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Artificial Intelligence

Key Technologies and Opportunities

Wolfram Burgard

i. introduction

Artificial Intelligence (AI) is a discipline that is concerned with the generation of software
systems that provide functions, the execution of which requires what is typically referred to by
the word intelligence. Thereby, the corresponding tasks can be performed by pure software
agents as well as by physical systems, such as robots or self-driving cars.

As the term ‘intelligence’ is already very difficult to define, the definition of AI is, of course,
correspondingly difficult and numerous definitions can be found in the literature.1 Among them
are several approaches that are based on human behavior or thinking. For example, the Turing
test2 introduced by Alan Turing in 1950, in which the actions generated by the system or robot
should not be distinguishable from those generated by humans, has to be mentioned in this
context. Such a Turing test for systems interacting with humans would then mean, for example,
that a human could no longer determine whether a conversation partner on the telephone is a
human or software.

However, most current AI systems aim to generate agents that think or act rationally. To
realize systems that think rationally, often logic-based representations and reasoning systems are
used. The basic assumption here is that rational thinking entails rational action if the reasoning
mechanisms used are correct. Another group of definitional approaches deals with the direct
generation of rational actions. In such systems, the underlying representations often are not
human-readable or easily understood by humans. They often use a goal function that describes
the usefulness of states. The task of the system is then to maximize this objective function, that is,
to determine the state that has the maximum usefulness or that, in case of uncertainties,
maximizes the future expected reward. If, for example, one chooses the cleanliness of the work
surface minus the costs for the executed actions as the objective function for a cleaning robot,
then in the ideal case this leads to the robot selecting the optimal actions in order to keep the
work surface as clean as possible. This already shows the strength of the approach to generate
rational behavior compared to the approach to generate human behavior. A robot striving for
rational behavior can simply become more effective than one that merely imitates human
behavior, because humans, unfortunately, do not show the optimal behavior in all cases. The
disadvantage lies in the fact that the interpretation of the representations or structures learned by

1 NJ Nilsson, Artificial Intelligence: A New Synthesis (1998); S Russell and P Norvig, Artificial Intelligence: A Modern
Approach (4th ed. 2016).

2 A Turing, ‘Computing Machinery and Intelligence’ (1950) 59 Mind 433.
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the system typically is not easy, which makes verification difficult. Especially in the case of safety-
relevant systems, it is often necessary to provide evidence of the safety of, for example, the control
software. However, this can be very difficult and generally even impossible to do analytically, so
one has to rely on statistics. In the case of self-driving cars, for example, one has to resort to
extensive field tests in order to be able to prove the required safety of the systems.
Historically, the term AI dates back to 1956, when at a summer workshop called the

Dartmouth Summer Research Project on Artificial Intelligence,3 renowned scientists met in
the state of New Hampshire, USA, to discuss AI. The basic idea was that any aspect of learning
or other properties of intelligence can be described so precisely that machines can be used to
simulate them. In addition, the participants wanted to discuss how to get computers to use
language and abstract concepts, or simply improve their own behavior. This meeting is still
considered today to have been extremely successful and has led to a large number of activities in
the field of AI. For example, in the 1980s, there was a remarkable upswing in AI in which
questions of knowledge representation and knowledge processing played an important role. In
this context, for example, expert systems became popular.4 Such systems used a large corpus of
knowledge, represented for example in terms of facts and rules, to draw conclusions and provide
solutions to problems. Although there were initially quite promising successes with expert
systems, these successes then waned quite a bit, leading to a so-called demystification of AI
and ushering in the AI winter.5 It was not until the 1990s when mathematical and probabilistic
methods increasingly took hold and a new upswing could be recorded. A prominent representa-
tive of this group of methods is Bayesian networks.6 The systems resulting from this technique
were significantly more robust than those based on symbolic techniques. This period also started
the advent of machine learning techniques based on probabilistic and mathematical concepts.
For example, support vector machines7 revolutionized machine learning. Until a few years ago,
they were considered one of the best performing approaches to classification problems. This
radiated to other areas, such as pattern recognition and image processing. Face recognition and
also speech recognition algorithms found their way into products we use in our daily lives, such
as cameras or even cell phones. Cameras can automatically recognize faces and cell phones can
be controlled by speech. These methods have been applied in automobiles, for example when
components can be controlled by speech. However, there are also fundamental results from the
early days of AI that have a substantial influence on today’s products. These include, for
example, the ability of navigation systems to plan the shortest possible routes8 and navigate us
effectively to our destination based on given maps. Incidentally, the same approaches play a
significant role in computer games, especially when it comes to simulating intelligent systems
that can effectively navigate the virtual environment. At the same time, there was also a
paradigm shift in robotics. The probabilistic methods had a significant impact, especially on
the navigation of mobile robots, and today, thanks to this development, it is well understood how
to build mobile systems that move autonomously in their environment. This currently has an

