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uniformly convex normed spaces

Yashar Memarian

ABSTRACT

In this paper we give a lower bound on the waist of the unit sphere of a uniformly
convex normed space by using the localization technique in codimension greater than
one and a strong version of the Borsuk—Ulam theorem. The tools used in this paper
follow ideas of Gromov in [Isoperimetry of waists and concentration of maps, Geom.
Funct. Anal. 13 (2003), 178-215] and we also include an independent proof of our main
theorem which does not rely on Gromov’s waist of the sphere. Our waist inequality in
codimension one recovers a version of the Gromov—Milman inequality in [Generalisation

of the spherical isoperimetric inequality to uniformly convexr Banach spaces, Compositio
Math. 62 (1987), 263-282].

1. Introduction

The classical isoperimetric inequality for a metric space relates the measure of compact sets to the
measure of their boundaries. These inequalities are codimension-one isoperimetric inequalities
(simply because the difference of the dimension of a compact set and the dimension of its
boundary is equal to one).

During his research on a Morse theory for the space of cycles of a manifold, Almgren
gave a sharp lower bound for the volume of a minimal k-cycle in the sphere S™ for every k
(see [Gro83, Pit81]). This is an instance of a higher codimensional isoperimetric type inequality.

Another important example of a higher codimensional isoperimetric inequality, which in fact
is a generalization of the Almgren isoperimetric inequality on the sphere, is the waist of the
sphere theorem of Gromov presented in [Gro03].

In this paper we prove a higher codimensional isoperimetric inequality for the unit sphere of
a uniformly convex normed space.

In [GM87], Gromov and Milman gave an isoperimetric-type inequality for the unit sphere of
a uniformly convex normed space by using the localization technique (a nice exposition of this
can be found in [Ale99]). The main result of this paper recovers a version of Gromov-Milman’s
inequality.

We begin by defining waist. For more details about this invariant, see [Gro03, Mem10b].

Notation 1 (Tubular neighborhoods). Let X be a metric space, Y a subset of X, and € > 0. The
e-neighborhood of Y is denoted by

Y+e={zreX|dzY)<e}.
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A LOWER BOUND ON THE WAIST OF UNIT SPHERES

DEFINITION 1.1 (Waist of a metric-measure space, see [Gro03]). Let X = (X, d, 1) be a metric-
measure (mm) space. Let Z be a topological space. Let w(e) be a positive function. We say the
waist of X relative to Z is larger than w if for every continuous map f: X — Z there exists a
z € Z such that for all € > 0,

(7 (z) +2) > w(e).

The purpose of this paper is to give a lower bound of the waist of the unit sphere of a
uniformly convex normed space relative to R¥. We are ready to state the main theorem of this

paper.
THEOREM 1. Let X be a uniformly convex normed space of finite dimension n + 1. Let S(X)
be the unit sphere of X, for which the distance is induced from the norm of X. The measure
defined on S(X) is the conical probability measure. Then a lower bound for the waist of S(X)
relative to R¥ is given by
©) :
w(e) =
L+ (1=20(/2))"F(k + DM 1(F(k, €/2)/G(k, £/2))

where §(¢) is the modulus of convexity (see the next section for the definition),

/2
F(k,e)= / sin(x)* ! dz

ha(e)
and

P1(e)

G(k,e)= / sin(z)*1 dz,

0

and where
€
=2 arcsin | ———
P1(e) arcsm<4\/m>

and

o (e) = 2 arcsin <2\/ljﬁ> .

Section 2 concerns several preliminary tools which are useful to prove this waist theorem. To
aid in following this paper, an overview of the theorem’s proof can be found in §3. In §4, we
will briefly discuss the theory of convexly derived measures and use it to obtain a lower bound
for the convexly derived measure of certain balls inside convex subsets of S(X). In §5, we prove
our main theorem following the ideas of Gromov in [Gro03]. Section 6 will be very technical and
the goal is twofold: first we introduce new techniques and ideas which may be useful for the
estimation of the waist of different metric spaces (such as Riemannian or Finsler manifolds) and
second we give an independent proof of the main theorem not relying on Gromov’s waist of the
sphere. In § 7, we give another lower bound for the waist of S(X) and compare it with the result
of Theorem 1. Section 8 will compare our result to the waist of the canonical sphere and in §9
we will discuss the relation of our result with Gromov-Milman’s inequality.

2. Preliminaries

Let us consider a uniformly convex normed space of dimension (n + 1), X = (R**! || ||), which
we fix once and for all.
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DEFINITION 2.1 (Modulus of convexity). The space X has modulus of convexity ¢ if for all
e >0, for all vectors z, y € X with [|z| =]yl =1 and ||z — y|| > &, we have

llz +yll <1-4(e).
2
Ezxample 2.2. Let E be a Euclidean space. In this case, the modulus of convexity is easily

determined from the parallelogram identity. And, we have

5E(6)=1—\/1—Z2.

Remark. § is a monotone increasing function. We use this remark later on to prove Lemma 4.4.
We denote by B(X):={z € X | ||z| <1} the unit ball of X and dB(X)=S(X):={zx € X |
|lz|| =1} the unit sphere of X.
We define a probability measure p on S(X) and we call it the conical measure.

DEFINITION 2.3 (Conical probability measure). For any Borel set A C S(X), we define

map{UtAlo <t <1}
ST 6')

where m,, is the n-dimensional Lebesgue measure on X.

One can easily check that the measure p is indeed a probability measure on S(X):

Cman{tS(X),0<t<1}
H(S(x)) = T S =

Remark. For the Euclidean norm on R™! where the distance between two points is the
FEuclidean distance and where the unit sphere is the canonical n-dimensional sphere S", the
conical measure is the canonical Riemannian probability measure on S™. Generally, S(X) carries
a Finsler structure and there is no canonical measure which can be defined on a Finsler manifold.
For a Finsler manifold, there are many different ways to define volume. For more on this subject,
see the excellent survey [AT04].

The mm space on which we are settling our problem is (S(X), u, d) with p the conical

probability measure and d the distance induced on S(X) from the norm defined on X (i.e. for

3. Scheme of the proof of Theorem 1

We fix a continuous map f : S(X) — R*. The proof of Theorem 1 goes as follows.

— Use a generalization of the Borsuk—Ulam theorem giving rise to a finite convex partition of
the sphere and a fiber of f (i.e f~!(z) for some z € R¥) passing through the centers of all
the pieces of the partition (the center of a convex set has to be defined).

— Narrow the pieces of the partition (by increasing their numbers) such that almost all of
them are Hausdorff close to a k-dimensional convex set. Pass to a limit-infinite partition
of the sphere by convex subsets of dimension less than or equal to k.

— On each piece of the partition, there exists a probability measure, convexly derived from
the conical measure. This brings the n-dimensional volume estimate of the waist down
to a k-dimensional measure estimate on each convex set of the partition. This method is
called the localization technique. But, usually, the localization or the needle decomposition
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brings the n-dimensional measure estimate down to a one-dimensional problem. The use of
a multi-dimension localization technique first appeared in [Gro03].

