
J. Functional Programming 6 (1): 75-109, January 1996 © 1996 Cambridge University Press 75

Proving the correctness of compiler optimisations
based on a global analysis: a study of strictness

analysis^

GEOFFREY BURN
Department of Computing, Imperial College of Science, Technology and Medicine,

180 Queen's Gate, London SfV7 2BZ, UK

DANIEL LE METAYER
Irisa/Inria, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

A substantial amount of work has been devoted to the proof of correctness of various
program analyses but much less attention has been paid to the correctness of compiler
optimisations based on these analyses. In this paper we tackle the problem in the context
of strictness analysis for lazy functional languages. We show that compiler optimisations
based on strictness analysis can be expressed formally in the functional framework using
continuations. This formal presentation has two benefits: it allows us to give a rigorous
correctness proof of the optimised compiler; and it exposes the various optimisations made
possible by a strictness analysis.

Capsule Review

Burn and Le Metayer assume that the results of strictness analysis are available to a compiler,
and that the strictness analysis is correct. Given this information, the authors show how it can
be used by a compiler written using the continuation passing style in a functional language.
The transformations that use the strictness information are then proven to be correct.

This paper is likely to be of interest both to those working in the area of compiler
optimisation and to readers interested in correctness proofs for non-trivial programs written
in a functional language.

1 Introduction

Realistic compilers for imperative or functional languages include a number of
optimisations based on non-trivial global analyses. Proving the correctness of such
optimising compilers can be done in three steps:

* Correspondence regarding this paper should be addressed to the second author. The first
author was partially funded by ESPRIT BRA 3124 (Semantique) and SERC grant GR/H
17381 (Using the Evaluation Transformer Model to make Lazy Functional Languages
more Efficient). The second author was on leave from Inria and was partially funded by
the SERC Visiting Fellowship GR/H 19330.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

newgen
Inserted Text
spondenc

https://doi.org/10.1017/S0956796800001581

76 G. Burn and D. Le Metayer

1. Proving the correctness of the original (unoptimised) compiler.
2. Proving the correctness of the analysis.
3. Proving the correctness of the modifications of the simple-minded compiler to

exploit the results of the analysis.

A substantial amount of work has been devoted to steps (1) and (2), but there
have been surprisingly few attempts at tackling step (3). In this paper we show how
to carry out this third step in the context of optimising compilers for functional
languages which use the results of 'strictness' analysis.

There are two ways we might want to use strictness information in compiling lazy
functional languages:

(a) changing the evaluation order to evaluate an argument expression instead of
passing it as an unevaluated closure; and

(b) compiling functions which know their arguments have been evaluated, so that
the argument can be passed explicitly, rather than as a closure containing a
value in the heap (i.e. 'unboxed' rather than 'boxed').

Translating programs into Continuation-Passing Style (CPS) allows us to express
both uses of strictness information because:

(a) a cps-translation captures the evaluation order of expressions; and
(b) a closure is essentially a value waiting for a continuation which uses it.

The main results of this paper are three cps-conversions, which use strictness
information to generate better code, and are proven to preserve the semantics of
programs. Any of these can then replace the cps-translation phase in the compiler
described in Fradet and Le Metayer (1991), so that we can demonstrate an optimising
compiler which has been proved correct.

We start by showing how simple strictness information can be used to change
evaluation order (section 2.1). This is then extended in two orthogonal ways: first,
we give a cps-conversion where functions can be compiled knowing that some of
their arguments have been evaluated (section 2.2); and second, we express how the
evaluation order can be changed in more complicated ways for structured data types
such as lists (section 3).

A consequence of the second cps-translation, described in section 2.2, is that the
type of a translated function makes explicit whether or not an (evaluated) argument
is being passed in a closure in the heap (i.e. whether or not it is 'boxed'); important
information for a compiler-writer. This appears to be a natural alternative to that
given in Peyton-Jones and Launchbury (1991) for expressing the boxed/unboxed
distinction.

In the translation rules, we state what properties must hold in order to use
particular rules. Safe approximations to these properties can be determined using
established program analyses.

A survey of related work can be found in section 4, and section 5 reviews the
benefits of this approach and identifies areas of further research.

We would like to stress that translating programs into continuation-passing style
as an early stage in a compiler is of more than theoretical interest. Steele was

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 77

The set T of types is the least set defined by:

{bool, int) e T
i r , i6T=> {a->T) e T
a eT => {list a)e T

The type system of Ar

(1) x" : a (2) K : a

Ei : <T-»T, £2 : a ... E : x

(3) W

(5)

(£i £2) : T

fixa £ : cr
Abstract Syntax of Aj

if(,oo,_>(J_><T_>ff

, l,nI, 2j m, . . .} plus,n,_,n r^t a headt o „_«,

,s, ff^i,j, ^ tail/i5t a_/fs, „

The Constants of Ar

Fig. 1. Definition of the language \T-

the first to show that it was beneficial to do this for Scheme programs in his
seminal work on the Rabbit compiler (Steele Jr., 1978). Some of the most efficient
implementations of Scheme (Kranz et al., 1986; Kranz, 1988) and ML (Appel,
1992) use cps-translation. This experience suggests that it might be worthwhile
using cps-translation in compilers for lazy functional languages. The alternative
cps-translations we have given in this paper could be used in such a compiler to
produce better code. For example, they can be used in the context of Fradet and Le
Metayer (1991) to produce a correct optimising compiler.

2 Using simple strictness information

Figures 1 and 2 describe the syntax of our functional language and its semantics.
Note that we use lifted function domains. This is consistent with most implementa-
tions of lazy functional languages which evaluate expressions as far as Weak Head
Normal Form (WHNF) (no evaluation inside lambda abstractions) (Gunter, 1992,
Chapt. 4). The functions lift and drop are used to map values from a domain to its
lifted counterpart (and vice versa).

Our starting point is an adaptation of the compiler described in Fradet and Le
Metayer (1991). The key feature of this compiler is the fact that it is described
entirely within the functional framework as a succession of transformations. This
makes its correctness proof easier to establish.

We need only consider the first step of the compiler here, which is the call-
by-name cps-transformation, given in Figure 3. The transformation captures the

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

78 G. Bum and D. Le Metayer

SB = some domain for the base type B

S(i/JW) = List Sa

Semantics of the Types

S [xa] p = p x"

S [k j p = KS [ko]
S P i £2] p = drop (S [£ ,] p) (S p 2] p)
S [Ax".£] p = ///t (/WESff.S [£] p[d/x°])
S [fix,, £] p = [_L0 drop (S

Semantics of the Language Terms

Fig. 2. The semantics of AT.

U [inr] = int — unboxed values
U Ibool^ = boot
U la -> t] = C [T] -> B [«7] -> Ans
U l(list <r)] = (B [<T] x B [(/ist <x)]) + m7
C [cr] = U [cr] —> Ans — continuations
B [c] = C [<T] —»Ans — boxed values

Translation of Types

^V [X] = x
./K [0] = Xc.c 0 (and similarly for all integers and booleans)
JV [plus] = Xc.c(Xc\.Xx.c\ {Xc2.Xy.x(Xm.y(Xn.pluscC2mn))))
JV [if £, £2 £3] = XCJV [£,] (ifc (JT [£2] c) (JT [£3] c))

JT [nil] = Ac.c nil
J/~ [cons] = Xc.c (Xc\.Xx.C\ (Ac2.A_y.consc c2 x y))
Jf [head] = Xc.c (Xcj.Xx.x (AD.head v C\))
JT [£[£2] = XC.JV P I] (Xf.f c (JT p2]))

yT [Ax.£] = Xcc (Xclx.jV [£] c)
^ [fix, (Xx.E)J = fixBM (Ax.̂ K p])

Translation of Terms

plusc c m n = c (plus wi n)
ifc £1 £2 = Au.if u £1 £2
consc c £1 £2 = c (cons £1 £2)

Fig. 3. The call-by-name cps-conversion.

call-by-name computation rule because the translation of an application indicates
that the argument is passed unevaluated to the function. The important point about
Jf \E\ is that it has at most one redex outside the scope of a lambda, which means
that call-by-value and call-by-name coincide for the translated term (Plotkin, 1975).
Furthermore, this redex is always at the head of the expression (Fradet and Le
Metayer, 1991), and the expression can be reduced without dynamic search for the
next redex, just like machine code.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 79

We should mention at this stage another possibility for passing the continuation
as an extra argument to a lambda abstraction. We could have chosen to pass it as
the second argument of the new function rather than passing it as the first argument.
This is expressed as follows:

JT' Ux.E] = Xc.c {Xx.Xc.Jf' [£] c).

This rule can be simplified by ^-conversion into:

JT' Ux.El = Xc.c {Xx.Jf' [El]).

The rule for application becomes:

JT p , £2] = Ac/T [Ed (Xf.f (JT1 lEil) c).

Passing the continuation as the second argument is quite common in the litera-
ture, see (Appel, 1992; Danvy and Hatcliff, 1993; Reynolds, 1974; Plotkin, 1975) for
instance, but the continuation in first position also occurs in Fisher (1972, 1993),
Flanagan et al. (1993) and Sabry and Felleisen (1993). The above simplification
rule for lambda abstraction suggests that passing the continuation as the second
argument sometimes leads to a more compact representation. This potential ad-
vantage seems to disappear when administrative redexes (redexes introduced by the
translation process) are systematically reduced as shown in Danvy and Hatcliff
(1994) and Sabry and Felleisen (1993). In any case, the impact of this choice is
not significant for the results presented here. Our choice was motivated by the fact
that the work described in this paper is part of a broader project for the design
of a complete compiler described as a succession of transformations (Fradet and
Le Metayer, 1991; Giorgi and Le Metayer, 1990). Having the continuation in first
position allows us to produce machine code without leaving the purely functional
framework. The head function becomes the next instruction to execute and the
(contiguous) continuation is the rest of the code. The interested reader is refered
to Fischer (1993) and Danvy and Hatcliff (1994) for further discussions on this
choice.

We have left the types off the translated terms for clarity. Ans is the type of
answers. The result of translating an expression of type a is an expression of type
B \a\ = C \o\ —> Ans. This can be stated formally by Theorem 2.2.

Definition 2.1. If p is a type environment, then its transformation Jf \p\ is defined
by the rule:

p h x : a
JV M I" x : B |[ff]|

Theorem 2.2
p\- E :a

jr M 1- # PI : B M

Expressions of type C flcr] = U [ffj —> Ans are continuations: they take the result
of evaluating an expression of type U fl/r]] into an answer. Meyer and Wand (1985)

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

80 G. Burn and D. Le Metayer

first showed that the type of the cps-translation of an expression could be derived
from the type of the original expression.

Each primitive operator op has a cps version opc. For instance plusc performs the
addition and passes the result to its continuation. We also use primitive eq in the
example in section 3; it is treated in the same way as plus.