3 J McCarthy and others, ‘A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31,
1955’ (2006) 27(4) AI Magazine 12.

4 F Hayes-Roth, DA Waterman, and DB Lenat, Building Expert Systems (1983).
5 E Fast and E Horvitz, ‘Long-Term Trends in the Public Perception of Artificial Intelligence’ (2017) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI).

6 J Pearl, Causality: Models, Reasoning and Inference (2009) (hereafter Pearl, Causality).
7 VN Vapnik, Statistical Learning Theory (1998) (hereafter Vapnik, Statistical Learning Theory).
8 PE Hart, NJ Nilsson, and B Raphael, ‘A Formal Basis for the Heuristic Determination of Minimum Cost Paths’ (1968)
4(2) IEEE Transactions on Systems Science and Cybernetics 100 (hereafter Hart and others, ‘A Formal Basis for the
Heuristic Determination of Minimum Cost Paths’).
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important influence on various areas, such as self-driving cars or transport systems in logistics,
where extensive innovations can be expected in the coming years.

For a few years now, the areas of machine learning and robotics have been considered
particularly promising, based especially on the key fields of big data, deep learning, and
autonomous navigation and manipulation.

ii. machine learning

Machine learning typically involves developing algorithms to improve the performance of
procedures based on data or examples and without explicit programming.9 One of the predom-
inant applications of machine learning is that of classification. Here the system is presented with
a set of examples and their corresponding classes. The system must now learn a function that
maps the properties or attributes of the examples to the classes with the goal of minimizing the
classification error. Of course, one could simply memorize all the examples, which would
automatically minimize the classification error, but such a procedure would require a lot of
space and, moreover, would not generalize to examples not seen before. In principle, such an
approach can only guess. The goal of machine learning is rather to learn a compact function
that performs well on the given data and also generalizes well to unseen examples. In the context
of classification, examples include decision trees, random forests, a generalization thereof,
support vector machines, or boosting. These approaches are considered supervised learning
because the learner is always given examples including their classes.

Another popular supervised learning problem is regression. Here, the system is given a set of
points of a function with the task of determining a function that approximates the given points as
well as possible. Again, one is interested in functions that are as compact as possible and
minimize the approximation error. In addition, there is also unsupervised learning, where one
searches for a function that explains the given data as well as possible. A typical unsupervised
learning problem is clustering, where one seeks centers for a set of points in the plane such that
the sum of the squared distances of all points from their nearest center is minimized.

Supervised learning problems occur very frequently in practice. For example, consider the face
classification problem. Here, for a face found in an image, the problem is to assign the name of the
person. Such data is available in large masses to companies that provide social networks, such as
Facebook. Users can not only mark faces on Facebook but also assign the names of their friends to
these marked faces. In this way, a huge data set of images is created in which faces are marked and
labelled.With this, supervised learning can now be used to (a) identify faces in images and (b) assign
the identified faces to people. Because the classifiers generalize well, they can subsequently be
applied to faces that have not been seen before, and nowadays they produce surprisingly good results.

In fact, the acquisition of large corpora of annotated data is one of the main problems in the
context of big data and deep learning. Major internet companies are making large-scale efforts to
obtain massive corpora of annotated data. So-called CAPTCHAs (Completely Automated
Public Turing tests to tell Computers and Humans Apart) represent an example of this.10

Almost everyone who has tried to create a user account on the Internet has encountered such
CAPTCHAs. Typically, service providers want to ensure that user accounts are not registered en

9 TM Mitchell, Machine Learning (1997).
10 L Von Ahn and others, ‘CAPTCHA: Using Hard AI Problems for Security’ (2003) Proceedings of the 22nd

International Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT’03, 294.
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masse by computer programs. Therefore, the applicants are provided with images of distorted
text that can hardly be recognized by scanners and optical character recognition. Because the
images are now difficult to recognize by programs, they are ideal for distinguishing humans from
computer programs or bots. Once humans have annotated the images, learning techniques can
again be used to solve these hard problems and further improve optical character recognition. At
the same time, this ensures that computer programs are always presented with the hardest
problems that even the best methods cannot yet solve.