— On each piece of the partition, Lemma 4.6 gives an estimate of the measure of an e-ball
centered at a point where the measure of the convex set is mostly concentrated. By
integrating this estimate over the space of pieces of the partition, we obtain the result of
Theorem 1. There are some difficulties due to the [-dimensional convex sets of the infinite
partition for all [ < k. We prove that these ‘bad’ convex sets do not affect the estimation
of the waist. Or, better say, the measure of these convex sets in the space of pieces of the
partition is equal to zero.

4. Convexly derived measures on convex sets of S(X)

The topics studied in this section follow the ideas used in [Ale99, GMS8T7]. For every subset
S € S(X), we define the subset co(S) € B(X) as

co(S) := {U tS]0 <t < 1}.
Hence, co(S) is the cone centered at the origin of the ball over S.

DEFINITION 4.1 (Convexly derived measure). A convexly derived measure on S(X) is a limit
of a vaguely converging sequence of probability measures of the form p; = u|S;/n(S;), where S;
are open convex sets.

To understand convexly derived measures, we need the following definition.

DEFINITION 4.2 (k-concave functions). Let K be a bounded convex subset of R"*1. A function
f:K — R, is called k-concave (k > 0) if f1/* is concave.

Suppose we have a sequence of open convex sets {S;} of S(X) which Hausdorff converges to
a convex set S’ € S(X), where we suppose that the dimension of S is equal to k with k < n. It is
clear that the sequence {co(S;)} Hausdorff converges to the set co(S’), where dim co(S") =k + 1.
We define a probability measure u/ on co(S’) as follows.

For every i €N, we define the measure p, =my41]Si/mn+1(Si). A subsequence of this
sequence of measures vaguely converges to a probability measure p on co(S”). We call this measure
a convexly derived measure. We recall that the support of the measure p is automatically equal
to co(S’) as the sequence converges to this set. In [Ale99], Alesker showed that the measure
p admits a continuous density function f with respect to the (k4 1)-dimensional Lebesgue
measure defined on A. Moreover, the function f is (n — k)-concave (the above facts follow from
deep results of Borell; see [Bor75] for more details). Hence,

n= f dmk-l-l?

where my4q is the (k + 1)-dimensional Lebesgue measure. Moreover, we have the following
lemma.

LEMMA 4.1. The measure y is (n 4+ 1)-homogeneous and the function f is (n — k)-homogeneous.
This means u(tA) ="t u(A) for 0< ¢t <1 and f(tx) = "% f(x) for all 2 € co(S").

Proof. The measure p is convexly derived from the normalized (n + 1)-dimensional Lebesgue
measure. As the (n + 1)-dimensional Lebesgue measure is (n + 1)-homogeneous, p is (n + 1)-
homogeneous. From the equality © = f dmy41, and the fact that u is (n + 1)-homogeneous and
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my+1 is (k + 1)-homogeneous, then clearly f is (n — k)-homogeneous and the proof of the lemma
follows. i

The convexly derived measure p’ defined on co(S’) defines a probability measure p on S’
convexly derived from the conical measure of S(X) and obtained from the sequence {S;}, where,
for every X C S’, we have

(X)) = p'(co(X)).
And, on the other hand, there exists another probability measure defined on S’ which is the

canonical k-dimensional conical measure conically induced by myg1; we denote this measure
by v. For every Borel subset U of §’,

U
V(U) = M1 (co( /)) '
mg41(co(S"))
S’ is a subset of the unit sphere of R¥+1 equipped with a norm satisfying the same modulus of

convexity.

Then we have
W) =p(eo) = [ fama= [ fav
co(U) U
Hence, in conclusion, we have
dp = fdv,

where we take the restriction of f on the set U.

The function f is (n — k)-concave on co(A) but the restriction of this function on the spherical
part of the border of co(A) is not any more (n — k)-concave.

However, the restriction function still has nice concavity properties, as we will explain now.

DEFINITION 4.3. An arc o C S(X) is a subarc of the intersection of a 2-plane passing through
the origin of the ball with S(X).

We know that for all x, y € Sy,

fl/(”*k) T +y N fl/(n—k)(x)+f1/(n—k)(y)
2 = 9 .

But, the point (z + y)/2 is no more on S(X), so we set z = ((x +y)/2)/||(z + y)/2|| € S(X).
By the definition of the modulus of convexity, we have

<1T=4(fl=z = yll)- (1)

r+y

So, we can conclude the following lemma.

LEMMA 4.2. Let f denote the density of a convexly derived measure on S(X). Let x, y € Sy
and let z= ((x +v)/2)/||(z + y)/2|| € Sz. Then

1/(n—k) 1/(n—k)
P 0 < b — ol 709,

Proof. As (z+y)/2=||(x 4+ y)/2||z and as the function f is (n — k)-homogeneous,

Y-k [ ZFY\ _
P (552)

and, by (1), the proof of the lemma follows. O

r+y

; fl/(nfk:) (Z)

1242

https://doi.org/10.1112/50010437X1200019X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1200019X

A LOWER BOUND ON THE WAIST OF UNIT SPHERES

DEFINITION 4.4. Let f be a function defined on an arc of S(X). We say f is weakly (n — k)-
concave if for all z, y € o, 2= ((x + y)/2)/||(z + y) /2|,

FYOB () + R (y)
2

LEMMA 4.3. A nonzero weakly (n — k)-concave function defined on an arc of S(X) has at most
one maximum point and has no local minima.

<AL= 6w =y P(z).

Proof. If there were two distinct maxima z and y, we would get f/(=%)(z) < (1 —d(||lz —
y|)f/=F)(z), a contradiction. Suppose f has a local minimum at point m. Take nearby points
z' and y' such that m = (2’ +y')/2. Then z =2'/||2'|| and y =y'/||y/|| belong to the arc, and
m=((x+vy)/2)/|[(x+y)/2| = m. This leads again to a contradiction. The proof of the lemma
follows. O

Let f be the density of a convexly derived measure supported on a k-dimensional convex
subset S of S(X). By Lemma 4.3, we can conclude that at most one point z € S exists at which
f achieves its maximum. Indeed, suppose f achieves its maximum in at least two points x
and x9. Since there exists an arc passing through x; and xo and contained in S, this would
contradict Lemma 4.3.

Let z be the point of S where f achieves its maximum. We want to give a (uniform) lower
bound for p(B(z, €)), where B(z, ¢) is the k-dimensional ball in S of norm radius ¢,

B(z,e):={x e Sy |||z — 2| <e}.

Therefore, from now on, the mm space we are working on will be (S, u, || [)-

We define two subsets on S: A := B(z,¢), B:= S \ B(z, 2¢) = B(z, 2¢)° and we are interested
in estimating the ratio

We need the following lemma.

