Proof that every rational algebraic equation has a root

By Professor A. C. Dixon
(Read 10th January, 1908. Received, same date.)

The following arrangement of the proof of this theorem could, I think, be given at a comparatively early stage, even if the necessary case of De Moivre's theorem had to be proved as an introductory lemma.

Let u, v be two rational integral algebraic functions of x, y with real coefficients, and let c be a simple closed contour in the plane. As the point (x, y) travels round c let those changes in the sign of u that take place when v is positive be marked and let ($u, v ; c$) denote the excess in number among these of changes from + to over changes from - to $+{ }^{*}$.

If c is deformed continuously, ($u, v ; c$) will not be changed except (1), when c passes over a point where u, v both vanish, (2), when there is a change in the number of points where c meets one of the curves $u=0, v=0$. In case (1) there will generally be a change in the value of $(u, v ; c)$ since a change of sign in u on c will pass from the part of c where v is negative to that where v is positive, or conversely.

In case (2) suppose c to be deformed so that the number of its intersections with the curve $u=0$ is increased. The increase must be an even number since both curves are continuous and endless. The sign of v is constant in the neighbourhood unless we are dealing with a case under (1) and since the new changes in sign of u are alternately + - and -+ there is no effect on $(u, v ; c)$: similarly if the number of intersections with $u=0$ is decreased.

If the number of intersections of c with the curve $v=0$ is altered, it must again be by an even number and there will be no change in $(u, v ; c)$ unless $u=0$ at the same place as v when the case falls under (1).

Hence the deformation of c produces no effect on ($u, v ; c$) unless c passes over a point where $u=0=v$. In particular, if c does not contain such a point, it can be made to shrink up to a small contour in a neighbourhood where u, v are of constant signs and ($u, v ; c$) being unaffected by this process must be 0 throughout.

[^0]Now take u, v to be given by the equation $f(z)=u+v$ where $z=x+c y$ and $f(z)=z^{n}+\left(a_{1}+b_{1}\right) z^{n-1}+\left(a_{2}+b_{2}\right) z^{n-2}+\ldots$: let c be a circle with centre at the origin and radius R , so that on c $z=\mathbf{R}(\cos \theta+\iota \sin \theta)$, and θ runs from 0 to 2π.

We have by De Moivre's theorem
$u=\mathrm{R}^{n} \cos n \theta+\mathrm{R}^{n-3}\left(a_{1} \cos \overline{n-1} \theta-b_{1} \sin \overline{n-1} \theta\right)+$ lower powers of R , $v=\mathbf{R}^{n} \sin n \theta+\mathbf{R}^{n-1}\left(a_{1} \sin \overline{n-1} \theta+b_{1} \cos n \overline{n-1} \theta\right)+$ lower powers of \mathbf{R}. The sum of all the terms after the first, either in u or v, is not greater than the sum of $a_{1} \mathrm{R}^{n-1}, b_{1} \mathrm{R}^{n-1}, a_{2} \mathrm{R}^{n-2} \ldots$ all taken positively and a value of R may be chosen so great that this sum does not exceed $k \mathrm{R}^{n}$ where k is any finite quantity. Thus the sign of u will be that of its first term if $\cos ^{2} n \theta>k^{2}$ and similarly for v : we shall take $k=\frac{1}{v}$.

Divide c into $4 n$ parts at the points where

$$
\theta=(2 r+1) \pi / 4 n \quad(r=0,1, \ldots 4 n-1)
$$

In the part of c when θ rises from $(8 m-1) \pi / 4 n$ to $(8 m+1) \pi / 4 n \cos n \theta \nleftarrow 1 / \sqrt{ } 2$ and thus u is positive while the sign of v is at first-and at last +.

When θ rises from $(8 m+1) \pi / 4 n$ to $(8 m+3) \pi / 4 n, v$ is positive, but u begins + and ends - .

When θ rises from $(8 m+3) \pi / 4 n$ to $(8 m+5) \pi / 4 n, u$ is always - .
When θ rises from $(8 m+5) \pi / 4 n$ to $(8 m+7) \pi / 4 n, v$ is always - .
Only in the second case is there any contribution to ($u, v ; c$) and as this case occurs n times contributing 1 each time we have

$$
(u, v ; c)=n .
$$

Hence c must contain a point where u, v vanish together, and the equation $f(z)=0$ must have a root.

The proof that there are exactly n roots is now easy.

[^0]: * It is not hard to see that $(v, u ; c)=(-u, v ; c)=-(u, v ; c)$ etc.

