s$', JV) is a GIP space, we can assign to each 
i Ç j / and each £ G JV a linear functional 

*^M,f) = &Ax) 
on i f . Denote by~#0 the family of all such functionals. Note that, in general, 
^#o is not a linear space. 

THEOREM 5.1. The linear spaced {over the same scalar field as ££ ) spanned 
by^o and the linear spaced constitute a dual pair (cf. 4, Chapter II, § 3). 

Proof. If 4>(x) = 0 for all <t> G Jl, then 

({, Ax) = 0, 

for all £ G ^ and all 4̂ £ ^ . According to Proposition 2.2, the above implies 
that x = 0. 

Vice versa, if for a given <£0 6 «-^ we have that </>o(x) = 0 for all x £ <>#, 
then, by definition, $0 is the zero element of ^f. 
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W e introduce the nota t ion 

(0, x) = <£(x), <t> € - ^ , # 6 «£f • 

Obviously we have the following results . 

P R O P O S I T I O N 5.1. (<£, x) is a bilinear form on^t anàS£'. 

T H E O R E M 5.2. Each </> Ç ̂ # i s continuous on the vector spaced with the strong 
or ultra-strong topology. 

Proof. For a rb i t ra ry e > Owe have t h a t 

\<t>(x;A,!i) - 4>(xo)A,Z)\ = | (£, A (x - xQ))\ ^ | |g|| \\A(x - x0)\\ < e 

whenever 

\\A(x-x0)\\ < e/| |£| | , 
i.e. for all 

x e V(x0;A;e/M). 

Thus , each element o f ^ 0 is a cont inuous functional on f£ when j£f is supplied 
with the strong or ul t ra-s t rong topology. Hence, the cont inui ty of an a rb i t ra ry 
element of *Jé follows. 

T h e above proposition tells us t h a t , ^ is contained in the linear space con­
jugate to the space S£ with a s t rong topology. However, we can sometimes 
extend the above result, as in the following theorem. 

T H E O R E M 5.3. If the nucleus JV of a GIP space {J£\stf,JV ) is finite-
dimensional, then *J£ is isomorphic to the linear space conjugate to the space f£ 
with the strong topology. 

Proof. W e have to show t h a t \if{x) is a linear functional cont inuous o n i f 
provided with the s trong topology, then necessa r i ly / £ - ^ . 

Since fix) is continuous, for a given e, 0 < e < 1, we can find a s t rong 
neighbourhood V(0; Ax, . . . , Ak; 5) of the origin such t h a t \f(x)\ < e for all x 
from the above neighbourhood. 

On the other hand, as ^ K i s finite-dimensional, there is a basis £i, . . . , £n € ^ 
s p a n n i n g ^ . Consider the finite set of cont inuous linear functionals 

(6) <t>ij(x) = (£,, Ajx), i = 1, . . . , n, j = 1, . . . , k. 

If f(x) were independent of the above family (6) of linear functionals, then 
there would be an element Xi € J5f for which (cf. 4, p. 32, L e m m a 5) 

(7) /(tfi) = 1, * l l (* l ) = . . . = <t>nJc(Xl) = 0. 

Since £i, . . . , %n is a basis in.yf, the above would imply t h a t 

AiXi = . . . = AJCXI = 0, 

and consequently t h a t Xi belongs to the neighbourhood F ( 0 ; Ai, . . . , Ak\ ô). 
B u t if Xi belongs to F ( 0 ; Ai} . . . , Ak;ô), then \f(xi)\ < 1, which contradic ts 
the first relation in (7). 
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It is easy to find non-trivial examples of GIP spaces with finite-dimensional 
nuclei, i.e. examples for which JV ^ «if. For instance, choose <=£? to be the 
family of all one-row infinite matrices with real elements (ax, a2, . . .), and 
take JV to be the one-dimensional space of all one-row real matrices 
(ai, 0, 0, . . .) in which only the first element is non-vanishing. A d o p t i n g the 
customary inner product. If we choose 

s/= ( P . P | , 

where Pn is the linear operator 

Pn(au a2, . . . , On, • • •) = (a», 0, . . . , 0, . . .), 

then (J£,£/,<sV) constitutes a GIP space with a one-dimensional nucleus. 