LEMMA 4.4. Let f be the density of a convexly derived measure supported on a k-dimensional
convex subset S of S(X). Assume f achieves its maximum at z. Let x € B(z, 2¢) =S \ B(z, 2¢)
and consider the arc o = [z, x| in S(X). Then

fz) <(1=26(e)" " Min  f
oNB(z,)

Proof. (Compare [Ale99]) Pick y € [z, 2] N B(z,¢). By weak concavity, we know that f is
monotone nondecreasing along [z, z|, so

flx) < fly) < f(2)-

So, the maximum of f on the subarc [z, y] is achieved at y. By Lemma 4.2,

fl/(nfk)(x) + fl/(n*k)(y) < (1 B 5(”.%’ B yH) Max fl/(n—k)(w)
J )

2 weE[z,y

which implies

flz) <= 28(llz = y)" " f(y).
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By the triangle inequality, ||z — y|| > ¢ and we remember that the modulus of convexity is
nondecreasing, so

o(llz —yl) = d(e).
Hence,
(1= 26|z — yl)" " < (1 —26(e))" "
And, at last, we have
fl@) < (1 =26z — yl)" " Fy) < (1 —26()"* f(y).

The proof of the lemma follows. O

We are ready now to integrate both sides of the inequality of Lemma 4.4 and give an upper
bound for u(B)/u(A).

LEMMA 4.5. Let ¢ >0 be given. Let S C S(X) be a k-dimensional convex set. Let a convexly
derived measure i1 be defined on S. Let z be the maximum point for the density function of the
measure . Let A:= B(z,¢), B:=S ~\ B(z, 2¢). Then

n(B) n—k k1 F(k, €)
—= < (1-26(e k+1 —,
p(a) S 2O GG )
where
w/2
F(k,e)= / sin(x)*! dz
Pa(e)
and
Y1(e)
G(k,e) = / sin(z)*1 dz,
0
and where
wl (5) =2 arcsin(zl\/l:ﬁ>
and

a(e) =2 arcsin(wkgﬁ> .

Proof. Let o be an arc of S(X) emanating from z. Denote

m=Min f
oNB(z,e)
Then
zconB(z2) = flz)<(1-26e)"*m
and
y€oNB(z,e)= f(y) =m.
Assume first that the norm |- || is Euclidean. We need to convert Euclidean distances

into Riemannian distances along the unit sphere, i.e. angles. If z and y are unit vectors
making an angle ¢, then |r —y| =2sin(¢/2). Therefore, |z — y| =€ corresponds to an angle
¢1 and |z — y| = 2¢ corresponds to an angle ¢o. Therefore, for a fixed 0, t < ¢1 = f(t, 0) = m(0)
and t = ¢9 = f(t,0) < (1 —26(c))" *m(f). Using polar coordinates (,0) on the unit sphere,
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we compute
u(B) _ Joy ot S(£,6) sin(t)*" dt df
u(4) fo b sk f(2, 0) sm(t)k—l dt do
sin(t)1 dt
< max f(iz (t) '
fecSk—1 fo 1 ) Sln(t)k*1 dt

For each 0,
2
Jot f(t,0) sin(t)k—1dt fo ! ) sin(¢)k—1 dt
f(;r sin(t)k—1 dt
f sin(t)k—1 dt

[/ f(t e) sin(¢)k~1 dt _ Jra —25(5))”_km(9) sin(¢)k~1 dt

(1—25(e))"*.

To handle general norms, we use the fact that the Banach—Mazur distance between any
(k + 1)-dimensional normed space and Euclidean space is at most vk + 1. On the affine extension
of co(S) there exists a Euclidean structure | - | such that for every = € Aff(co(S)), we have

1
vk +1

|z < fl]] < -

Or, equivalently, we have

BCc K cVk+ 1B,

where B is the Euclidean ball of dimension k£ + 1 and K is the uniformly convex ball defined by
S(X).

We denote by pr the radial projection of the uniformly convex sphere 0K to the Euclidean
sphere B. Recall that v is the conical measure on K and we denote by dvy the conical measure
on JB, i.e. the Riemannian probability measure. Then the density h = pr. dv/dvy, satisfies

1
ﬁ<h< vk+lk+1.
vk+1

Let z, y € 0K, 2/ =pr(z) and y =pr(y). Since radial projection to the sphere decreases
Fuclidean distance outside the Euclidean ball,

2" — | <oz —y| < VE+ 1|z —y].

For a general norm, radial projection to the unit sphere is 2-Lipschitz. Indeed, let ", y” be points
such that 1 < ||2”|| < ||y”||- Rescaling both by ||z”|| decreases ||z” — y”||, so we can assume that
||l = 1. Then [jy"[| <1+ [lz" — y"|| and

1~ 1 (- )|
T = — +xl1-—
‘ ‘ Iyl 1ly”ll ly" |l
<" ="+ 1y = 1< 2fl2” = 7).
If "/ =k + 12/ and 3" = Vk + 13/, then
lz =yl <2ll2" —y"| =2VEk + 12’ — /|| <2VE + 12" — /.

We radially project the set S to a set S’ on the sphere. S’ is k dimensional and is a convex set
as radial projection preserves convexity. We denote the projection of the point z on the sphere
by z' =pr(z). In polar coordinates (t, ) centered at z’, fix 6. Let 11(0) (respectively 2(6))

/"

n Y
1"
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denote the angle ¢ such that y =pr=1(t, ) € 9K satisfies ||y — z|| =¢ (respectively = 2¢). The
above distance estimates yield

. P1(0) €
2 sin 5 > NS
and
. Pa2(0) €
2 sin > > NS E
Then
wu(B) fgk 1 fw 0)f(t,0) sin(t)*' dt df
“(A) oo JU O n(t, 0) £ (t, 0) sin(t)E-1 dt do
i f¢ (9 0)f(t,0) sin(t)** dt'
~ gesk-1 f¢1(9) h(t, O)f(t, 0) sin(t)—1dt
For each 6,
wa f(t 9) t k=1 it fd) n km(@)h(t, 9) Sin(t)k_l dt
f() 1 h f(t, 0) si (t)k 1 dt fO ! h(t’ 9) sin(t)k—l dt

= (1—20(e))" " S, (2, 0) sin(t)"~1 dt
_ fO Y h(t, 0) sin(t)k—1 dt

- [ sin(t)k—1t at
< (1= 26()" F(k + 1122 —.
Jo *sin(t)k—1 dt

Replacing 11 and 1), with the above lower bounds yields
Sy, sin(t)* 1 dt

uB) <(1=26()" F(k +1)F!
p(A) S sin(t)R=1 dt
_ F(k,¢)
< -9 n—=k 1 k+1 ’ )
(1= 2(0) F -+ 1) S
The proof of the lemma. follows. O

LEMMA 4.6. Let S be a convex set of dimension k in S(x). Let a convexly derived measure y
be defined on S. Let z be the maximum point of the density of the measure u. For every € > 0,
the following estimation holds:

1
14+ (1—28(g/2))"F(k + 1)kt (F(k,e/2)/G(k,e/2))’

where the functions F' and G are defined as before.