Let us take a small example to illustrate this transformation and expose the
potential sources of inefficiency:

F = Ax.plus x 1

E = F (plus 2 7).

We first show the application of the rules of Figure 3 to F and E:

J/^FJ = Jf [Ax.plus x 1]
= Xcc(Xc.Xx.Jf [plus x 1] c)
= Xcc F\

F\ = Xc.Xx.Jf [plus x 1] c
= Xc.Xx.Jf [plus x] {Xf.f c (Jf HI]))
= Xc.Xx.Jf [plus x] {Xf.f c (Xc.c 1))
= Xc.Xx.(Xc.Jf [plus] (Xf.f c (Jf [x]»)(/l/./ c (Xc.c 1))
= XC.XX.JV [plus] (Xf.f (Xf.f c (Xcc 1)) (Jf [x]))
= Xc.Xx.jr [plus] (Xf.f (Xf.f c (Xc.c 1)) x)
= Xc.Xx.x (Im.plusc c m 1)

= Jf IF (plus 2 7)]
= kc.Jf \F\ (Xf.f c (Jf [(plus 2 7)1))
= XcFx c (Jf [(plus 2 7)])
= Ac.Fi c (XcJf [plus 2] (A/./ c (Jf [7])))
= Ac.Fi c (Xc.Jf [plus 2] (1 / . / c (Xc.c 7)))
= Ac.Fi c (Xc.(Xc.Jf [plus] (A/./ c (^ [2]))) (Xf.f c (Xc.c 7)))
= Xc.Ft c (Xc.(Xc.Jf [plus] (Xf.f c (Xcc 2))) (Xf.f c (Xc.c 1)))
= te.Fi c (XcJf [plus] (Xf.f (Xf.f c (Xcc 7)) (Xc.c 2)))
= Xc.Fx c (Ac.(plusc c 2 7))

We implicitly reduce the administrative redexes introduced by the translation
process. The interested reader can find in Danvy and Filinski (1991) and Sabry and
Felleisen (1992) techniques for the systematic elimination of administrative redexes.

The application of Jf [£] to some continuation k gives rise to the following (/}
and t\) reductions:

(Xc.Fi c (/Lc.(plusc c 2 7))) jk
->+ Fi k (Ac.(plusc c 2 7))
->+ (Xc(plnsc c 2 7)) (Am.plusc k m 1)
—** plusc (Am.plusc k m 1) 2 7
— • » (Am.plusc fcral)9
^ * plusc fc 9 1
-^» fe 10

We note that F\ is passed the unevaluated argument (/x.plusc c 2 1) which is

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 81

& W = x
Sf ffkj = ^ [kj
^ [if £, £2 £3]) = Ac.5̂ P i] (ifc (5" p 2] c) (? p 3 j c))
^ P i £2] = te.Sf p 2] (/ly.y P !] (A/./ c (Ace »)))

ifVp : drop (S p ,] p) _L = ±
= Xc.se JE,] (A/./ c (^ P2]))

otherwise
Sf \lx.E\ = Ac.c {Xclx.Sf p i c)
^ [fix, (Ax.£)I =

Translation of Terms

Fig. 4. The cps-conversion using simple strictness information.

immediately evaluated in the body of F\ (fourth reduction). This cost of passing
an unevaluated argument may be significant in terms of computation time and
in terms of memory consumption (it may even change the order of magnitude of
memory complexity of the program). A more efficient computation rule would be to
evaluate the argument of the function before the call, provided this does not change
the semantics of the program. This is the case if the divergence of the argument
implies the divergence of the function application, or in other words, the function
is strict. Strictness analysis can detect a subset of the cases when this condition is
satisfied.

Evaluating the argument before the function call can be expressed in the following
way for our example, S? \E\ = /.c.plusc {Xv.Fy c (Xc.c v)) 2 1 and the application of
this to k can be reduced as follows:

(Ic.plusc (-to.fi c {Xc.c v)) 2 7) k
- •> p lusc (h).Fy k (2.c.c v)) 2 1
- » (/b.Fi k {Ice v)) 9
- H . F, k (Ace 9)
—>• (Xc.c 9) (Am.plusc k m 1)
—** (A m . p l u s c k m 1) 9
—*> plusc k 9 1
-» k 10

This version is more efficient in terms of space consumption because the closure
which is passed as an argument to Fi now represents an evaluated argument. There
is still room for improvement, however, because we have not exploited the fact that
F\ will be passed an evaluated closure in the compilation of F. Using this property
we can now compile F and E in the following way:

Sf \F\ = Ice F2

F2 = Ac.Ax.plusc c x 1
Sf IEJ = Acplusc (F2 c) 2 7.

The reduction of this expression avoids the unnecessary creation of a closure and

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

82 G. Burn and D. Le Metayer

its evaluation in the body of F2:

(Ac.plusc (F2 c) 2 1) k
-» plusc(F2fc)2 7
- » F 2 k9
—** plusc fe 9 1
-»• fc 10

In fact, for this particular expression E, if' IE] is what is produced by the compi-
lation rules for call-by-value (Fradet and Le Metayer, 1991).

It is also important to note that the types of the transformed terms give us
significant information. The type of F\ is

C lint] -> B Hint]] -> Ans

(= U lint -* intj), whilst the type of F2 is

C lint] -> U lint] -> Ans.

In implementation terms, a value of type B la] must be represented in the heap
and accessed indirectly through the stack, whereas a term of type U la] can be
represented directly on the stack if a is a basic type. This distinction has been called
boxed versus unboxed representation in Peyton Jones and Launchbury (1991). In our
framework B la] denotes a boxed implementation of a and U la] is an unboxed
representation of a, so that the 'boxedness' of a value can be determined from its type.

These optimisations are presented more formally in the next two subsections.

2.1 Changing the evaluation order

An improved cps-translation using simple strictness information is presented in
Figure 4. We make the following observations about the rules:

1. Jf IE] and if IE] have the same type, and a similar theorem to Theorem
2.2 can easily be proved.

2. The key rule is the translation of application. There are two cases to consider:

— when the functional expression is strict (the first rule), then the argument
can be evaluated before the functional expression. In cps-conversion, this
is expressed by putting the translation of the argument expression at the
front of the converted expression. The continuation in this case picks up
the value, wraps it into a closure {Xc.c v) (i.e. boxes the value), and then
proceeds to evaluate the functional expression as before. Although the test
given in the rule is not effective, many analyses have been developed which
can find a subset of the cases when it holds (see Benton, 1992; Burn et al.,
1986; Jensen, 1992a; Kuo and Mishra, 1989; Mycroft, 1981; and Nielson,
1988, for example).

— when the functional expression is not strict (second rule), the translation
has the same structure as the call-by-name cps conversion, but uses the if
conversion scheme so that strictness information can be used in translating
subexpressions.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 83

We illustrate the new transformation with the computation of Se p i and Sf \E\
where F and E are the expressions introduced above. Note that the resulting
expression corresponds to the result of the first optimisation as presented at the
beginning of this section.

SflFJ = Sf K/bc.plus x I]]
= Xc.c{Xc.Xx.Se [[plus x II c)
= Xc.c F[

F[= Xc.Xx.Se [[plus x II c
= Xc.Xx.Se [[II {Xv.Se [[plus xj (Xf.f c {Xc.c v)))
= Xc.Xx.{Xc.c 1) {Xv.Se [[plus xl (A/./ c {Xc.c v)))
= Ac.Ax.y [[plus x] (A/./ c (Ac.c 1))
= Ac.lx.(Ac.y [[xl (At).^ [plus] {Xf.f c {Xc.c v)))){Xf.f c {Xc.c 1))
= Xc.Xx.{Xc.x {Xv.Se [plus] (A/./ c (Ace u))))(A/./ c (Ac.c 1))
= Ac.Ax.x {Xv.Se ([plus]] (A/./ (A/./ c (Ac.c 1)) (Ac.c u)))
= Xc.Xx.x (Au.plusc c v I)

^ t t £] = Se IF (plus 2 7)1
= Xc.Se [[pius 2 71 {Xv.Se [F] (A/./ c (Ac.c »)))
= Ac.(Ac.plusc c 2 7) (Aw.^ |[F]| (A/./ c (Ac.c »)))
= Ac.plusc (Ai;.^ [F] (A/./ c (Ac.c i>))) 2 7
= Ac.plusc {Xv.F[c {Xc.c v)) 2 1

The correctness of this translation is expressed by the following theorem (0 de-
notes the empty environment). We do not prove it because it follows as a corollary
of the more general translation presented in section 3.

Theorem 2.3 For all closed terms E: S \Sf [£]] 0 = S \Jf [[£11 0.

2.2 Unboxed values

Looking at the two rules for application in Figure 4, we can see that E\ is compiled
in the same way in both cases; it is expecting a closure as an argument. This means
that when the argument is evaluated before the call and returns the value v, a closure
Xc.c v has to be built to encapsulate this value.

The compilation rules in Figure 5 allow values to be passed unboxed. We can
see from the first rule for application that the transformation S/" encodes the same
evaluation order as Sf; all that has changed is that some values are passed unboxed.
How this is done will now be explained.

First we need a new collection of types U'/ \a\, C'/ flal and B'/ [[<rl which are
defined like U [a l , C \a\ and B \a\ except for the two rules for U'/ \<J -> T] . This
is because we need to distinguish, in a function type, boxed arguments and unboxed
arguments. The subscript / is a set containing the positions of unboxed arguments
in the function type. Let us consider, for example, the translation of a term of type
int —> int —» bool where the first argument is to be passed boxed and the second
unboxed. This is achieved by calculating C\2} lint -»• int -» bool] as follows:

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

84 G. Burn and D. Le Metayer

U',
U';

u',

u',
c,
B',

[m£]
Ibooll
[a -> T]

llist aj
[cr]
Iff]

= int
= bool

1 r*t IT T1 = O (<icc /) 0.TJ
= C'(<tec „ [Tl
= U llist ff]
= U', Iff]) -»
= C ; [a]] —>

Translation

inc / = {i +
dec / = {i —

1 - • U [ff] -

hBH-

Ans
Ans

of Types

l|«"e/}
l | i G / A i >

• Ans if 1 G /
• Ans if 1 ^ /

1}
convf : B [a] -> B'; [a]

y / K Ix] = convf (/Ice x) if x : U [aj e F
= convf x if x : B [ff] ^ F
= x ifx :B' , [ff]

9" I V P I = ^T [OJ (and similarly for other basic values)
9" I V IplusJ = kc.c (Aci.Ax.Ci (Ac2.A.y.phisc c2 x y))

if 1 e / A 2 € /
= Ac.c (Acj.Ax.ci (Ac2.Ay.x (Am.plusc c2 wi y)))
if 1 g / A 2 G /
= Ac.c (Aci.Ax.Ci (Ac2.Aj;.)' (Am.plusc c2 x m)))
if 1 G / A 2 £ /
= Ac.c (Aci.Ax.ci (Xcj.ky.x (hn.y (An.plusc c2 m «))))
if 1 ^ / A 2 g /

^ / V [if £, £2 Ed = te.9" 0 K [£,Il(ifc [ST I V [£2]] c) (5" / K [£3]1 c))

^" / F [cons]] = ^T [cons]

^" / F [head] = kc.c (Aci.Ax.(conv(dec ;) (head x)) c,) if 1 € /
= Ac.c (Aci.Ax.x(Au.(conv(,k,.;) (head v)) C\)) if 1 ̂ /

9" I V [£, £2] = kc.9" 0 F [£2] (kv.9" ({1} |J(wc /)) F [£,] (A/./ c »))
ifVp :drop(S [£i]I p) ± = i.
= AcS<" (inc /) F [£ ,] (kf.f c (9" 0 F [£2]))
otherwise

y / F [Ax.£] = kc.c (kc.kx.9' (dec I) (V\J{x}) [£] c) if 1 G /
= kc.c (kc.kx.9' (dec I) (V \ {x}) [£] c) if 1 £ /

9" I V [fix, (Ax.£)]
= sel, ,^w(flx (A(x, : B ' , [a l , . . . , x n : B', loj).(&" h Vl lE'J...,9' In Vn [£

Translation of Terms

Fig. 5. The cps-conversion using strictness and evaluation information.