1. Key Technology Big Data

In 2018, the total amount of storage globally available was estimated to be about 20 zettabytes
(1 zettabyte = 1021 byte = 109 terabytes).11 Other sources estimate internet data transfer at
approximately 26 terabytes per second.12 Of course, predictions are always subject to large
uncertainties. Estimates from the International Data Corporation assume that the total volume
will grow to 160 zettabytes by 2025, an estimated tenfold increase. Other sources predict an
annual doubling. The number of pages of the World Wide Web indexed by search engines is
enormous. Google announced almost ten years ago that they have indexed 1012 different URLs
(uniform resource locators, reference to a resource on the World Wide Web).13 Even though
these figures are partly based on estimates and should therefore be treated with caution,
especially with regard to predictions for the future, they make it clear that huge amounts of
data are available on the World Wide Web. This creates an enormous potential of data that is
available not only to people but also to service providers such as Apple, Facebook, Amazon,
Google, and many others, in order to offer services that are helpful to people in other contexts
using appropriate AI methods. One of the main problems here, however, is the provision of data.
Data is not helpful in all cases. As a rule, it only becomes so when people annotate it and assign a
meaning to it. By using learning techniques, images that have not been seen before can be
annotated. The techniques for doing so will be presented in the following sections. We will also
discuss which methods can be used to generate this annotated data.

2. Key Technology Deep Learning

Deep learning14 is a technique that emerged a few years ago and that can learn from massive
amounts of data to provide effective solutions to a variety of machine learning problems. One of
the most popular approaches is the so-called deep neural networks. They are based on the neural
networks whose introduction dates back toWarren McCulloch andWalter Pitts in 1943.15 At that
time, they tried to reproduce the functioning of neurons of the brain by using electronic circuits,
which led to the artificial neural networks. The basic idea was to build a network consisting of
interconnected layers of nodes. Here, the bottom layer is considered the input layer, and the top

11 D Reinsel, J Gantz, and J Rydning, ‘Data Age 2025: The Evolution of Data to Life-Critical’ (IDC White Paper, 2017)
www.import.io/wp-content/uploads/2017/04/Seagate-WP-DataAge2025-March-2017.pdf.

12 Ibid.
13 J Alpert and N Hajaj, ‘We knew the web was big. . .’ (Google Blog, 2008) https://googleblog.blogspot.com/2008/07/we-

knew-web-was-big.html.
14 I Arel, DC Rose, and TP Karnowski, ‘Research Frontier: Deep Machine Learning – A New Frontier in Artificial

Intelligence Research’ (2010) 5(4) IEEE Computational Intelligence Magazine 1; Y LeCun, Y Bengio, and G Hinton,
‘Deep Learning’ (2015) 521 Nature 436.

15 WS McCulloch and WH Pitts, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’ (1943) 5 Bulletin of
Mathematical Biophysics 115.

14 Wolfram Burgard
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layer is considered the output layer. Each node now executes a simple computational rule, such
as a simple threshold decision. The outputs of each node in a layer are then passed to the nodes
in the next layer using weighted sums. These networks were already extremely successful and
produced impressive results, for example, in the field of optical character recognition. However,
even then there were already pioneering successes from today’s point of view, for example in the
No Hands Across America project,16 in which a minivan navigated to a large extent autono-
mously and controlled by a neural network from the east coast to the west coast of the United
States. Until the mid-80s of the last century, artificial neural networks played a significant role in
machine learning, until they were eventually replaced by probabilistic methods and, for
example, Bayesian networks,17 support vector machines,18 or Gaussian processes.19 These tech-
niques have dominated machine learning for more than a decade and have also led to numerous
applications, for example in image processing, speech recognition, or even human–machine
interaction. However, they have recently been superseded by the deep neural networks, which
are characterized by having a massive number of layers that can be effectively trained on modern
hardware, such as graphics cards. These deep networks learn representations of the data at
different levels of abstraction at each layer. Particularly in conjunction with large data sets
(big data), these networks can use efficient algorithms such as backpropagation to optimize the
parameters in a single layer based on the previous layer to identify structures in data. Deep
neural networks have led to tremendous successes, for example in image, video, or speech
processing. But they have also been used with great success in other tasks, such as in the context
of object recognition or deep data interpretation. The deep neural networks could impressively
demonstrate their ability in their application within AlphaGo, a computer program that defeated
Lee Sidol, one of the best Go players in the world.20 This is noteworthy because until a few years
ago it was considered unlikely that Go programs would be able to play at such a level in the
foreseeable future.