p(B(z,¢) >

Proof. We use the result of Lemma 4.5, which tells us that

MB) (1~ ag(e)yhi 4 1yt LKD)

p(A) = G(k,e)
We recall that p is a probability measure and we have
W(B(2) _ p(B(ze) _ 1

u(B(z,2))¢ ~ u(B(z,2))° (1 —20(e))"F(k + DF(F(k, €)/G(k,€))
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Hence,
B u(B(z, 22)) 1
H(B(z, 2¢)) = w(B(z,2¢)) + u(B(z, 2¢))¢ > 14+ (1 —26(e))"k(k + )1 (F(k,e)/G(k,€))
The proof of the lemma follows. O

5. Proof of Theorem 1 following Gromov

In this section, we follow the ideas used in [Gro03, Mem10b]. Let f:S(X)— R* be as in
Theorem 1. We want to partition the sphere S(X) by at most k-dimensional convex sets. The
continuous map f defines a continuous map Pr(f) on the sphere S™ which is the radial projection
of f on S™. We use the following theorem announced by Gromov in [Gro03]. He remarked that
this theorem is not entirely proved in [Gro03] and unfortunately we are not able to give a proof
for this theorem either. However, if we believe Gromov, then the proof of our Theorem 1 becomes
much easier. On the other hand, we will give another method, which will be independent of the
following theorem, to finalize the results of this paper.

THEOREM 2 (Gromov). Let f:S™ — R* be a continuous map. There exist an infinite partition
of the sphere by at most k-dimensional convex sets, denoted by Il and a point z € R* such
that for every S € I, f~1(2) passes through the maximum point of the density of the convexly
derived measure defined on S.

Using Gromov’s theorem 2, we announce the following corollary.

COROLLARY 5.1. Let f:S(X) — R¥ be as in Theorem 1. There exist an infinite partition of
S(X) by at most k-dimensional convex sets, denoted by I, and a point z € R* such that for
every S € I, f~'(2) passes through the maximum point of the density of the (unique) convexly
derived measure defined on S.

Proof. We apply Theorem 2 for the continuous map Pr(f). We know that there exists an infinite
partition of the sphere, II,,, by at most k-dimensional convex sets. By radially projecting each
piece of the partition on S(X), we obtain an infinite partition of S(X) by at most k-dimensional
convex sets. Let S CS"™ and S €Il and let S’ =pr(S). Denote by z (respectively z’) the
maximum point of the density of the convexly derived measure defined on S (respectively S’). It
remains to prove that 2/ = pr(z). Indeed, as we are taking the radial projection, the density of the
convexly derived measure on each S’ is just the radial projection of the density of the measure
defined on S. We recall that the radial projection of the normalized Riemannian measure of S
is the conical measure defined on S’ up to a constant, but this is irrelevant for our purpose. We
are now ready to give a proof of Theorem 1. O

5.1 Proof of Theorem 1 following Theorem 2

We apply the previous corollary. There exist an infinite partition of S(X) by at most
k-dimensional convex sets and a fiber f~!(z) passing through all the maximum points of the
densities of the convexly derived measure defined on all pieces of the partition. where x, is
the maximum point of the density of the (unique) convexly derived measure p, defined on Sy.
Hence, on every S, we have

pr((F71(2) +€) N Sx) > pn (B(ar, €)) > w(e).
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And, at the end,

(1 (z) +e) = / i((f71(2) + €)1 Sy) de

— [ m@ransydrs [ (@) + S dr.
dim Sr=k dim Sr<k

The measure of the measurable partition is equal to one. In [Mem10b], we proved that the
measure of the set of pieces of partition which has dimension <k on the sphere is equal to zero;
radially projecting this on S(X) implies that the measure of the set of pieces of partition of
S(X) which has dimension <k is also equal to zero; hence, we have

n(F () + ) > wle).

Hence, the proof of the theorem follows. O

6. Alternative proof of Theorem 1

This section will be long and very technical. As the author is unable to prove Theorem 2, he
found, by the enormous help of Pierre Pansu, the following arguments replacing Theorem 2. We
begin by giving the following useful definition.

DEFINITION 6.1. Let S be an open convex subset of S(X). S is called a (k, )-pancake if there
exists a convex set S; of dimension k such that every point of S is at distance at most € from 5.

We remark again that the distance on S(X) is the restriction of the norm being defined on
R™" on S(X).
The two following theorems are strong generalizations of the classical Borsuk—Ulam theorem

in algebraic topology and the construction of finite and infinite partitions of S(X) is provided
by them.

THEOREM 3 (Gromov-Borsuk-Ulam, finite case). Let f:S™ — R¥ (k <n) be a continuous map
from the n-sphere to FEuclidean space of dimension k. For every i € N, there exists a partition of
the sphere S" into 2 open convex sets {S;} of equal volumes (= Vol(S™)/2!) and such that all
the center points c.(S;) of the elements of partition have the same image in R¥.

THEOREM 4 (Gromov-Borsuk-Ulam, almost-infinite case). Let f:S™ — RF be a continuous
map. For all € > 0, there exists an integer ig such that for all i > ig, there exists a finite partition
of S™ into 2" open convex subsets such that:

(I) every convex subset of the partition is a (k, €)-pancake;

(IT) the centers of all convex subsets of the partition have the same image in R¥;

(III) all convex subsets of the partition have the same volume.

The proof of Theorem 3 is long and uses algebraic topology arguments. We will not give the
proof of these theorems here and refer the reader to [Mem10b].

We need Theorems 3 and 4 on S(X), but we cannot proceed directly; we again pass via the
round sphere and, by radially projecting the results of these two theorems on S(X), we obtain
the desired partitions on S(X).
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6.1 Approximation of general norms by smooth norms

For a technical reason imposed by Lemma 6.5, we need to approximate general norms by
smooth norms. Indeed, as we will see in the next subsection, we cannot allow the convexly
derived measures charging any mass for the boundary of balls. In this subsection, we show by
approximation that we can in fact exclude this technical problem.

LEMMA 6.1. Let X denote a finite-dimensional space equipped with a C?-smooth norm. Let
S(X) denote its unit sphere. Fix an auxiliary Euclidean structure. There exists K such that
for every 2-plane II passing through the origin, S(X) N P is a disjoint union of curves whose
curvatures k satisfy |k| < K at all points.

Proof. Since the norm is homogeneous of degree one, its derivative along a line passing through
the origin does not vanish. It follows that at every point z € S(X), the restriction of the
differential to P does not vanish identically, i.e. P is transverse to the tangent hyperplane
T, S(X). This shows that S(X)N P is a C%-smooth one-dimensional submanifold, i.e. a finite
disjoint union of curves. Furthermore, the curvature x(z, P) of S(X) N P at x is a continuous
function of (z, P) € I ={(z, P) |z € 9B(0, 1),z € P}. Since I is compact, x is bounded. O

Notation 2. The Hessian of a C?-smooth function f:R% — R at x is the quadratic form

o2
Hess, (v) = wf(a: + 1) ji=o-

We say a C%-smooth norm on a finite-dimensional vector space is strongly convez if, at every
nonzero point, the Hessian of x +— ||z||? is positive definite.