C'{2} lint -> int -»• fcoo/J

= U'{2} Ci>Ji —• i«t —* boolj —» Ans

= (C'{!} [[int -»• feoo/J - » B lintl - » Ans) -»• Ans

= ((U'{i} IIi«t ^ boolj -> Ans) - ^ B Hint] -»• Ans) ^ Ans

= (((C'o EbooZ]) ^ U linq -v Ans) -> Ans) -* B dinr]) -» Ans) - • Ans

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 85

C'e poo/] is the type of the continuation, U ftintj is the type of the second argument,
which is unboxed because 2 is in the initial subscript, and B |])>jtj is the type of the
first argument, which is boxed.

It is easy to see that:

U'0 M = U (M)

C0 M = C Iff]

B'0 M = B H<r]

The compilation rule 9" takes two extra arguments. In compiling the body of
some lambda-term, we need to know which free variables will be unboxed, and the
set V contains the names of these variables. Whether or not an expression is to be
passed unboxed is decided when translating an application, but at that point we
do not know which formal parameter the argument expression will be bound to
(consider translating (. ..(Axi Xxm.D) £i) ... £„). The set / records the numbers
of the arguments which are passed unboxed. We can understand the use of / and
V as follows. In an application (£i £2), if £2 is passed unboxed, we record the
fact by putting a 1 into the set /. Whichever rule for application is chosen, the nth
argument to (£1 £2) is the (n+ l)st argument to E\. This means that all the indices
currently in / have to be incremented. If in translating (Xx.E) we find that 1 is in
/, then the value bound to x is being passed unboxed, and so x is added to V so
that the appropriate rule can be chosen when translating variables. If it is not being
passed unboxed, then x has to be removed from V because of the scoping rules for
a lambda-term. Since the (n + \)st parameter to Xx.E is the nth parameter to £, all
the values in I have to be decremented.

Notice that each function may be compiled in several different ways, depending
on the calling context. Figure 5 gives the four different ways that an application
of plus can be compiled. There is clearly an engineering decision to be made about
how many versions of code should be produced for a function.

Some functions are compiled when their application context is not known (for
example, functions which are passed as arguments to another function, or functions
in a list), but they may be applied in a context where their argument has been
evaluated. When such a function is applied (either because it is the closure bound to
a variable, or because it is the result of applying head to a list of functions), it has
to be converted to take an unboxed argument. This is accomplished by the function
conv;, which is defined as follows.

Definition 2.4

conv? : B [[a] — B', [[<J]

conv? = XH : B [CTJ.AC : C, laJ.H (Wtt c I)

Wa : C , Ha] -> lntset -> C 1<JJ

Wa c 0 = c

Wx^a cl = XF.c (Ac. Xv.F (Wa c (dec I)) {Xc.c v)) if I £ I
W^acl = XF.c (Ac. Xv.F (Wa c [dec /)) v) if I <£ I.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

86 G. Burn and D. Le Metayer

(Wa c I) is passed as the continuation of the expression to be converted. It is
responsible for reconstructing the expression with the new type. Let us take a simple
example to illustrate the definition of conv/. We have:

JV Px.pliis x 1] = Xc.c(Xc.Xx.x (Am.plusc c m 1))
: B lint -> mf]

9" {1} 0 [Ax.plus x 1] = ic.c(/lc./lx.plusc c x 1)
: B'{1} lint -> i«t]]

The first equality was established at the beginning of this section and the second
one is shown below. We apply conv'/j'f*"" to Xc.c(Xc.Xx.x (Xm.p\usc c m l)) and show
that it returns Ac.c(/lc.Ax.plusc c x 1).

comf{fim(Xc.c(Xc.Xx.x (/lm.plusc c m 1)))
= (XH.Xc.H (Wint^im c {i]))(Xc.c(Xc.Xx.x (A m . p l u s c c m l)))
= { X H l c . H (XF. c (Xc. Xv. F c ()x. c v)))){Xc.c(Xc.Xx.x (A m . p l u s c c m l)))
= /lc.(/lc.c(Ac.Ax.x (Am.plusc c m \)))(XF. c (Xc. Xv. F c (Xc. c v)))
= Xc.(XF. c (Xc. Xv. F c (Xc. c v)))(Xc.Xx.x (lm.plusc c m 1))
= Xc.c(Xc.Xv.plnsc c v 1)

So convm"*"" translates a function expecting a boxed argument into a function
expecting an unboxed argument.

The types are made explicit only when they are useful. Variables of type B'/ [CTJ
(in the third case of the rule for variables) are fixed point variables.

A simpler version of the rule for the fixed point operator would be:

Sf IV pxff (Ax.£)] = fix (Xx.9" IV\E\)

This rule is not sufficient, however, because the variable being fixpointed may appear
in several different contexts in E. This justifies the more complicated rule given in
Figure 5. For any program, there are only a finite number of contexts, because both
/ and V contain at most as many elements as the largest arity of a function in a
program. For 1 < i < n, the variable x, stands for x in the context /, and Vt, and
E'k is obtained from E by replacing each occurrence of x by the appropriate x,. The
function sel/.K selects the term from the n-tuple returned by the fixed point which
corresponds to the context / and V.

We use again the expression E and F defined above to illustrate £/". Note that the
result of this translation is indeed the expression we were aiming at at the beginning
of the section.

9" 0 0 \E\ = y 0 0 IF (plus 2 7)1
= Xc.9" 0 0 [plus 2 7] (Xv.9" {1} 0 \¥\ (Xf.f c v))
= Xc.(Xc.plusc c 2 1) (Xv.9" {1} 0[[FI (Xf.f c v))
= Ac.plusc (Xv.r {1} 0 P I (Xf.f c v)) 2 1
= Ac.plusc (Xv.(Xc.c F2) (Xf.f cv))2 1
= /.c.plusc (XV.F2 c v) 2 1
= Ac.plusc {Fi c) 2 1

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 87

& {1} QlFl=#" {1} 0[Ax.plus x 1]
= Xc.c{Xc.Xx.9" 0 {x} [[plus x 1] c)
= Xc.c F2

F2 = Xc.Xx.9" 0 {x} [plus x 1] c
= Xc.Xx.2" 0 {x} [I] {Xv.9" {1} {x} [plus x] (A/./ c «))
= Ac./lx.(Ac.c 1) {Xv.9" {1} {x} [plus x] (A/./ c »))
= Xc.Xx.9" {1} {x} [plus x] (A/./ c 1)
= Ac.Ax.(Ac.̂ ' 0 {x} [x] {Xv.9" {1,2} {x} [plus](A/./ c v))){Xf.f c 1)
= Xc.Xx.{Xc.9" {1,2} {x} [plus] (Xf.f c x))(Xf.f c 1)
= lc.ix.sr {1,2} {x} [plus] {Xf.f {Xf.f c 1) x)
= Ac.Ax.plusc c x 1

The well-typing of translated terms is established by the following theorem:

Definition 2.5 / / p is a type environment, then its transformation &" v [p] is de-
fined by the rule:

p\- x : a x & V p\- x : a x $ V
9"v [p] h x : U [ff] yVM^:B [a]

Theorem 2.6

p\- E :a

: B'7

It is easy to see that if\ [p] = Jf [p].
The correctness of i?" is formulated in the following theorem, which is proved in

Appendix 1.

Theorem 2.7 For all terms E : a,

S \9" I V [£]] p = S [conv? (Sf [£])] (BoxK p),

where Boxy boxes basic values which are unboxed.

3 Using more sophisticated evaluation information

The previous section exposes the optimisations made possible when evaluation order
could be changed, but took no account of how much evaluation could be done to
an expression; expressions were only evaluated to WHNF. However, it is clear
that some functions require more evaluation of their arguments. For example, the
function reverse denned by:

reverse x = rev x nil
where
rev = fix {Xf.Xx.Xy.if (eq x nil) y (/ (tl x) (cons (hd x) y)))

must traverse the whole of its argument list before it can return a result in WHNF.
Moreover, the amount of evaluation required of an argument in an application

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

88 G. Burn and D. Le Metayer

depends on the amount of evaluation required of the application. For example, if
we tried to sum all the elements in the list (reverse E), then not only does the
structure of E have to be traversed, but all the elements of E have to be evaluated
as well.

We call the amount of evaluation required of an expression the evaluation context
of the expression. A number of useful evaluation contexts such as head-strictness
or tail-strictness have been defined in the literature and several analyses have been
proposed to derive context information automatically (Burn, 1991b; Jensen, 1992b;
Leung and Mishra, 1991; Nielson and Nielson, 1992; Wadler and Hughes, 1987;
Wadler, 1987). However, the various ways of exploiting this context information
within a compiler have never been described formally and little work has been done
on assessing their effectiveness. We show in this section how these optimisations
can be described formally in our framework. We stress the fact that our goal is to
expose and prove the possible optimisations but we do not take any position on
which of these optimisations should really be integrated within a compiler. This last
issue depends on a number of lower level implementation decisions and is better
addressed by an experimental study1'.

An evaluation context can be specified by the set of terms whose evaluation would
fail to terminate in that context. For example, evaluating an expression to WHNF
will fail to terminate if and only if the expression has no WHNF; and the context
representing the evaluation of the structure of a list expression will contain infinite
lists and lists having a bottom tail at some point because a program evaluating the
structure of such lists would fail to terminate. In general such an evaluation context
should have two properties:

(a) if the evaluation of some term fails to terminate, then the evaluation of all
terms whose semantics is less defined than that term should fail to terminate;
and

(b) if the evaluation of all expressions which approximate some term fails to
terminate, then it should fail to terminate for the term itself.