6. Weak topologies. Following standard terminology, we call the coarsest 
topology on ££ in which all the linear functionals from ^é are continuous the 
weak topology. As is well-known (cf. 4, Chapter II, § 3), the family of all subsets 
ofif7 

W(Xo) 01, . . . , 4>n) = {XI |0i(x — Xo)\ < 1, . . . , \<t>n(x — XQ)\ < 1} 

corresponding to all 0i, . . . , <j>n £ ^ , n = 1, 2, . . . , is a neighbourhood basis 
of Xo £ ~5f. As^#o genera tes^ , the family of all neighbourhoods 

^ ( 0 ; { i , 4 i f „ 4 ) = {x: I tti, ^ i ^ ) | < l,...,\(l;n,Anx)\ < 1} 

corresponding to all £i, . . . , %n £ <JV, Ax, . . . , An Ç ja/, w = 1, 2, . . . , is also a 
neighbourhood basis of the origin. As S£ a n d - ^ are dual pairs (Proposition 
5.1), we have that ££ is a Hausdorff topological space in the weak topology. 
Due to the general properties of weak topologies we have the following result. 

PROPOSITION 6.1. The spaced provided with the weak topology is a locally 
convex Hausdorff vector space. 

We can define in a similar manner a topology on ££ given by the neighbour­
hood basis of each x0 G «if, where this neighbourhood basis is the family of all 
sets 

W(XÛ 0i , . . . , 0n, . . .) = {XI \<t>i(x - X0)\ < 1, . . . , \<t>n(x — X0)\ < 1, . . .} 

corresponding to all sequences 0i, . . . , 0n, . . . 6 ^ . We call the above 
topology the infra-weak topology. 

It is very easy to check that the infra-weak topology is compatible with the 
vector operations on «if. The sets W(x$', 0 I , . . . , 0n, . . .) are obviously convex. 
Furthermore, since the infra-weak topology is evidently finer than the weak 
topology, ££ is also separated under this topology. To summarize, we have the 
following result. 

PROPOSITION 6.2. The infra-weak topology onf£ is finer than the weak topology, 
and i f is a locally convex Hausdorff vector space in this topology. 
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A non-trivial example of an infra-weak topology is obtained when this 
topology is introduced in the space {</ J ,S$ ^J/ ) defined in Example 2.2. 
We then have the following result. 

PROPOSITION 6.3. The infra-weak topology on the GIP space (y/,^Q,^V) 
is finer than the topology induced in j / % ' by the topology on the Schwartz space 
y (see 5). 

Proof. For the topology induced in j / % ' by the topology of ¥', the family of 
all sets 

5 ( / i , . . . , /„; e) = {x: | * ( / i ) | < 6, . . . , | s ( / n ) | < e, x 6 9> {\ 

corresponding to all e > 0,/ i , . . . , /n G S^, n = 1 , 2 , . . . , constitutes a 
neighbourhood basis of the origin. According to the definition of S^q', to each 
x £ j ^ V corresponds a bounded piecewise continuous function x(p) such that 
for a n y / 6 y 

x(f) = f °° x(p)f(p) dp, 

where /(#>) is the Fourier transform of/. Thus, x Ç 5 ( / i , . . . , / n ; e) if and only 
if 

x(p)h(p) dp \ < e, . . . , x(p)fn(p) dp < e. 

By taking the countable set of elements £ik, i = 1, . . . , n, k = 0, ± 1 , 
defined by the square integrable functions 

->A;+2 

t*(P) = — x*G0/«G0, x*(*0 = u> t ^ < i + 1| 

0, p < kyp ^ k + 1, 

we see that 

with 

W(O;0i i ,*2 i , . . . ) C 5 ( / i , . . . , / n ; c ) 

namely, for any x £ TF(0; 0n, 02i, . . .) we have that 

VH-2 

f x(P)Jt(P) 
*> Ik 

dp = | (£ttl E(Ik)x) | < 1, i = 1, . . . , w, 

< €. 

and consequently 

x(p)ft(p)dp\ ^ Z x(p)ft{p)dp\ < f £ -, 

I t is easy to establish, however, that the weak topology on £f q' is neither 
finer nor coaser than the topology induced in £f Q' by the topology on £f". On 
the other hand, we have the following result. 
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PROPOSITION 6.4. The weak topology on(S^q'\stf' q,JV ) is finer than the topology 
induced in!ff'/ by the topology of the Schwartz space Q' ( the space of distributions 
on the space of all infinitely differentiate functions, on the real line, with compact 
support (5)). 

The proof of this proposition can be carried out in a manner analogous to the 
way of proving Proposition 6.3. 
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