PROPOSITION 5. Let X denote a finite-dimensional space equipped with a C%-smooth strongly
convex norm. Let S(X) denote its unit sphere. There exists ro > 0 such that, for every r < ry,
for every 2-plane P passing through the origin, for every z € S(X), S(X)NPNOIB(z,r) is a
finite set.

Proof. The map z — Hess, || - ||? is homogeneous of degree zero. Fix an auxiliary Euclidean inner

product on X. By compactness of the unit sphere, there exists a positive constant ¢ such that
for all  # 0 and all v,
(Hess, || - [|*)(v,v) > cv - v. (2)

Also, the differential 2 — D,|| - || is homogeneous of degree one. Therefore, there exists a positive
constant C' such that for all x # 0 and all v,

Dzl - ) () < C 2] Vo v. 3)

Fix 2 € X. Let P be a 2-plane. Let f denote the restriction of z +— ||z — z||? to P. It satisfies the
previous two inequalities. Let s +— 7(s) be a C?-smooth curve in P parameterized by arc length,
z=2(0), 7=+/(0). Then

2

v(8) =z + 8T+ %7”(0) + o(s%),

since, for all small v,

f(z+v)=f(2) + D.f(v) + % Hess; f(v,v) +o(v - v),

32 " 1 2
f(v(s))=f(2)+ sz<87' + 57 (0)) + B Hess, f(7,7) + o(s”).
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Now assume that f(v(s;)) = f(z) for a sequence s; that tends to 0. Then, comparing asymptotic
expansions gives

D.f(r)=0, D.f(v"(0))+ Hess, f(, 7).
Since 7 - 7 = 1, inequalities (2) and (3) give

(
c<=D:f(7"(0) < C ||z = =[|v/v"(0) - v"(0).

This shows that the curvature k of the plane curve at v at z satisfies

C
K(z) 2 =———.
@2 B2

Therefore, if z is an accumulation point of v N P N dB(x, r), the curvature of v at z is > ¢/C'r.
With Lemma 6.1, we conclude that if r < rg:=¢/CK, for all P, S(X)N PNIB(z,r) has only
isolated points and thus is finite. O

LEMMA 6.2. Let Xy be a finite-dimensional normed space. Let S(X1) denote its unit sphere.
For every A > 1, there exists a C2-smooth strongly convex norm on X1, with unit sphere S(X5),
such that the radial projection S(X;) — S(X2) is A\-bi-Lipschitz.

Proof. Fix an auxiliary Euclidean inner product on X;. Fix a smooth compactly supported
nonnegative function ¢ : X — R, such that [ ¢ =1. The convolution

f(fc)Z/X \Iylhw(x—y)dyz/x lz —yllw(y) dy

is smooth and convex. For all z € X7,

(@) — el < /X Iyl () dy

is uniformly bounded. Therefore, when one restricts f to a large Euclidean sphere and extends it
to become positively homogeneous of degree one, one gets a smooth norm || - ||" uniformly close
to || - |1. By convexity, the Hessian of || - ||"? is nonnegative. For § > 0, let

[vlls = Vlvll? + 6 v - 0.

This is a smooth norm, and Hess(||v[|3) = §v - v is positive definite. For § small enough, this
norm is close to || - |1 and therefore radial projection between unit spheres is A-bi-Lipschitz. O

Lemma 6.2 allows us to reduce the proof of Theorem 1 to the special case of C?-smooth
strongly convex norms, for which we know, from Proposition 5, that convexly derived measures
do not give any mass to small enough spheres. Until the end of § 6.2, we suppose the norm to be
of class C? and strongly convex.

6.2 Infinite partitions

The proof follows [Mem10b], where the case of the round sphere S" was treated. But, we need
these results for the unit spheres of uniformly convex normed spaces. This merely requires a few
minor changes, but we include complete proofs for completeness sake.

DEFINITION 6.2 (Space of convexly derived measures). Let MC™ denote the set of probability
measures on S(X) of the form g = j15/p(S), where S C S(X) is open and convex and where
is the conical probability measure defined on S(X). The space MC of convezly derived probability
measures on S(X) is the vague closure of MC".

It is a compact metrizable topological space.
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LEMMA 6.3. For all open convex sets S C S™ and all x € S,
vol(S N B(x,r)) S vol(B(z, 1))
vol(S) ~ vol(S")

Proof. Apply Bishop—Gromov’s inequality in Riemannian geometry. In this special case (S" has
constant curvature 1), it states that the ratio

vol(S N B(x,r))
vol(B(z,))
is a nonincreasing function of r. It follows that
vol(S N B(xz,r)) - vol(S)
vol(B(z,r)) = vol(S®)’
COROLLARY 6.4. For all open convex sets S C S(X) and all z € S,
p(SNB(z,r)) _ vol(-, 4(r))
1(S) ~ vol(Sm)

where vol(-, ¢(r)) is the volume of a ball of radius ¢(r) on S™ and where

2 sin o(r) = 4 .
2 2vn+1
Proof. By radially projecting S(X) to S™, the convex set S maps to a convex set S’ on the round

sphere. By our previous observations, the image of the ball B(x, r) contains a spherical ball of
radius ¢(r), where

2sin<¢(;)) - 2\/;71.

w(S N B(x, 1)) < W (S" N B2, "))
p(S) - 1 (S")
P (8" N B, ¢(r)))
' (S")
(n+ )" vol(B(2', ¢(r))
(n 4+ 1)7+1 vol(S™)
vol(B(a', ¢(r)))

= . |
vol(S™)

This inequality extends to all convexly derived measures, thanks to the following lemma.

Hence,

LEMMA 6.5 (See [HL99]). Let u; be a sequence of positive Radon measures on a locally compact
space X which vaguely converges to a positive Radon measure u. Then, for every relatively
compact subset A C X such that u(0A) =0,

lim ji5(A) = p(A).
71— 00
COROLLARY 6.6. For all measures v € MC on S(X), all x € support(v) and small enough r,
v(SN B(z,r)) > const. r".

Proof. Let v=1lim ug;. Up to extracting a subsequence, one can assume that S; Hausdorff
converges to a compact convex set S. Then support(v) C S. Indeed, if = ¢ S, there exists r >0
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such that S N B(z,r) = 0. Let f be a continuous function on S(X), supported in B(z, r/2). Then,
for j large enough, S; N B(z,7/2) =0, [ f dvs; =0, so | f dv =0, showing that x ¢ support(v).

If v is a Dirac measure, then the inequality trivially holds. Otherwise, let x € support(v).
There exist z; € support(u;) such that the x; tend to x. Since v gives no measure to boundaries
of small metric balls (by Proposition 5, since we assume that the norm is C? and strongly convex),
Lemma 6.5 applies, and the inequality of Corollary 6.6 passes to the limit. O

LEMMA 6.7. Let Comp(S(X)) denote the space of compact subsets of S(X) equipped with
Hausdorff distance. The map support : MC — Comp(S (X)) which maps a measure to its support
is continuous.