iii. robotics

Robotics is a scientific discipline that deals with the design of physical agents (robotic systems)
that effectively perform tasks in the real world. They can thus be regarded as physical AI systems.
Application fields of robotics are manifold. In addition to classical topics such as motion
planning for robot manipulators, other areas of robotics have gained increasing interest in the
recent past, for example, position estimation, simultaneous localization and mapping, and
navigation. The latter is particularly relevant for transportation tasks. If we now combine
manipulators with navigating platforms, we obtain mobile manipulation systems that can play
a substantial role in the future and offer various services to their users. For example, production
processes can become more effective and also can be reconfigured flexibly with these robots. To
build such systems, various key competencies are required, some of which are already available
or are at a quality level sufficient for a production environment, which has significantly
increased the attractiveness of this technology in recent years.

16 C Thorpe and others, ‘Toward Autonomous Driving: The CMU Navlab. I. Perception’ (1991) 6(4) IEEE Expert 31.
17 Pearl, Causality (n 6).
18 Vapnik, Statistical Learning Theory (n 7).
19 CE Rasmussen and CKI Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine

Learning) (2005).
20 D Silver and others, ‘Mastering the Game of Go with Deep Neural Networks and Tree Search’ (2016) 529 Nature 484.
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1. Key Technology Navigation

Mobile robots must be able to navigate their environments effectively in order to perform various
tasks effectively. Consider, for example, a robotic vacuum cleaner or a robotic lawnmower. Most
of today’s systems do their work by essentially navigating randomly. As a result, as time
progresses, the probability increases that the robot will have approached every point in its
vicinity once so that the task is never guaranteed but very likely to be completed if one waits
for a sufficiently long time. Obviously, such an approach is not optimal in the context of
transport robots that are supposed to move an object from the pickup position to the destination
as quickly as possible. Several components are needed to execute such a task as effectively as
possible. First, the robot must have a path planning component that allows it to get from its
current position to the destination point in the shortest possible path. Methods for this come
from AI and are based, for example, on the well-known A* algorithm for the effective computa-
tion of shortest paths.21 For path planning, robotic systems typically use maps, either directly in
the form of roadmaps or by subdividing the environment of the robot into free and occupied
space in order to derive roadmaps from this representation. However, a robot can only assume
under very strong restrictions that the once planned path is actually free of obstacles. This is, in
particular, the case if the robot operates in a dynamic environment, for example in one used by
humans. In dynamic, real-world environments the robot has to face situations in which doors are
closed, that there are obstacles on the planned path or that the environment has changed and
the given map is, therefore, no longer valid. One of the most popular approaches to attack this
problem is to equip the robot with sensors that allow it to measure the distance to obstacles and
thus avoid obstacles. Additionally, an approach is used that avoids collisions and makes dynamic
adjustments to the previously planned path. In order to navigate along a planned path, the robot
must actually be able to accurately determine its position on the map and on the planned path
(or distance from it). For this purpose, current navigation systems for robots use special
algorithms based on probabilistic principles,22 such as the Kalman filter23 or the particle filter
algorithm.24 Both approaches and their variants have been shown to be extremely robust for
determining a probability distribution about the position of the vehicle based on the distances to
obstacles determined by the distance sensor and the given obstacle map. Given this distribution,
the robot can choose its most likely position to make its navigation decisions. The majority of
autonomously navigating robots that are not guided by induction loops, optical markers, or lines
utilize probabilistic approaches for robot localization. A basic requirement for the components
discussed thus far is the existence of a map. But how can a robot obtain such an obstacle map? In
principle, there are two possible solutions for this. First, the user can measure the environment
and use it to create a map with the exact positions of all objects in the robot’s workspace. This
map can then be used to calculate the position of the vehicle or to calculate paths in the
environment. The alternative is to use a so-called SLAM (Simultaneous Localization and
Mapping)25 method. Here, the robot is steered through its environment and, based on the data
gathered throughout this process, automatically computes the map. Incidentally, this SLAM

21 Hart and others, ‘A formal basis for the heuristic determination of minimum cost paths’ (n 8).
22 S Thrun, W Burgard, and D Fox, Probabilistic Robotics (2005) (hereafter Thrun and others, Probabilistic Robotics).
23 RE Kalman, ‘A New Approach to Linear Filtering and Prediction Problems’ (1960) ASME–Journal of Basic

Engineering 35.
24 D Fox and others, ‘Monte Carlo Localization: Efficient Position Estimation for Mobile Robots’ (1999) Proceedings of

the Sixteenth National Conference on Artificial Intelligence (AAAI) 343.
25 Thrun and others, Probabilistic Robotics (n 22).