Scott-closed sets capture denotationally the two properties that we require of an
evaluation context (Burn, 1991a).

Definition 3.1 (Scott-closed set) A set S is Scott-closed of a domain D if

1. it is down-closed, that is, ifVdeD such that 3s e S such that d Qs, then d G S;
and

2. ifX^S and X is directed, then \JX € S.

We only consider non-empty Scott-closed sets in this paper.

Results from some initial experiments investigating this question can be found elsewhere
(Finne and Burn, 1993).

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 89

ST V iQjM =* UxgV
= Xij if x € V

sr V i Qj |[kj = Jf I M if ka + if
ST V i Qj [if £, £2 £3I

= lc.9- V 0 {±.SbJ IE,]) (ifc (^ V i Qj I£2] C) (3T V i Qj [£3] c))

K 0 P p 2] (/te-T F (i + 1) Qj [£ ,] (A/./ c (/tec »)))
if Vp, Vu0 e P, Vui, . . . , iij : drop(...(drop(S P ^] p)i70) ...)«.•€ 6 ;

= Xc.9- V (i + 1) 6 , [£ ,] (/I/./ c (T V 0 {±S(;} [£2]]))
otherwise

3T VOQj Px.£] = -Ice (Xclx.ST F 0 { i s } \E\ c)
F V (i+i)Qj Ux.El = Xc.c (lc.lx.g- V iQj |[£] c)
9- V i Qj Iflxa (Ax.Ejft

= sel,j(fix (k(xhh,...,xinjn).(^ W h Qj, [£] , ..., ^ W in Qjn [£]))))
where W = V \J{x}

Fig. 6. The cps-conversion using Scott-closed set information.

The key idea behind the transformation rules denned in Figure 6 is the following
fact, sometimes known as the Evaluation Transformer Theorem (Burn, 1991a, The-
orem 7.5).

Fact 3.2 Let S and T be Scott-closed sets. If it is safe to evaluate the appli-
cation (Ei Ei) in the context T, and we know that for all s € S, S ([£1]] p s G T,
then it is safe to evaluate £2 in the context S.

The key intuition about safety is that the evaluation of an expression fails to
terminate when being evaluated in the context Q if and only if the semantics of the
expression is in Q. It is important to note that the Evaluation Transformer Theorem
does not establish a unique context S for evaluating the argument expression; it
says that any context satisfying the condition is acceptable.

If £ : a is the program to be compiled, its translation is 9~ 0 0 {_L§ } \E\.
The third argument to the translation function &~ is the evaluation context for
the expression, so this rule says that the evaluation of the program is to fail to
terminate if and only if its denotational semantics is bottom, which is what we
would expect.

The first argument to the translation rule ST collects the set of fixed point variables
as these need to be distinguished from lambda-bound variables when proving the
correctness of this translation. The second argument to ST is introduced for the same
reason that caused us to introduce the sets / and V in the translation in Figure 5: i
counts the number of argument expressions passed over in order to reach £, and so
the evaluation context Qj concerns £ applied to i arguments, not £ itself. When the
translation of some term is started, i has the value 0. Again the rules for application
and lambda-abstraction complement each other: the first increments the value of i,
and the second decrements it.

The translation rules make no restrictions on the evaluation contexts which can

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

90 G. Burn and D. Le Metayer

be used. However, an implementation will have to choose a finite, and probably
small, number of evaluation contexts for compiling each function in a program,
because each extra evaluation context for a function means another version of
the code has to be produced for that function. Furthermore, these contexts should
correspond to useful evaluation modes for the various data types used in the
program.

We can now give intuitions about some of the translation rules:

1. The type of 3T V i Qj [[£]] is the same as the type of Jf \E\.
2. The translation rule for the conditional forces the evaluation of E\ to WHNF,

and then passes the evaluation context to whichever of £2 and £3 is chosen for
evaluation. Similar rules can be defined for any selection function (e.g. case)
which first evaluates a discriminating expression and then chooses to evaluate
a particular expression based on the value of the evaluated expression.

3. There are two rules for translating an application. The first one is used when
the argument expression can be evaluated, and the condition for applying it
is derived from the Evaluation Transformer Theorem (Fact 3.2). Note that

— the evaluation context P is any context, selected from the set of contexts
chosen for the implementation, which satisfies the Evaluation Transformer
Theorem;

— (S [[£1]] p) is applied to (i + 1) arguments in the test to get a value in Qj;
(£1 £2) had to be applied to i arguments, and so E\ has to be applied to
O+i);

— the translation of £2 is given 0 for its second argument; and
— the test in the rule is clearly not effective. However, many program analyses

have been presented in the literature which can determine safe approxima-
tions to the information (see Mycroft (1981), Burn et al. (1986), Wadler
and Hughes (1987), Hunt (1991), Jensen (1992a) and Leung and Mishra
(1991), for example).

The second translation rule for application is used when there is to be no
change of evaluation order. Note that the expression £2 is compiled with
evaluation context {_L§ } because we do not know if any evaluation will be
done to the expression, but if it is, then the expression has to be evaluated to
at least WHNF, and we cannot guarantee that any more evaluation will be
allowed.

4. There are two rules for translating a lambda-abstraction. The first is used
when the lambda-abstraction is either the top-level term or some argument
expression. In this case Qj must be {±§ }, because functions can only be
evaluated to WHNF, and the body of the lambda-abstraction is treated in
the same way as the argument expression is dealt with in the second rule
for application. The second is used when a lambda-abstraction has been
found after passing over a number of argument expressions. Note that the
evaluation context is passed into the translation of the body of the lambda-
abstraction.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 91

5. The rule for fixed points is again quite complicated, for similar reasons to
those discussed in section 2.2. A simpler rule would be:

ST V i Qj [[fix, (Ax.£)]| = fix {Xx.ST V i Qj [[£11)

which would make the first argument of ST unnecessary. This rule is not
satisfactory because an occurrence of the fixpoint variable may be applied to
varying numbers of arguments in £, and an application of the fixpoint variable
may appear in a number of different evaluation contexts. As an example of
the second problem, consider the translation:

ST V 0 {±SJ [fix (lf.lx.if £, {ignore (/ E2)) (/ £3))I,

where ignore is a function which ignores its argument, so that applications of
/ are in two different evaluation contexts: one which does no evaluation, and
one which evaluates an expression to WHNF. As with the rule in section 2.2,
for 1 < j < n, the variable xy stands for x in in the context where it is applied
to i arguments and has evaluation context Qj. The function sely selects the
term from the n-tuple returned by the fixed point which corresponds to i and
the evaluation context Qj.
There is one more important point to note about the fixed point rule: there
could be an infinite number of contexts for applications of the fixpoint variable
in a particular program. The rule we have given assumes that a finite set of
contexts has been chosen for a particular program, as discussed earlier in this
section.

Further intuition about how the rules for application and abstraction interact can
be obtained by pondering on the following example. Suppose we are calculating
3~ V 0 Qj [[£]] where £ is the expression (Xx\ Xxn.D) E\ ...£„. Using the rule
for application n times, and then the rule for lambda-abstraction n times, then part
of the term from the translation of £ will be 2T V 0 Qj [[£)]], which says that the
inner application is to be evaluated in the context given by Qj. This corresponds to
passing the evaluation context to a tail-call.

To illustrate the transformation ST, let us consider two common evaluation con-
texts BOT and INF (Burn, 1991a; Wadler, 1987). BOT contains only _L and
INF is the Scott-closed set containing all infinite lists and lists ending with a
_L. In operational terms, BOT is the context corresponding to the evaluation up
to WHNF and INF is the context indicating the evaluation of the whole struc-
ture of the expression. We assume that the transformation relies on a strictness
analyser which is powerful enough to show that (see Wadler (1987) for such an
analyser):

Vx e Sa, Vy e INF. cons x y e INF

Vxe/NF. reverse x€ BOT

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

92 G. Burn and D. Le Metayer

We show how the expression reverse (cons e\ e2) is transformed by

T{ = ST 0 0 BOT [reverse (cons ex e2)\
0 0 INF [[(cons e, e2)] T2

T2 = Xv.ST 0 I BOT [reverse^ {Xf.f c {Xc.c v))
Ti = Xc.{Xc.$- 0 0 INF le2j {Xv.ST 0 1 INF [[cons e j (Xf.f c (Xc.c v)))) T2

= Xc.3T 0 0 INF Ifol (*».#" 0 1 /WF [cons e iJ (A/./ T2 (Ac.c »)))
= AcT 0 0 INF le2j

(Xv.(Xc.$- 0 2 /NF dcons] {Xf.f c {ST 0 0 BOT |[ei]|)))(A/./ T2 {Xc.c «)))
= Ac.^ 0 0 INF He2]]

(A».^ 0 2 /NF Hcons] (A/./ (A/./ T2 (Ac.c v)) {F 0 0 BOT lex\)))
= Xc.£T 0 0 INF le2l (Ai>.consc T2 (3T 0 0 5 0 7 Ifo]) (Ac.c 1;))

The result shows that e2 is executed first, with evaluation context INF (which
means that the whole structure of e2 can be computed). The result of the evaluation
is then passed to consc with the unevaluated argument e\. This is the expected
evaluation order since reverse cannot produce any result if e2 is an infinite list. This
contrasts with ei whose termination should not affect the termination of the whole
expression (so its evaluation has to be postponed).

The following theorem gives the correctness of our translation. It states that
translating a term with &~ gives essentially the same result as translating it with Jf.
The proof of this theorem is presented in Appendix 2.

Theorem 3.3 For all closed terms of ground type E : a,
S13T0O {±SJ ([£]]] 0 = S IJT P I 0.

4 Related work

As mentioned in the introduction a number of papers have been devoted to step
(1): proving the correctness of the original compiler (Schmidt, 1980; Wand, 1982;
Nielson and Nielson, 1988; Dybjer, 1985; Morris, 1973; Mosses, 1980; Thatcher
et al, 1981; Lester, 1987; Lester, 1988; Cousineau et al, 1987; Fradet and Le
Metayer, 1991); and step (2): proving the correctness of the result of the analysis
(Cousot and Cousot, 1979; Cousot and Cousot, 1992b; Cousot and Cousot, 1992a;
Burn, 1991b; Nielson, 1989; Wadler and Hughes, 1987; Leung and Mishra, 1991;
Jensen, 1992a; Benton, 1992).

Some of the work devoted to the proof of step (1) include a number of local
optimisations (such as peephole optimisations), but very few consider optimisations
relying on a global analysis. The latter are more difficult to validate because they
involve context-dependent transformations. The only papers addressing this issue,
to our knowledge, are Nielson (1985) and Gerhart (1975). The second paper is
concerned with partial correctness and relies on program annotations and theorem-
proving methods. The first paper considers a simple imperative language and a
collecting semantics associating with each program point the set of states which
are possible when control reaches that point. It does not seem that this method
is directly applicable to strictness analysis because only a weak equivalence is

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 93

obtained in the case of a backwards analysis (whereas termination is the crucial
issue in the correctness proof of strictness-based optimisations). Also, their methods
deal with local transformations where strictness-based optimisations involve global
modifications of the program.