Proof. Let pi; € MC converge to v. One can assume that S; = support(u;) converge to a compact
set S. We saw in the proof of Corollary 6.6 that support(r) C S. To prove the opposite inclusion,
let us define, for r > 0 and z € S(X),

Fra() =149 2302 4 g <d(y,x) <,
T

0 otherwise,

where d is the distance induced by the norm of R"*!. Let z € S. Let xj € S; converge to .
According to Lemma 6.6, if d(x;, z) <r/4,

/ for(y) dpj(y) = const. 1",

Le. [ for duj does not tend to 0. It follows that [ f;, dv > 0, and z belongs to support(v). This
shows that support is a continuous map on MC. O

The support of a convexly derived probability measure is a closed convex set; it has a
dimension.

Notation 3. MC* denotes the set of convexly derived probability measures whose support
has dimension k, MCSF = U];:o MCE, MCH = MC\MCP. For p>0, MC, denotes the set of
convexly derived probability measures whose support has diameter >p.

LEMMA 6.8. Asr tends to 0, v(B(x,r)) tends to 0 uniformly on MC, x S(X).

Proof. We first prove the lemma in R™; the spherical case follows by projectively mapping
hemispheres of S(X) to R™. We can assume that p is very small as well. Let u be a convexly
derived measure supported by a k-dimensional convex set S, let z € R" and let B= SN B(z, ).
Since S has diameter at least p, there is a point y at distance at least p/2 of x. Up to a translation,
we can assume that y is the origin of R¥. Let ¢ be the density of p. Then ¢*/("~%) is concave.
Thus, for 2’ € B and X €]0, 1],

p(Az) = \""F ().
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Changing variables gives

p(AB) = ¢( ) dz

—)\k/qﬁ)\z
A”/¢

=\"u

If N is an integer such that N < p/4r, then one can choose N values of A between 1/2 and 1
leading to disjoint subsets AB of .S, and this yields

1=p(8) = N(3)"u(B),
i.e.
w(B) < 2" /N ~ const. r/p.
Now let S CS(X) be the support of a convexly derived measure v € MC, and let B =

B(z,r)NS. We projectively map B to R™ and we choose the center of this projection to be
the point z. Hence, it follows again that

v(B) < Cr/p. O
LEMMA 6.9. Let p>0. Let K be a compact set of probability measures on S(X) with the
following property: for every v € K, all x and all r < p, v(0B(z,r)) =0. Then the function
(v,z,r)—v(B(x,r)) is uniformly continuous on K x S(X) x (0,p). It follows that it is
continuous on MC* x S(X) x [0, p).

Proof. Let (v;, x;,7;) — (v, z, 7). Let {a}} (respectively ') be the sequence of points (respectively
the point) on the S™ image of radial projection of the sequence {x;} (respectively z). Let
¢i € Iso(R™1) be such that lim; .o ¢; = Id and, for every i, ¢;(x}) =2’ Such a sequence of
isometry acts on S(X) by taking the action on S™ and projecting to S(X). For every ¢ > 0, for
big enough ¢ we have
B(z,r —9) C ¢i(B(xs, ;) C B(x,r +9).

This implies

vi(¢; (Bl — 0))) <vi(B(xi,15)) < il (Blx, 7+ 9))).
Hence,

lim sup v;(B(x;, r;)) < im ¢uvi(B(z,r+0)) =v(B(z,r + 0)),

lim inf v;(B(x;, r;)) > lim ¢uv(B(x, r —0)) = v(B(x,r —0)).

Let 6 — 0. As we supposed the norm being smooth, we know that v(0B(z, r)) = 0. We can apply
Lemma 6.5 and deduce that lims_o v(B(z,r +9)) = v(B(z,r)). We can apply Lemma 6.8 and
the continuity on MC* x S(X) x [0, p) is deduced. O

DEFINITION 6.3 (Limits of finite convex partitions). Let II be a finite convex partition of S(X).
We view it as an atomic probability measure m(II) on MC as follows: for each piece S of II, let
s = 15/ 1(S) be the normalized volume of S. Then set

mm = " u(S)dus.

pieces S
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We define the space of (infinite) convex partitions CP as the vague closure of the image of the
map m in the space P(MC) of probability measures on the space of convexly derived measures.
The subset CPSF of convex partitions of dimension < k consists of elements of CP which are
supported on the subset MCS* of convexly derived measures with support of dimension at
most k.

Note that CP is compact and CPS¥ is closed in it. Measures in the support of a convex
partition can be thought of as the pieces of the partition.

LEMMA 6.10 (Disintegration formula). Let A C S(X) be a set such that the intersection of 0A
with every ¢-dimensional subsphere has vanishing ¢-dimensional measure, for all £, 0 < £ < n. Let
I1 € CP. Assume that TI(MC®) = 0. Then

u(A) = /MC v(A) dII(v).

Proof. For finite partitions II;, equality holds. According to Lemma 6.5, the function v —
v(A)x(v) is continuous on MC*. Therefore, the identity still holds for vague limits of finite
partitions. This completes the proof of the lemma. O

6.3 Choice of a center map

In the previous sections, we did not make any particular assumption about the center map.
In fact, the only property of this map which was used was the continuity. In this section, we
construct a family of center maps, which will lead us to the proof of Theorem 1.

DEFINITION 6.4 (Approximate centers of convexly derived measures). Let v € MC and let
r > 0. Consider the function S(X) — R, z — v, ,(z) =v(B(z,r)). Let M,(v) be the set of points
where v,,, achieves its maximum on support(v).

If the support of v is ¢ dimensional, £ < n, we denote by My(v) the unique point where the
density of v achieves its maximum.

The next lemma states a semi-continuity property of M,..

Notation 4. When A;, i € N, are subsets of a topological space, we shall denote by
.lim Az = ﬂ U Aj

1—00 i >
the set of all possible limits of subsequences z;(;) € A;(;).
LEMMA 6.11. Let v; be convexly derived measures which converge to v € MC. Then, for all
r >0,

lim M, (v;) C M, (v).
If follows that

lim conv. hull(M,(v;)) C conv. hull(M,(v)).

1— 00

Proof. Let v; tend to v. Then the support of v; Hausdorff converges to the support of v. If
v € MC° equals the Dirac measure at z, then M, (v;) automatically converges to {z} = M, (v).
Otherwise, v € MC*. Let = € lim; oo M,(v;), i.e. & =1im; .o x; for some z; € M,(v;). Pick
y € support(v). Pick a sequence y; € support(v;) converging to y. According to Lemma 6.9,

Ury (LL’) = Zlilgo Ury; (‘Tz)a v?",l/(y) = zliglo Ur.y, (yz)

Since vy, (zi) = vr1, (Yi), we get vy, () = v, (y), showing that « € M, (v).
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We claim that for arbitrary compact sets A4; € S(X),

lim conv. hull(A4;) C conv. hull(lim A;).

1— 00 1— 00
Indeed, taking cones, it is sufficient to check this in R"*1. If 2 € lim; ., conv. hull(4;), x = lim x;
with x; € conv. hull(A4;), then there exist n 4 1 numbers ¢; ; € [0, 1] and points a; ; € A; such that
Zj tij=1 ;= Zj t; ja; ;. One can assume that all sequences ¢ — t; j, a; j converge to t;, a;.
Then t; €[0,1], >, t; =1, aj € A=lim; oo A; and x =3, t;a; € conv. hull(A). This completes
the proof of Lemma 6.11. O

The above semi-continuity property is sufficient to apply Michael’s theory of continuous
selections [Mic59).