16 Wolfram Burgard

https://doi.org/10.1017/9781009207898.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009207898.003


technique is also known in photogrammetry where it is used for generating maps based on
measurements.26 These four components: path planning, collision avoidance and replanning,
localization, and SLAM for map generation are key to today’s navigation robots and also self-
driving cars.

2. Key Technology Autonomous Manipulation

Manipulation has been successfully used in production processes in the past. The majority of
these robots had fixed programmed actions and, furthermore, a cage around them to prevent
humans from entering the action spaces of the robots. The future, however, lies in robots that are
able to robustly grasp arbitrary objects even from cluttered scenes and that are intrinsically safe
and cannot harm people. In particular, the development of lightweight systems27 will be a key
enabler for human–robot collaboration. On the other hand, this requires novel approaches to
robust manipulation. In this context, again, AI technology based on deep learning has played a
key role over the past years and is envisioned to provide innovative solutions for the future.
Recently, researchers presented an approach to apply deep learning to robustly grasp objects
from cluttered scenes.28 Both approaches will enable us in the future to build robots that coexist
with humans, learn from them, and improve over time.

iv. current and future fields of application and challenges

As already indicated, AI is currently more and more becoming a part of our daily lives. This
affects both our personal and professional lives. Important transporters of AI technology are
smartphones, as numerous functions on them are based on AI. For example, we can already
control them by voice, they recognize faces in pictures, they automatically store important
information for us, such as where our car is parked, and they play music we like after analyzing
our music library or learning what we like from our ratings of music tracks. By analyzing these
preferences in conjunction with those of other users, the predictions of tracks we like get better
and better. This can, of course, be applied to other activities, such as shopping, where shopping
platforms suggest possible products we might be interested in. This has long been known from
search engines, which try to present us with answers that correspond as closely as possible to the
Web pages for which we are actually looking. In robotics, the current key areas are logistics and
flexible production (Industry 4.0). To remain competitive, companies must continue to opti-
mize production processes. Here, mobile robots and flexible manipulation systems that can
cooperate with humans will play a decisive role. This will result in significantly more flexible
production processes, which will be of enormous importance for all countries with large
manufacturing sectors. However, robots are also envisioned to perform various tasks in
our homes.

By 2030, AI will penetrate further areas: Not only will we see robots performing ever more
demanding tasks in production, but also AI techniques will find their way into areas performed

26 P Agarwal, W Burgard, and C Stachniss, ‘Survey of Geodetic Mapping Methods: Geodetic Approaches to Mapping
and the Relationship to Graph-Based SLAM’ (2014) 21(3) IEEE Robotics & Automation Magazine 63.

27 G Hirzinger and others, ‘On a New Generation of Torque Controlled Light-Weight Robots’ (2001) 4 Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) 3356.

28 J Mahler and others, ‘Dex-net 1.0: A Cloud-Based Network of 3d Objects for Robust Grasp Planning Using a Multi-
Armed Bandit Model with Correlated Rewards’ (2016) Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) 1957.
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by people with highly qualified training. For example, there was a paper in Nature that
presented a system that could diagnose skin cancer based on an image of the skin taken with
a cell phone.29 The interesting aspect of this work is that the authors were actually able to
achieve the detection rate of dermatologists with their deep neural networks-based system. This
clearly indicates that there is enormous potential in AI to further optimize processes that require
a high level of expertise.
With the increasing number of applications of systems relying on AI technology, there is also a

growing need for the responsibility or the responsible governance of such systems. In particular,
when they can impose risks for individuals, for example in the context of service robots that
collaborate with humans or self-driving cars that co-exist with human traffic participants, where
mistakes of the physical agent might substantially harm a person, the demands for systems
whose behavior can be explained to, or understood by, humans are high. Even in the context of
risk-free applications, there can be such a demand, for example, to better identify biases in
recommender systems. A further relevant issue is that of privacy. In particular, AI systems based
on machine learning require a large amount of data, which imposes the question of how these
systems can be trained so that the privacy of the users can be maintained while at the same time
providing all the necessary benefits. A further interesting tool for advancing the capabilities of
such systems is fleet learning, learning in which all systems jointly learn from their users how to
perform specific tasks. In this context, the question arises of how to guarantee that no system is
taught inappropriate or even dangerous behavior. How can we build such systems so that they
conform with values, norms, and regulations? Answers to these questions are by themselves
challenging research problems and many chapters in this book address them.

29 A Esteva and others, ‘Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks’ (2017) 542(7639)
Nature 115.
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