The works that are closest in spirit to this paper are Lester (1988) and Danvy
and Hatcliff (1993). The first states a correctness property of an optimisation based
on strictness analysis in the context of combinator graph reduction on a version of
the G-machine. The result, however, is limited to simple strictness (corresponding
to section 2.1 of this paper), and it is expressed in terms of low-level machine
steps. The second also studies the exploitation of strictness information in the
context of a Continuation Passing Style compiler. The compilation is described as
a composition of two transformations: the first stage introduces explicit suspension
constructs derived from the strictness annotations; and the second phase is the
traditional call-by-value CPS transformation. The main departure from our work
is the way strictness information is expressed in the programs. They assume a
type checker to guarantee the well-foundedness of the annotations. Also the fact
that the second phase is a call-by-value CPS transformation entails that evaluated
values are systematically passed unboxed. As in Lester (1988), only simple strictness
information is considered.

A less thoroughgoing attempt at this problem is also presented in Burn (1991b),
which shows that the operational model underlying the transformation given in
Figure 6 is correct. It also shows how to use this information in compiling code for
an abstract machine, but the correctness of the code was not considered.

5 Conclusion

A great number of techniques and optimisation methods have been proposed in the
last decade for the implementation of functional languages. These techniques are
more and more sophisticated, leading to more and more efficient implementations of
functional languages. However, it is difficult to give a formal account of the various
proposed optimisations and to state precisely how these many techniques relate to
each other. This paper can be seen as a first step towards a unified framework
for the description of various implementation choices. In the future we propose to
make several extensions to this work, including: taking more context into account
in compiling a function application; making use of another sort of evaluation
information; and studying the extension of unboxing to non-basic types. We briefly
explain each of these in the following paragraphs.

The rule for compiling applications loses the fact that E\ is applied to £2 when
compiling the body of E\. This can be seen most clearly where the test for changing
the evaluation order is given, where the function is applied to i arbitrary arguments,
rather than any arguments it was already applied to (c.f. the concept of 'context-
sensitive' evaluation transformers in (Burn, 1991b, Sect. 5.3)).

Projection-based analyses can also give information of the form: 'this argument
cannot be evaluated yet, but if it is ever evaluated, then do so much evaluation
of it' (Burn, 1990). Again we should be able to modify the rule for application

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

94 G. Burn and D. Le Metayer

to accommodate this. Instead of using ST V 0 {±§ } \E-j\ in the case that the
argument expression cannot be evaluated, this can be changed to 2T V 0 P ([£2]]
where P is the Scott-closed set that represents how much evaluation can be done to
the expression if it is evaluated.

Finally, we have only considered unboxed values for basic types. There seems
to be no consensus in the implementation community about the most suitable
notion of 'unboxedness' for structured data types such as lists. We believe that the
methodology of this paper can help expose and explore the various possible options.

Appendix A

In this appendix we prove Theorem 2.7 which establishes the correctness of the
transformation £f" presented in section 2. We first recall this theorem and give the
definitions of Boxv and conv;. Boxy applies to environments and is used to replace
any unboxed value by the corresponding boxed value. V is the set of unboxed vari-
ables. The function convf transforms an expression of type B [[cr] into an expression
of type B'; [[cr]]. / is the set of argument positions for which unboxed values are
going to be supplied, so if a is of function type, then comf (SP [£]]) is a new
expression which accepts these arguments unboxed.

Theorem A.1 For all terms E : a,

S 19" I V [[£]] p = S Qconvf p]|)J (Boxv p).

Definition A.2
(Boxy p) x = boxa(p x) if x : a G V

= x if x <£ V

boxa

boxa x
U Iff]] -» B Iff]
Xc.c x

Definition A.3

wa

convf
convf

Wa c 0
Wz-,a c I =

: B Iff] - * B'/
= XH : B \d\Jkc : C, [<x]|JJ {W, c 1)

C'/ KffB ->Intset-+C M
c
XF.c (Xc. Xv.F (Wa c {dec I)) (Xc.c v)) if 1 € /
XF.c (Xc. Xv.F (Wa c (dec /)) v) if 1 g /.

We prove Theorem A.I by structural induction on E. For the sake of conciseness,
types are often omitted when not really useful. Syntactic and semantic values of

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 95

basic operators are distinguished using respectively boldface and italics fonts (as in
convf and convf).

1. 9" I V [x] = convf (Xc.c x) if x : U [<x] G V
= convf x if x : B [a] £ K
= x if x : B'/ |[ff]l.

Let us assume x : U Up-]] G K (the other cases are similar).

S 1ST I V M I p = S [conv? (Xc.c x)J p
= convf (Ice (p x))

S [conv? (x)] (Box,/ p) = convf (Xc.c (p x)),

2. ^ " / K [plus] = Ac.c [Xcilx.ci (Xc2ly.?\\isc c2 x y))
if 1 e / A 2 G /
= Xc.c (2ci.2x.ci (Xc2-Xy.x (Am.plusc C2 m y)))
if 1 g / A 2 G /
= /Ice (Aci./lx.ci (/lc2.A_y._y (Im.plusc C2 x m)))

if 1 G / A 2 g /
= Ac.c (lci.Ax.ci (Ac2.Ay.x (Am._y (In.plusc C2 m n))))
if 1 ^ / A 2 £ J .

We consider only the case 1 ̂ / A 2 G / , the other cases can be treated in a
similar way. Let int3 = int —* int —> int.

S [[conv^3 (^ Ux.Xy.plus x yj)] (5oxp, p)
= com;<2'v3(/'-c.c (Aci.Ax.ci (^./ly.x (Am.y (Xn.plusc c2 m n)))))

= Xc.(Wc {2}) (Aci.Ax.ci (Ac2.Aj'.x (Xm.y (Xn.plusc ci m n))))
= Xc.{XF.c (Xc.F{Wc {1}))) (Aci.lx.ci (Xc2.Xy.x (Xm.y (An.plusc c2 m n))))
= Xc.c (Xc.Xx.(Wc {1}) (Xc2.Xy.x (Xm.y (Xn.plusc c2 m n))))
= Xc.c (Xc.Xx.c (Xc.Xv. (Xc2.Xy.x (Xm.y (Xn.plusc c2 m «))) c (Xc.c v)))
= Xc.c (Xc.Xx.c (Xc.Xv.x (Xm.(Xc.c v)(Xn.plusc c m n))))
= Xc.c (Xc.Xx.c (Xc.Xv.x (Xm.plusc c m v)))
= S 19" {2} V [plusl p.

3. y IV W Ei E2 Ei\=Xc.y" 0 V IEIWC(S>" I V lE2lc)(?" I V lE3lc))

S [[conv, (Sf pf £, E2 £3J)]| (Boxv p)
= S [[conv, (Ac.^ |[£i]| (ifc (^ E£2]| c) (^ E£3I c)))I (Sox,, p)
= conv,(Xc.S 1ST \E\Jfr (Boxv p)

(ifc((S W \EM (Boxy p))c)((S W \EM (Boxy p))c)))
= XcS IS? lEiB (Boxy p)

(ifc((S W IE2\1 (Boxy p))(W c /))((S ISf E£3]I (Sox^ p))(W c /)))
= XcS [[conv0(^ |[£i]|)]| (BoxK p)

(ifc((S ttconv,(^ |[£2]|)]| (BoxK p)) c)((S Econv,(^ [E3])]) (Boxv p)) c))
= AcS Ey" / F [if £ , £2 £311 P

from the induction hypothesis.

A. &» IV [cons] = ^ [cons].
We must have / = 0 in this case (because cons is not strict) and convq, = id
implies the desired result.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

96 G. Burn and D. Le Metayer

5. 9' I V [[head] = Xc.c (Xci.Xx.(con\{dec n (head x)) a) if 1 € /
= Xc.c (Xc\.Xx.x(Xv.(con\^ec i) (head v)) ci)) if 1 ̂ /.

Let us consider the case l e / .

S [conv/ (^ [head])]] (BoxF p)
= convi{Xc.c (Xci.Xx.x (Xv.head v c\)))
= Xc.(W c l){Xci.Xx.x (2v.head v ci))
= Xc.c (Xc.Xv.(Xc.c v)(Xv.head v (W c (decl))))

(since l e i)
= Xc.c (Xc.Xv.head v (W c (decl)))
= Xc.c (Xc.Xv.conv(dec i)(head v)) c)
= S 19" I V [[head]]] p.

6. 9' IV \EX E2] = Ac?" 0 V E£2] (A».^; ({1} \J(inc I)) V [E,] (A/./ c v))
ifVp :drop(S [£!] p) ± = ±
= Ac.^' (inc /) F [£ , I (Xf.f c (&' 0 F
otherwise.

We consider first the case Vp : drop (S [Ei] p) J_ = 1.

S llconv, (9 IEi £2])] (BoxK p)
= conv,(Xc.S 19 IE2E {Boxv p)

(Xv.S 19 \Ey\\ (Boxv p) (Xf.f c (Xc.c »))))
= Ac.S 19 IE2B (Boxy p)

(Xv.S \9 [£1]] (Boxy p) (Xf.f (W ci) (Xc.c v)))
= XcS Econv0(^ |[£2])] (Boxy p)

(Xv.S ttconv({1}(j(|.nc [})(9 IEIM (Boxy p) {Xf.f c v)).
This is because:

9 ttconv({1}|j(i.nc n)(9 P I D K B O X K p) (A/./ c v)

= (XcS 19 [£,](W c ({l}U(»nc O))I (BoxK p)) (A/./ c 1;)
= S 19 E£i]] (Box,, p) (W (Xf.f c v)({l} \J(inc I)))
= S19 IEIB (Boxy p) (Xf. (Xf.f c v)(Xc.Av.f (W c I)(Xc.c »)))
= S 19 IEIM (Boxy p) (Xf.f (W c I) (Xc.c v)).

The desired result follows from the derivation above by structural induction.
Let us now consider the second case in the rule for application.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 97

S [convj (Sf P i E2M (Boxv p)
= conv,(Xc.S W P i l l (Boxv p) (1/./ c (S \9 p2]|]| (Boxv p))))
= Ac.S E^ P i U (BoxK p) (A/./ (W c 7) (S I ^ p2] |] | (Boxy p)))
= Ac.S [conv(inc /)(*" Pi])] | (BoxK p)

(A/./ c (S Econv0(^ p 2])] | (5O*K p)))
This is because:

S |[conv(tae /) (^ [[£!])] (BoxK p) (A/./ c (S Econv^ p 2 j)] | (Boxy p)))
= (Ac.S H^ IE,]] (BOXK p)

(W c (inc l)Wf.f c (S Econv0(^ [£2]])] (BOxK p)))
= S IS? IEIB (Boxy p)

(W (A/./ c (S Econv0(^ [[£2]])I (Boxy p))) (me /))
= S | [^ p ,]] (5oxK p)(A/./ (W c /) (S [[conv0(^ p a l)] (BoxK p)))
= S [[^ p,])]] (BoxK p) (A/./ (W c /) (S W p2] |] | (BoxK p))).