THEOREM 6 (Michael’s continuous selection theorem). Let X be paracompact, Y a Banach
Space and & the space of closed convex nonempty subsets of Y. Then every lower semi-continuous
map ¢ : X — & admits a continuous selection.

Let 6 >0 and small be fixed. We use Theorem 6 for X = MC and Y = R"*! and the map
¢ = conv. hullM,.(S) + &, where the convex hull is taken with respect to the geometry of R™+!
and M,.(S) + ¢ is the delta-neighborhood of M, (S) in R"*!. In this case, Theorem 6 provides a
continuous selection for the map ¢. To have a continuous selection on S(X), it will be sufficient
to take conv. hullp(S) N S(X), where this time the convex hull is taken with respect to the
geometry of S(X).

DEFINITION 6.5 (Centers of open convex sets). Let r > 0. According to Theorem 6, we can
choose a continuous map C, : MC" — S(X) such that, for every S € MC", C,(S) belongs to
conv. hull(M,(S5)).

6.4 Construction of partitions adapted to a continuous map

DEFINITION 6.6 (Partitions adapted to a continuous map). Let f: S(X) — R* be a continuous
map. Let r > 0. We say a convex partition II € CP is r-adapted to f if there exists z € R* such
that f~!(z) intersects the convex hull of M, (v) for all measures v in the support of II. Let

m f(conv. hull(M,(v))) # @}

vesupport(II)

fT:{HGC'P

denote the set of partitions which are r-adapted to f.
PROPOSITION 7. For all r > 0, F, is closed in CP.

Proof. If lim;_,o II; = II, support(II) C lim; . support(Il;), i.e. every piece v of II is the limit
of a sequence of pieces v; of II;. By assumption, there is a z; € R¥ which belongs to all
f(conv. hull(M,(v))), v € support(Il;). One can assume z; converges to z. Then z belongs to
all f(conv. hull(M,(v))), v € support(II). Indeed, in general, if g is a continuous map and A; are
subsets of a compact space, g(lim; oo A4;) = lim; ., g(4;). So, if v =1lim v;, v; € support(Il;),

z=lim z; € lim f(conv. hull(M,(v4)))
- f(lim conv. hull(M,(v;)))
C f(conv. hull(M,(v))),

thanks to Lemma 6.11. O

1255

https://doi.org/10.1112/50010437X1200019X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1200019X

Y. MEMARIAN

COROLLARY 6.12. Let f:S(X)—RF be a continuous map. For all r>0, F,NCPSk is
nonempty.

Proof. Theorem 3 states that for every r >0, F,. contains uniform atomic measures with
arbitrarily many pieces. Theorem 4 produces elements of F, whose support is contained in
arbitrarily thin neighborhoods of the compact subset MCSF. With Proposition 7, this gives
elements in F, N CP<F, O

6.5 Convergence of M, (v) as r tends to 0

LEMMA 6.13. Let £ < n. For every £-dimensional convexly derived measure v,
lin(l) dy (M, (v), Mo(v)) = 0.
T —

Proof. We prove the lemma by contradiction. Otherwise, we get a § >0 and a sequence of
radii r; tending to 0 such that dg(M,,(v), Mo(v)) = 0. Pick a point x; € S where v,, ,, achieves
its maximum and such that d(z;, Mo(v)) > é. Up to extracting a subsequence, we can assume that
x; converges to x € S. Then vm,,(:ri)/akrf converges to ¢, (z). For every y € S, vy, , (y) < vy, ()
and vy, ,(y)/axrk converges to ¢, (y). Therefore, ¢, (y) < ¢, (). This shows that {z} = My(v),
a contradiction. a

A stronger statement (Corollary 6.17) will be given after the following technical lemmas.

LEMMA 6.14. Let v be a convexly derived measure on S(X) whose support is a k-dimensional
convex set S. Write dv = ¢ dug. Then

2n+1
pe(S)

Proof. Replace S with C =co(S) C R"" and ¢ by its n — k-homogeneous extension. Then
$Y/("=k) is concave. Assume ¢ achieves its maximum at x € C. Translate C' so that z =0. On
30, ¢/ k) > L1/ R) (z); thus,

mgxgb <

1:1/(5)2/ ¢ d volyy1
ic

1 1
P 2”7—k¢($) volg 11 <2C)

S () volg11(C)

= SO (S). 0

LEMMA 6.15. Let S, S; be full compact convex subsets of R™ such that S; Hausdorff converges
to S. Let ¢; : S; — [0, 1] be concave functions. Then there exist a concave function ¢ : S — [0, 1]
and a subsequence with the following properties.

— On every compact subset of the interior of S, ¢; converges uniformly to ¢.

— For all x € S and all sequences x; € S; converging to x,

lim sup ¢;(x;) < ¢(x).

1—00
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Proof. In general, bounded concave functions f on compact convex sets X are locally Lipschitz,

1
forz € withd(z,0X)=r andallye, |f(x)— f(y)< ;d(m, Y)-

Indeed, let [2/,y'] be the intersection of ¥ with the line through = and y, with 2/, z, ¥’ and
y sitting along the line in this order. Let ¢ be the affine function on [2/,y'] such that ¢(2') =
F(') and £(z) = £(z). Then f(y) < €(y); thus, f(y) — f(x) < (1/d(', 2))|f(z) — f(z")|d(z, y) <
(1/r)d(z,y). Also, let ¢’ be the affine function on [z, y/] such that ¢'(z) = f(z) and ¢'(v') = f(v/).
Then f(y) 2 ¢'(y); thus, f(y) — f(z) = —(1/d(z, y")|f(x) = fF)ld(z, y) = —(1/r)d(z, y).

This shows that on every compact subset of the interior of S, the sequence f; is
equicontinuous, so a subsequence can be found which converges uniformly on all such compact
sets to a continuous function ¢. Of course, ¢ is concave and bounded, so it extends continuously
to 0S. Let x € 0S5 and x; € S; converge to x. Pick an interior point ¢ of S and a second interior
point &’ # x( such that zg lies on the segment [z/, z]. Pick z} on the line passing through z and
x; and converging to z’. The Lipschitz estimate for ¢; reads

d(xo, x;) ,
A . < N AN .
(z)z(mz) (bz(xO) X d(x(), .’L‘;) ’(Z)Z(mz) (bz(wO)’
Letting ¢ tend to infinity yields
d
lim sup ¢;(2;) < ¢(z0) + mfb(x/) — ¢(z0)l-
Letting 29 and 2’ tend to = (while keeping ', z¢ and x aligned and d(x¢, x)/d(zo, 2") bounded)
gives lim sup ¢;(z;) < ¢(x). O

