VELOCITY DISPERSION IN THE BULGE OF M 31 ; DYNAMICAL MODEL

G. MONNET, A. PELLET and F. SIMIEN Observatoires de Marseille et de Lyon

I - BASIC DATA

1) Photometry from de Vaucouleurs 1958 shows a bulge obeying the $r^{1/4}$ law up to less than 5 pc from the center with an effective radius $r_e = 17'5$. In the region from 0.01 to 0.2 r_e , equal luminosity curves are well approximated by similar ellipses of axial ratio 0.68. The reduced spatial density \mathcal{V}^{*} and the reduced gravitationnal potential ϕ^{*} (i.e. for a mass to luminosity ratio f equal to 1) can then be easily computed (Monnet and Simien 1977).

2) To compute the contribution of the nucleus to the overall gravi-tationnal potential we use the mass 4.5 $10^7 M_{\odot}$ found by Light et al. 1974.

3) Pellet 1976 has made spectrographic observations of stellar absorption lines in the range 4200 - 4400 Å at 1.3 Å resolution, and derived the mean rotation velocity integrated along the line of sight $< \Theta(x) >$ on the major axis. The tilt angle of M 31 is sufficiently small to permit the use of Bertola and Capaccioli 1975 formula for the computation of the mean rotationnal velocity of the stars Θ_m in the equatorial plane. It is quite linear from 0.01 to 0.2 r_e with a slope of 350 km s⁻¹ in units of r_e .

4) The same observations, both on the major and the minor axis, are used to obtain the dispersion of radial velocities σ_V . A constant value of 140 (± 20) km s⁻¹ is found in the interval 0.01 - 0.1 re, slightly higher than Morton et al. 1977 value (110 km s⁻¹) and using the same reduction process (fitting to an enlarged K_o III spectrum).

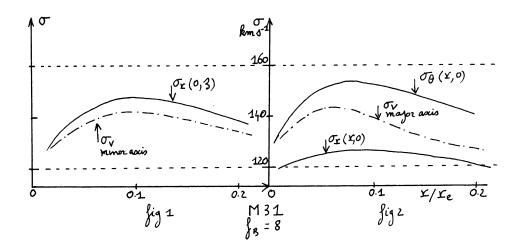
II - MODEL

We suppose that the galaxy is stationnary, axisymetric, and that there is no third integral. We also assume - as a working hypothesis - that the M/L ratio f (in the B band) is constant. The Jean's equations in the

159

E. M. Berkhuijsen and R. Wielebinski (eds.), Structure and Properties of Nearby Galaxies, 159–161. All Rights Reserved. Copyright © 1978 by the IAU.

adimensionnal cylindrical coordinates r, θ , z can then be written :


(1)
$$\frac{\partial}{\partial t} \left(\nu^* \sigma_r^2 \right) = \int \nu^* \partial \phi^* / \partial f$$

(2) $\frac{\partial}{\partial r} \left(\nu^* \sigma_r^2 \right) + \frac{\nu^*}{r} \left(\sigma_r^2 - \sigma_\theta^2 \right) = \nu^* \frac{\Theta_m^2}{r} + \int \nu^* \partial \phi^* / \partial r$

where the σ 's are the r.m.s. dispersions of the velocity components.

The gradients of the reduced potential ϕ^* are computed from $\nu^*(\$ I, 1)$, using Schmidt 1956 formulae. We add the contribution of the nucleus (\$ I, 2). The contribution of the disk is negligible. Equation (1) - with the limiting condition $\sigma_r(r, \infty) \equiv 0$ - gives then $\sigma_r(r, z)/f$ over all space (figure 1). The dispersion of the radial velocity integrated along the line of sight on the minor axis is :

the line of sight on the minor axis is : $\sigma_v^2(0,1) = \int \sigma_r^2(u, 1) \mathcal{V}^*(u) \, du / \int \mathcal{V}^*(u) \, du$ Its computed values from 0.01 r_e to 0.2 r_e are shown in figure 1. The best fit to the experimental range (§ I, 4) occurs for f = 8 (± 2), which is compatible with the gas velocities on the North-East side.

Next we determine from equation (2) $\sigma_{\theta}(\mathbf{r}, 0)$. Since, from 0.01 to 0.2 \mathbf{r}_{e} log $\mathcal{V}^{*} \simeq -7.32 \ (\mathbf{r}^{1/6} - 1)$ within $7 \ \mathbb{Z}^{0}$, it can be written : $\sigma_{\theta}^{2} = \sigma_{Y}^{2} \ (1-2.81 \ \mathbb{Y}^{1/6}) + \mathbb{Y} \ \partial \sigma_{\mathbf{r}}^{2} \ \partial \mathbb{Y} \ - \mathfrak{S}_{\mathbf{m}}^{2} - \int \partial \mathfrak{S}^{*} \ \partial \mathbb{Y} \ \sigma_{\mathbf{r}}^{2} \ \partial \mathbb{Y} \ \mathcal{S}_{\mathbf{r}}^{2} \ \mathcal{S}_{\mathbf{r}}$

Figures 1 and 2 : σ_{θ} and the σ_{r} s' are given for a pure r^{1/4} bulge law. The σ_{v} s' include the nuclear contribution. The good agreement with the experimental range confirms the M/L ratio adopted from the minor axis data. Correcting for a B Galactic absorption of 0.44 mag (Heidmann et al. 1961), the value is :

 $(M/L)_{B} = 5.3 \pm 1.3$ for $r < 0.2 r_{e}$.

REFERENCES

Bertola, F., Capaccioli, M.: 1975, Astrophys. J. 200, 439.
Heidmann, J., Heidmann, N., Vaucouleurs, G. de: 1971, Mem. Roy. Astron. Soc. 75, 85.
Light, E.S., Danielson, R.E., Schwarzschild, M.: 1974, Astrophys. J. 194, 257.
Monnet, G., Simien, F.: 1977, Astron. Astrophys. 56, 173.
Morton, D.C., Andereck, C.D., Bernard, D.A.: 1977, Astrophys. J. 212, 13.
Pellet, A.: 1976, Astron. Astrophys. 50, 421.
Schmidt, M.: 1956, Bull. Astr. Inst. Netherlands 13, 15.
Vaucouleurs, G. de: 1958, Astrophys. J. 128, 465.