And the desired result follows from the derivation above by structural induc-
tion.

7. 9" IV Ux.El = Xc.c (lclx.9" (dec I) (V \J{x}) P] c) if 1 € /
= Xcc (Xclx.2" (dec I) (V \ {x}) P J c) if 1 g /.

We consider only the case 1 £ / (the other case can be proven in the same
way, replacing v by Xcc v).

S [conv, {& Ux-EM (Boxy p)
= conv,(Xc.c (Xc. Xv.S 1ST [[£]]] ((Boxv p)[v/x]) c))
= Xc.(W c I) (Xc. Xv.S W \EU ((Boxy p)[v/x]) c)
= Xcc (Xc Xv.(Xc. Xv.S \Sf P I J ((Boxy p)[v/x]) c)(W c (dec l))(Xcc v))
= Xcc (Xc. XvS \y PJ]] ((Boxy p)[(Xc.c v)/x])(W c (dec I)))
= Xcc (Xc. XvS [conv^ ,(£f PJ)]] Box(v\j{x})(p[v/x]) c).

This is because:
S dconv^ ,{se P D J Box(Ky{x})(p[»/x]) c

= S ([^ p] | J ((BOXK p)[feox(i;)/x])(W c (dec /)).

The result then follows by structural induction.
8. 9" I V Jfixo (Ax.£)]

= sel/,K\{x}
(fix (A(x, : B'/ (I(7]l,...,xn : B', MH^' h Vx IE%...,$" /„ Vn

S Econv/ (5^ Efixff (Ax.£)]])]] (BoxK p)
= conv,(fixa(Xv.S IS? p]] (BoxK\{x} (p[o/x]))))

S (1^" / K [fix, (Ax.£)]]]| p
= seh,v\{x) (f^ Wfii • B'/ E<r]],...,t;n : B'/ E<r]).

(S 19" /, K, P ' l p[»,/x,],...,S 1^ ' /„ Kn p ' l p[»,/x,]))).

We prove the desired result by fixed point induction using the property

P(AIV,B,V) <s> (A,y =

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

98 G. Burn and D. Le Metayer

The base case (P(±,±) = _L) is obvious. We assume P(Aiv,Biv) and we
show P(F(Aiv), G{Biv)) with F and G the transformers associated with the
fixed point rules for Sf" and SS, respectively. The result is derived by structural
induction, making use of the fixed point induction hypothesis.

Appendix B

In this appendix we prove Theorem 3.3, which establishes the correctness of the
transformation ff presented in section 3. The essential difference between transfor-
mations Jf and ff~ lies in the rule for application. The rationale behind the proof
is that S W V i Q [[£]]] p' cannot be more defined than S \Jf \E\\ p (where p
and p' are related environments) and the two expressions may differ only when
S \E\ p~ € Q. This captures the intuition that the evaluation of the expression
transformed by ff in a particular evaluation context may fail to terminate only if
the semantic value of the expression belongs to the Scott-closed set defining the
evaluation context. When Q = {±§ }, V — 0, i = 0, p = p' = 0 we get:

S Iff- 0 0 {±SJ IEM 0 E S \Jf \E\\ 0;

from Theorem B.7, and

S 1ST 0 0 {±SJ IEB 0 = S IJf [£]]] 0 or S \E\ 0 = ±s^

from Theorem B.I6.
Using a simple lemma (Lemma B.3) and these two theorems, we are able to conclude
the desired result. It may seem strange that we have to prove Theorem B.7, because
Theorem B.I6 is stronger. However, the former is needed to prove the latter.

Before embarking on the proof, we make three important notes:

1. We assume that all the quantifications are over appropriately typed terms.
2. We do not put lift and drop in the statements of the theorems and proofs

as it makes them unreadable. It is easy to take the theorems and proofs as
presented here and make them correct with respect to using the lifted function
space.

3. In our proofs we will reproduce the relevant clauses from the definition of ff~
in Figure 6 to save the reader from having to refer back to the figure.

We use the notation ft (£) to denote the fact that the normal order evaluation of
E diverges. We have the following computational adequacy theorem (Gunter, 1992,
Theorem 6.9).

Fact B.1 For all closed expressions E : a, for all environments p,

S [£]] p = l c if and only if ft (£).

The following lemma says that Jf [£]] has the same termination behaviour as E
(Fradet, 1988, Lemma 4.2.4).

Lemma B.2 ft (£) if and only if Vc. ft {Jf [[£]] c)

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 99

Lemma B.3 For all closed terms E : a,

S \Jf IEM 0 = J-SD ~ S [[£]] 0 = l s .
Bio]

Proof Obvious from Fact B.I and Lemma B.2.

The following fact is proved in (Muylaert Filho and Burn, 1993, Proposition 6.2) (p
is supposed to be an appropriately typed environment):

Fact B.4 For all E : a,

S \Jf ([£]]] p + l s = > 3v such that S |L/T [£] I p = Xc.c v.

In the statement and proofs of the main theorems it is useful to define a con-
tinuation which supplies arguments to a function. This is provided in the following
definition.

= c

Definition B.5

The following definition allows us to state Theorem B.7 for the case of variables.
Pcontentv(p',p) establishes a relationship between environments p' and p to be used
in the semantics of terms transformed by 5" and by Jf respectively. Variables x,;-
correspond to occurrences of x in the original expression which are transformed by
2T in a context where they are applied to i arguments and have evaluation context Qj.

Definition B.6 Pcontenvy(p',p) if and only if

1. Vx G V, Vi,;, p' Xij Q p x; and

2. Vx ^ V, p' x = p x.

Theorem B.7 V£ : a, VK, Vi, V£), Vp'.p satisfying Pcontenvv(p',p)

P-

Proof We prove this by induction over the rules defining 3~ V i Q [[£]]. We follow
the same convention as in Appendix 1 concerning syntactic and semantic values of
primitive operators (using boldface fonts and italics fonts, respectively).

1. ST V iQj [x] = x i f x £ V
= Xij if x € V

^Ixl = x
In both cases Pcontenvv{p',p) implies the desired result.

2. ST V i Qj | [kJ = JT p j if kff ^ if
The theorem holds trivially in this case.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

100 G. Bum and D. Le Metayer

3. PVi Qj Pf £, E2 £3]| = AcT V 0 {±Sfc (} \Ey\ (ifc (3T V i Qj |[£2] c)
(^ K i 6; I£3]| c))

^ pf £, £2 £3] = kcjr lExWc W P2I c) (Jf p 3] | c))

S [J K i gy pf £1 £ 2 £3]]] p'
= AcS [J F O {±s> ,} [[£,]] p' (ifc (S 1^- V i Qj [£2]] p' c)

(S I.T K i Qj lEtll ft c))
Q AcS \Jf lEill p (ifc (S \Jf IE2M P c) (S IJf IEM p c))

by the induction hypothesis
f Ei £ 2 £3II1 P

4. 3- V i Qj I£, E2J
= XcST V OP H£2] (Av.£T V (i + 1) Qj [£,]] (A/./ c (Ac.c »)))

if Vp, V«o e P, V»!, .:., w, : drop (... (drop (S p ^ I p) uo) ...)»/ € Q;
^ [£! £2] = kcjr lEil (A/./ c (JT p 2 D)

There are two cases to consider.

(a) S 1ST V 0 P IE2U ft = ± s :

This implies S \$~ V i Qj |[£i E2Ji p' = J-g > a n d s o t h e r e s u l t h o l d s -

(b)Sl^V0P I£2]] P ' ^ ± S B ^ :

By the induction hypothesis we know that S W V 0 P [[£2]|]| p' C
S d^T H£2]]]] p, and so S [^T ([£2])]| p ^ J.g too. By Fact B.4 this

means that 3i>2 such that S \Jf \E2^ P = Ace u2. We can now deduce the
required result as follows.

i Qj [£, £2]]| p'
= Ac.S 1ST V 0 P IE2B P1

(Ao.S | ^ F (i + l) Qy ([£,]]] p' (A/./ c (Ace »)))
C AcS IJf p 2] |] p (Ai;.S [̂ K |[£i]|]l p (A/./ c (Xc.c v)))

by the induction hypothesis
= Ac.S IJf |[£i]|]| p (A/./ c (Ace o2))

since S \JT P2]|]] p = Xc.c v2

= SIJ^ lEi E2M P
since Ace v2=SgJr P2II P

5. ^ F i Qy |[£, £2I = AcJT V (i + 1) Q} H£,]| (Xf.f c (ST V 0 {±SJ H£2]))
K̂ I£, £2] = XcJV p ,] (A/./ c

S d^ K i e ; P i £2J]| p'
= AcS E^ 7 (i + 1) Qj !£,]] p' (Xf.f c (S I*" F 0 {±So} p2]|]| p'))
C AcS IJT P i]] p (A/./ c (S |I^- p 2]] | p))

by the induction hypothesis
= S Itf p , £2]I p

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 101

6. ST V 0 Qj Ux-El = te.c (Xc.Xx.2T V 0 {J_s} [[£]] c)
Jf \Xx.E\ = Xc.c (Xc.Xx.Jf \E\-c)

S 1ST V 0 Qj Ux-EM p' = Ic.c (Xc.Xv.S 1ST V 0 {±s_} [E])]] p'[u/x] c)
C Ac.c (Ac/ly.S | [^ IEB p[v/x] c)

by the induction hypothesis since
Pcontenvvip',p) => Pcontenvv(p'[v/x],p[v/x])

= S IJV IXx.Ell P

1. ST V (i + 1) Qj Ux.EJ = Xcc (XcAx.!T V i Qj [[£] c)
Jf \Xx.E\ = Xc.c (Xc.Xx.JT IE] c)

(i + 1) Qj Ux.EB P' = *c.c (XcXvS 1ST V i Q} [£])]] p'[v/x] c)
Q Xc.c (Xc.Xv.S IJV [[£]]]] p[v/x] c)

by the induction hypothesis since
P contenvv(p', p) = >
P contenvvip'[v/x],p[v/x])

= S IJ/ Ux.EB P

ST V i Qj [[fix iXx.E)J
= sell7(fix (Xixhjl,...,xinjnU^ W i, Qj, IE], ...,3TW in Qjn [[£])))

where W = V\J{x}
Jf p x (Xx.E)\ = fix(Ax.yT \E\)

We will prove this case by fixed point induction. First of all we note that

S 1ST V i Q} [fix iXx.EM P'
= sehj (fix iXim,...,un). (S 1ST W i, Qh |[£]|]| //[ui/xhJl,...,un/xinJn\,

Sl^W in Qjn

S \Jf [fix (Ax.£)]]] p = fix iXu.S \Jf [£]] p[u/x])

Our method will be to show that each of the terms in the tuple that arises from
the 2T translation are less defined or equal to that given by the Jf translation,
which then establishes our result. This leads us to define the predicate:

Clearly P [(±,..., ±), _L] is true. Assuming P [(/i, . . . , /„),g], we need to establish
the property P[F if\,...,fn),G g], where F and G are the bodies of the fixed

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

102 G. Burn and D. Le Metayer

points arising from the 9~ and Jf translation, respectively.

F (/ i , . . . , /„) = (S 13- W h Qh UM p'\fi/xhh,.• • ,fn/xinjn],

E (S 1ST W i, Qh IEU Pl\g/xiljl,...,g/xlmJm\,

Sl^W in Qjn [£]]] p'\g/xhh,...,g/xinjn])
by the fixed point induction hypothesis

C (S gjf IEM p\g/x],...,S IJV IEB P\g/x])
by the structural induction hypothesis since
Pcontenvy(p',p) = >
Pcontenvv(p'\g/xilh,..., g/xinjn], p[g/x])

which establishes the result for the induction step. Therefore, we can conclude
that it is true for the fixed point, which concludes the proof of the theorem.

The following four definitions are used to give an induction hypothesis which is
powerful enough to prove Theorem 3.3, the final result we need before being able
to prove Theorem 3.3. Since we have to relate the semantics of terms transformed
by &~, terms transformed by Jf and untransformed terms, we first need to establish
a relation between their respective environments. This is done by Definition B.9
which uses a correspondence between values introduced in Definition B.8. We use
the following convention: overlined values and environments stand for values and
environments for original (untransformed) terms and primed values and environ-
ments stand for values and environments for terms transformed by ST. Unadorned
variables are used for terms transformed by Jf.

Definition B.8

Parg(v,v) o 3 closed E.[v = S[Jf |[£]]I 0] and [v = S [[£]] 0].

Definition B.9 Penvv{p'',p,~p) if and only if V x

1. Parg(p x,~p x) and

2. x e V => Vc,Vui,...,u,,ViJi,...,iJ, such that VI <k < i. Parg(vk,T>k) •
\p' x u c[vi--Vi] = p x c l v i - - V i] or p x v ! . . . v t e Qj] and

3 . x G V => p' Xij C p x and

4. x £ V => p' x = p x.

It is important to note that Penvv{p',p,~p) implies Pcontenvv(p',p), because we need
to use Theorem B.7 in proving Theorem B.16.

Definition B.10 Contp(c
f) *> 3c, 3 closed EX,...,EP such that d = c[vi'--vJ

with v, = S IJf lEiE 0

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 103

Definition B.11 V£ : o\ —>...—> ap —> ffp+i, Pexp(E) if and only if

VK,Vi,Ve;-,Vp',Vp,Vp such that Penvv(p',p,p)
Vvi,...,Vi,Vvi,...,Vi such that VI < k < i. Parg{vk,Vk)
Vc such that Contp{c[Vi-'Vi]) :
[S W V i Qj [£]]]] p' c^ "1 = S \JT IEH p c&" v>]] or [S [[£]] P »i...»,• e Qj.]

Fact B.12 For all expressions £, if the free variables of £ are {xi, . . . , xn}, then for
all £ i , . . . , £ n ,

The following three lemmas establish results which are needed to prove Theorem
B.16.

Lemma B.13

V£ : a. Penvv(p',p,p) = > Parg(S \Jf [£]|]| p,S [£] p).

Proof This is proved using Fact B.12 (which follows from the rule for variables in
the definition of Jf [[£]).

Lemma B.14

V£ : a. Penvv{p', p,p) = > [S \Jf [£]]] p = ±c <* S [£] p = J.s].
DM

Proof From Lemmas B.3 and B.13.

Lemma B.15 V£ : o,Vp,p',p~ such that Penvv(p',p,~p)

Pexp(E) => S I J F O Us.) M I P' = S

Proof Let us assume that the lemma does not hold. Then Pexp(E) gives us
that S [£] p S {J_SJ, and Lemma B.14 implies that S \Jf [[£]1]] p = _LS , and

so Theorem B.7 allows us to conclude that S [J F 0 {±So} [[£]]] p' = ± s
' B w

which is a contradiction.

Theorem B.16 V£ : a. Pexp{E).

Proof We prove this by induction over the rules defining ST V i Qj [[£]).

1. FViQjlxl = x i f x ^ K
= xu if x e V

JT Ixj = x

(a) If x ^ K then we have to prove

y x c[vu-,v,] = p x c[»ir..,p,]] or [p x tJi... t;,- e 2 ,] .

The result holds because Penvv{p',p,~p) implies p' x = p x.
(b) If x G V then we have to prove

[p' xy c'"' "'I = p x cl"1--1*1] or [p x Ui... U/ e G;]-

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

104 G. Burn and D. Le Metayer

Again this follows from the definition of Penvy(p',p,~p).

2. ST V i Qj | [k j = JT [M if k, £ if
The theorem holds trivially in this case.

3. ST V i Qj pf £ , £2 £3] = XcS V 0 {±Sb) ![£,]] (ifc (ST V i Qj p2]] c)
{ST V i Qj p3]] c))

Jf W £, E2 £3] = Xc.Jf [[£,](ifc (JT lEil c) {JV K£3]] C))
From Lemma B.15, we have: S [J F 0 Us,™,} ^E^ P' = S ^ I^iIB P-
If S [^ F 0 { ± s } p , J]] p' and S [J^ [£ J] p are both ± s , then the

result clearly holds.
If they are not, then Fact B.4 gives us that there is a v such that they both
equal kc.c v. Again the result clearly holds in the case that i; is -Lg;6oo,-

If v ^ -l-sto(,,'
 t n e n ^ ' s e<?ua^ t 0 true o r false- Without loss of generality, we

will consider the case where v = true. Then

S W V i Qj [if Ei E2 £3]] P' = S [J F i Qj [£2]] pf
S IJV [if £, £2 £3]]] p = S ([^ I£2I]1 p

The result then holds immediately by the induction hypothesis.

4. ST V i Qj ([£, £2]1
= Xc.2T V OP IE21 (XvS V (i + 1) Qj lEil (A/. / c (Ac.c 0)))

if Vp, Vi* e P, V»i, ..., vt : rfrop(... (drop(S [fij] p) v0) ...) i>, G g;
^ p ! £2]] = Ac.^ !£ ,] (Xf.f c (Jf p2] |))

We have to prove that

' W«.S [^ K (i + 1) Sy tt£il]| p'c[{Xc-c v)'Vu-'Vl])

= S
or

S [£ i] p (S P 2 I P)«i.••

There are three cases to consider.

(a) S [J K 0 P p2]II p' + S I^T P2II p: By the induction hypothesis we
have that S P2H P' G f', and so the condition of using this translation rule
gives us that

S |[£i]p(S lE2^-p)vl...vieQj,

which is what was required.
(b) S IF V 0 P p 2]] p' = SlJ/~ IE2B P = J-s : F r o m Lemma B.14 we

_ Bi»i
have that S P 2 I P = -1-s > an<^' s m c e -"-S € ^ (because P is a non-empty
Scott-closed set), the condition on using this translation rule implies that
VUi,...,Vj. S P i] p J-g v\ ...Vj G Qj, and so we conclude that

S [£ , £ 2] p vl...vieQJ,

which is what was required.
(c) S [J K 0 P p 2]] p' = S \Jf p2]]] p = Ac.c v. This case arises from

Fact B.4. The result we had to prove for the case for this translation rule

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 105

then reduces to:

S \2T V (i+ 1) Qj P .]] p'c{(Xcc "to-rt

= S [L^ lEfll P c[S lJr lEM m'•-1''1

or
S Pi]|p(S K.E2yp)vl...vieQJ.

This follows from the induction hypothesis because Xc.c v — S ^Jf P 2 I I P
and, by Lemma B.13, Parg{S \Jf \EM P,S P2I] pY

5. STVi Qj IE, E2J = Xc.<F V (i + 1) Qj [[£,]] (A/./ c (J K 0 {±So} p2]!))
>• P J £ 2] = Ac/f P i] (A/./ c (>- E£2]))

In this case we have to prove that

S 13- V (i + 1) Qj IEM P' c[s lsr v

c[SEiJJ p c[

or
[S E £ i I p (S P 2 I p)oi . . .o , -eQ y] .

From Lemma B.15, we have: S I ^ K 0 {±SJ IE2B p' = S RJV fE2B P-
Furthermore, Lemma B.13 gives us that Parg(S \Jf p 2]]] P,S [£2] p), and
so the result holds for this case from the induction hypothesis on E\.

6. J F O Qj [Ax.£] = Xcc (Xclx.ST V 0 { ± s } \E\ c)

JV UX.E] = *c.c (Xclx.Jf [£] c)
To prove Pexp(Xx.E) we show that:
SIST V0 Qj Ux.EM P' c = SIJ^ lXx.EB P c,
where c satisfies Contp(c) with p > 1 (since Ax.£ has a function type). So

3co,£o such that c = 4 "^ ^ £ ° ^ ^ and the property we have to prove
becomes:

S [^ K 0 { l s } P U p'[(S \Jf p o]] 0)/x]
= S HJ^ |[£]f]l p[(S ÊK- P o l l 0)/x],

which follows from Lemma B.15.
7. fV{i+l) Qj P x . £] = Ac.c (Xclx.F V i Qj P J c)

./K EAx.£] = Ac.c (XC.XX.JV [£]] c)
We have to prove

ct"' "•+'] (Ac.Ao.S W V i Qj p]] p'[v/x] c)

or
S lhc.E^pvi...v,+i eQj.

Using the definition of c'"1 "i+l1, this is equivalent to showing

SlfVi Qj PIJ p'[vi/x] c^'-^'l = S
or

S p] p[vi/x]v2...vi+i eQj.

Now Peni;K(p'[yi/x],p[yi/x],p[iJi/x]) since Penvv(p',p,~p) and Parg(t)i,Ui).
Therefore, the result holds by the induction hypothesis on £.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

106 G. Burn and D. Le Metayer

8. ST V i Qj ([fix (A

= sel,7(fix {X(xilh,...,xinjn){Sr W h Qh lEl,...,TWin Qjn

where W = V\J{x}

JV [[fix (Ax.£)] = fix{kx.jr [£]|)
We will prove this case by fixed point induction. First, we note that

S \ST V i Qj p x (Ax.£)]|]| p'c[Vi "'1
= sel,j (fix {X{uu...,un). (S IS- W i, QA [£]]]) p / t«i/xU l , . . . ,MI I /xu] ,

S [^ Ŵ iB QA IEB P'[ul/xhh,...,un/xinjn])))

S \Jf p x (Ax.£)]U p cl°' "i] = / i x (AM.S
S p x (Ax.£)]l p UT.. . vi = fix{toS IEJ p [u / x]) Uf. . . »7

To prove Fexp(fix (Ax.£)) we define property P3 as follows:

and Parg(B, C) and Au C B

The second line of the property is required by the induction itself. The base
case Pi(±,±,±) is obvious. For the inductive case, we assume P^(Aij,B,C)
and we show:

where F, G and H are the bodies of the fixed point transformers arising from

SIS-Vi Qj P x (Xx.E)B ft,

S \Jf p x (Xx.E)B P

and

S [fix (Ax.£)I p

respectively. The first part of the property is established using the fixed point
induction hypothesis and the structural induction hypothesis (on £). The fixed
point induction hypothesis can be applied because the second part of property
P3 ensures that the corresponding environments satisfy Penvy. The second
part of the inductive case can easily be checked:

Parg{B,C)^Parg{G{B\H{C))

and

Aij E B => F(Aid) C G(B)

The proof of Theorem 3.3 in the main body of the paper now follows from Lemma
B.I5 and Theorem B.I6. We restate it here for completeness.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 107

Theorem 3.3 For all closed terms of ground type E : a,

S 1ST 0 0 {±SJ ([£]] 0 = S IJV IEB 0-

References

Appel, A. W. (1992) Compiling with Continuations. Cambridge University Press.

Benton, P. N. (1992) Strictness Logic and Polymorphic Invariance. In: Nerode, A. and
Taitslin, M., editors, Proc. Int. Symposium on Logical Foundations of Computer Science, pp.
33-44. Tver, Russia. Springer-Verlag.

Burn, G. L. (1990) Using projection analysis in compiling lazy functional programs. In: Proc.

ACM Conference on Lisp and Functional Programming, pp. 227-241. ACM Press.

Burn, G. L. (1991a) The Evaluation Transformer Model of reduction and its correctness.
In: Abramsky, S. and Maibaum, T. S. E., editors, Proc, TAPSOFT'91, Vol 2, pp. 458^82,
Brighton, UK. Springer-Verlag.

Burn, G. L. (1991b) Lazy Functional Languages: Abstract Interpretation and Compilation.
Research Monographs in Parallel and Distributed Computing. Pitman (in association with
MIT Press).

Burn, G. L., Hankin, C. L. and Abramsky, S. (1986) Strictness analysis of higher-order

functions. Science of Computer Programming, 7(November): 249-278.

Cousineau, G., Curien, P.-L. and Mauny, M. (1987) The categorical abstract machine. Science

of Computer Programming, 8: 173-202.

Cousot, P. and Cousot, R. (1979) Systematic Design of program analysis frameworks. In:
Proc. 6th Ann. Symposium on Principles of Programming Languages, pp. 269-282. ACM
Press.

Cousot, P. and Cousot, R. (1992a) Abstract interpretation and application to logic programs.
J. Logic Programming, 13(2-3): 103-179.

Cousot, P. and Cousot, R. (1992b) Abstract interpretation frameworks. J. Logic and Compu-
tation, 2(4).

Danvy, O. and Filinski, A. (1991) Representing Control: a Study of the Cps Transformation.

Technical Report TR CIS-91-2, Kansas State University.

Danvy, O. and Hatcliff, J. (1993) CPS Transformation after strictness analysis. ACM Letters

on Programming Languages and Systems, 1(3): 195-212.

Danvy, O. and Hatcliff, J. (1994) A generic account of continuation-passing styles. In: Proc.

21st ACM Sigplan-Sigact Symposium on Principles Of Programming Languages. ACM Press.

Dybjer, P. (1985) Using domain algebras to prove the correctness of a compiler. In: Proc.
STACS85, pp. 98-108. Springer-Verlag.

Finne, S. O. and Burn, G. L. (1993) Assessing the Evaluation Transformer Model of reduc-
tion on the spineless G-machine. In: Proc. Conf. Functional Programming and Computer

Architecture, pp. 331-340. ACM Press.

Fischer, M. J. (1972) Lambda calculus schemata. In: ACM Conf. on Proving Assertions about

Programs, pp. 104-109, New Mexico. (ACM Sigplan Notices 7(1).)

Fischer, M. J. (1993) Lambda calculus schemata. Lisp and Symbolic Computation, 6(3/4):

259-287.

Flanagan, C, Sabry, A., Duba, B. F. and Felleisen, M. (1993) The essence of compiling
with continuations. In: ACM Sigplan '93 Conf. on Programming Language Design and

Implementation, pp. 237-247, Albuquerque, NM. (ACM Sigplan Notices, 28(6).)

Fradet, P. (1988) Compilation des langages fonctionnels par transformation de programmes.
PhD thesis, Universite de Rennes I.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

108 G. Burn and D. Le Metayer

Fradet, P. and Le Metayer, D. (1991) Compilation of functional languages by program
transformation. ACM Trans. Programming Languages and Systems, 13(1): 21-51.

Gerhart, S. L. (1975) Correctness-preserving program transformations. In: Proc. POPL75,
pp. 54-66. ACM Press.

Giorgi, J. F. and Le Metayer, D. (1990) Continuation-based parallel implementation of func-
tional programming languages. In: Proc. ACM Conf. on Lisp and Functional Programming,
pp. 227-241.

Gunter, C. A. (1992) Semantics of Programming Languages: Structures and Techniques. MIT
Press.

Hunt, L. S. (1991) Abstract Interpretation of Functional Languages: From Theory to Practice.
PhD thesis, Department of Computing, Imperial College, University of London.

Jensen, T. P. (1992a) Abstract Interpretation in Logical Form. PhD thesis, Imperial College,
University of London.

Jensen, T. P. (1992b) Disjunctive strictness analysis. In: Proc. 7th Symposium on Logic In
Computer Science, pp. 174-185, Santa Cruz, CA. IEEE Press.

Kranz, D. A. (1988) Orbit: An Optimising Compiler for Scheme. PhD thesis, Department of
Computer Science, Yale University. (Report Number YALEU/DCS/RR-632.)

Kranz, D. A., Kelsey, R., Rees, J. A., Hudak, P., Philbin, J. and Adams, N. I. (1986) Orbit:
an optimising compiler for Scheme. In: Proc. SIGPLAN '86 Symposium on Compiler
Construction, pp. 219-233. ACM Press.

Kuo, T.-M. and Mishra, P. (1989) Strictness analysis: a new perspective based on type
inference. In: Proc. Conf. on Functional Programming Languages and Computer Architecture,
pp. 260-272, London, UK. ACM Press.

Lester, D. R. (1987) The G-machine as a representation of stack semantics. In: Kahn,
G., editor, Proc. Functional Programming Languages and Computer Architecture Conf, pp.
46-59. Springer-Verlag.

Lester, D. R. (1988) Combinator Graph Reduction: A Congruence and its Applications. DPhil
thesis, Oxford University. (Also published as Technical Monograph PRG-73.)

Leung, A. and Mishra, P. (1991) Reasoning about simple and exhaustive demand in higher-
order languages. In: Hughes, J., editor, Proc. Conference on Functional Programming and
Computer Architecture, pp. 329-351, Cambridge, MA. Springer-Verlag.

Meyer, A. and Wand, M. (1985) Continuation semantics in the typed lambda-calculus. In:
Proc. Logics of Programs, pp. 219-224. Springer-Verlag.

Morris, F. L. (1973) Advice on structuring compilers and proving them correct. In: Proc.
POPL73, pp. 144-152 ACM Press.

Mosses, P. D. (1980) A constructive approach to compiler correctness. In: Proc. ICALP80,
pp. 449-462. Springer-Verlag.

Muylaert Filho, J. and Burn, G. L. (1993) Continuation passing transformation and abstract
intrepretation. In: Burn, G. L., Gay, S. J. Ryan, M. D., editors, Theory and Formal Methods
1993: Proceedings of the First Imperial College, Department of Computing, Workshop on
Theory and Formal Methods. Workshops in Computer Science. Sussex, UK. Springer-
Verlag.

Mycroft, A. (1981) Abstract Interpretation and Optimising Transformations for Applicative
Programs. PhD thesis, University of Edinburgh, Department of Computer Science. (Also
published as CST-15-81.)

Nielson, F. (1985) Program transformations in a denotational setting. A CM TOP LAS, 7:
359-379.

Nielson, F. (1988) Strictness analysis and denotational abstract interpretation. Inform, and
Comput., 76: 29-92.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

Proving the correctness of compiler optimisations 109

Nielson, F. (1989) Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69: 117-242.

Nielson, F. and Nielson, H. R. (1992) The tensor product in Wadler's Analysis of Lists.
In: Krieg-Briickner, B., editor, Proceedings of ESOP'92, pp. 351-370, Rennes, France.
Springer-Verlag.

Nielson, H. R. and Nielson, F. (1988) Two-level Semantics and Code Generation. Theoretical

Computer Science, 56: 59-133.

Peyton Jones, S. L. and Launchbury, J. (1991) Unboxed values as first class citizens in
a non-strict functional language. In: Hughes, J., editor, Proc. Conference on Functional

Programming and Computer Architecture, pp. 636-666, Cambridge, MA. Springer-Verlag.

Plotkin, G. D. (1975) Call-by-name, Call-by-value and the /l-calculus. Theoretical Computer

Science, 1: 125-159.

Reynolds, J. C. (1974) On the relation between direct and continuation semantics. In: Proc.

2nd Colloquium on Automata, Languages and Programming, pp. 141-156. Springer-Verlag.

Sabry, A. and Felleisen, M. (1992) Reasoning about Programs in Continuation-Passing Style.

Technical Report TR 92-180, Rice University.

Sabry, A. and Felleisen, M. (1993) Reasoning about programs in continuation-passing style.

Lisp and Symbolic Computation, 6(3/4).

Schmidt, D. A. (1980) State transition machines for lambda-calculus expressions. In: Proc.

Semantics-Directed Compiler Generation Workshop, pp. 415^40. Springer-Verlag.

Steele Jr., G. L. (1978) Rabbit: A Compiler for Scheme. Technical report, AI Tech. Rep. 474.

MIT, Cambridge, MA.

Thatcher, J. W., Wagner, E. G. and Wright, J. B. (1981) More advice on structuring compilers

and proving them correct. Theoretical Computer Science, 15: 223-249.

Wadler, P. and Hughes, R. J. M. (1987) Projections for strictness analysis. In: Kahn,
G., editor, Proc. Functional Programming Languages and Computer Architecture Conf, pp.
385-407. Springer-Verlag.

Wadler, P. L. (1987) Strictness analysis on non-flat domains (by abstract interpretation over
finite domains). In: Abramsky, S. and Hankin, C. L., editors, Abstract Interpretation of
Declarative Languages, pp. 266-275. Ellis Horwood.

Wand, M. (1982) Deriving target code as a representation of continuation semantics. ACM
Trans. Programming Languages and Systems, 4(3): 496-517.

https://doi.org/10.1017/S0956796800001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001581