LEMMA 6.16. For each k < n, the restriction of (v, ) — dg (M, (v), My(v)) to Ry x MC* tends
to 0 along {0} x MC¥, i.e. for all v € MC¥,
lim dp (M, (v), My(v)) =0.
r—0, v'—v, v'e MCF

Proof. Let v e MCF. Let v; be a sequence of k-dimensional convexly derived measures which
converges to v and r; be positive numbers tending to 0. For every i, we project the support of v;
into the k-sphere which contains the support of v (if intrinsically this poses a problem, one can
always think of the cones over the support of these measures and do all projections in R*+1).
In other words, one can assume that all v; have support S; in the same k-sphere. Of course,
S; Hausdorff converges to the support S of v. Let ¢; denote the density of v; with respect to
k-dimensional conical measure. Since p(S;) does not tend to 0, the ¢; are uniformly bounded,
by Lemma 6.14. Furthermore, on any compact convex subset K of the relative interior of S,
the ¢; are equicontinuous (this follows by the cone construction from Lemma 6.15). Therefore,
one can assume that the ¢; converge uniformly on compact subsets of the relative interior of S.
Since, for all ' >0, v ,, converges to v,/ ,, the limit must be equal to the density ¢ of v.
From Lemma 6.15, one can assert that at boundary points x € 35S, for every sequence x; € S;
converging to z, lim sup ¢;(z;) < ¢(x).

We repeat the argument of Lemma 6.13. If M, (v;) does not converge to My(v), some sequence
x; € M,,(v;) satisfies d(z;, Mo(v)) =9 for some § > 0. Up to extracting a subsequence, we can
assume that z; converges to z € S. If = ¢ 95, then v, ,(x;)/agr? converges to ¢(z). If x € 95,
lim sup vy, ,,(;)/axrk < ¢(x). For every y € S\OS, vy, »(y) < vy, 0 (z) and vy, ,, (y) /agrF converges
to ¢(y). Therefore, ¢(y) < ¢(z). Since S\OS is dense in S, this holds for all y € S; thus, ¢ achieves
its maximum at z, i.e. {x} = My(v), a contradiction. O
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COROLLARY 6.17. On any compact subset of MC¥, the functions
v d (M, (v), Mo(v))
converge uniformly to 0 as r tends to 0.

PROPOSITION 8. Assume f:S(X)— RF is a generic smooth map. Let r; tend to 0 and let
II; e CP<Fn Fr, be convex partitions of dimension <k, r;-adapted to f. Then, for all € > 0,
max p(f1(2) 4 €) > w(e) lim sup II;(MCF),
2€RFK i—00

where
1

T 1+ (1= 20(/2)" Rk + DF(E(R /2)/Glk, €/2))
and where the functions F(-,-) and G(-, -) were defined previously.

w(e)

Proof. By assumption, for each i, there exists z; € RF such that for all u € support(II;), there
exists 2;,, € conv. hull(M,, (v)) such that f(x;,) = 2. Let K C MC¥ be a compact set. According
to Corollary 6.17 and Lemma 6.9, for all € > 0,
0i :==sup |[v(B(ziy,€)) — v(B(Mo(v), €))|
vek

tends to 0. Considerations in previous sections show that for every k-dimensional convexly derived
measure v,

v(B(My(v),e)) = w(e).

For a generic smooth map f, the intersection of f~1(z;) + & with k-dimensional convex sets has
vanishing k-dimensional measure, so the disintegration formula applies, and

() +e) > / V(7 () +2) dTL(v)

MCT
2/&”(3(%7”’8)) d11;(v)
> Hi(lC)w(a) - 52

Taking the supremum over all compact subsets of MCF and then a limit as i tends to infinity
yields the announced inequality. O

6.6 End of the proof of Theorem 1

It remains to show that convex partitions in CPS* N F,., r small, put most of their weight on
k-dimensional pieces. This will be proven indirectly. Pieces of dimension <k may exist, but they
provide a lower bound on u(f~!(z) + r) which is so large that they must have small weight. We
shall need a weak concavity property of v, ,, which in turn relies on the corresponding Euclidean
statement.

LEMMA 6.18. Let S C R™ be an open convex set and ¢ an m-concave function defined on S. Let
p = ¢dvol,,. Then the map x+ pu(B(xz,7)NS) is (m + n)-concave on S.

Proof. We use the following estimate (generalized Prekopa-Leindler inequality), which can be
found in [LBO8]. For a € [—00, +00] and 0 € [0, 1], the a-mean of two nonnegative numbers a
and b with weight 0 is

M9 (a,b) = (fa + (1 — )b>)1/.
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Let —1/n < a< 400, 0 € [0, 1], u, v, w be nonnegative measurable functions on R™ such that for
all z, y e R",

w(fz + (1 —0)y) > M (u(z),v(y)).

forsin ([ ])

We apply this to restrictions of ¢ to balls, u=1p(; ¢, v =1y )¢, W= 1B@Gz+1-0)y,r® By
m-~convexity of ¢, the assumptions of the generalized Prekopa—Leindler inequality are satisfied
with @ =1/m. Then, for §=1/(m + n),

u(B(0z + (1 - 0)y),r) = MY (w(B(x,r)), w(B(y, ),

Let = a/(1+ an). Then

which means

p(B(0x + (1= 0)y), 1)) > (B, 7)) 0™ 4 (1= ) u(B(y, r)) "/ ). 0

LEMMA 6.19. The functions v,,, are weakly concave on S(X). In other words, there exists a
constant ¢ = c¢(n) > 0 such that for every convexly derived measure v and every sufficiently small
r >0, if K C support(v), then
. N . ‘
Cor;il(r}( : Uyrfe 2 € WDV,

Proof. Since a half-sphere is projectively equivalent with Euclidean space, it suffices to prove
weak concavity when K consists of two points.

Let v be a k-dimensional convexly derived measure on S(X). Denote its density by ¢, a weak
(n — k)-concave function on the support S of v. Let ® denote the (n — k)-homogeneous extension
of ¢ to the cone on S. This is (n — k)-concave. Fix a point zp € S(X) and let R" denote the
tangent space (cone) of S(X) at zp. Denote by ¢’ the restriction of ® to R™, and v/ the measure
with density ¢’. Lemma 6.18 implies that 2’ — u(B(2/, r)) is (2n — k)-concave. This implies that
for every 2/, 4/ € R"™ and 2’ belonging to the middle third of the line segment [z, /],

V' (B(Z, 7)) max{v/ (B(z',r)), V' (B, r))}.

2 32n7k

The radial projection from a neighborhood V C S(X) of g to R™ is nearly isometric and
nearly maps ¢’ to ¢. Thus, there exists a constant ¢; > 0 such that if x, y € V and z belong to
the middle third of the segment [z, 1],

V<B (z ;)) > ¢; max{v(B(z, 1)), v(B(y,))}.

Covering long segments [z, y| with N neighborhoods like V' (N can be bounded independently
of n) provides a constant ¢ > 0 such that for all z € [z, y] which is not too close to the end points,

y(B (z, ;V» > e max{v(B(z, ), v(B(y, ))}.

1

In particular, for ¢ = c¥Y,

V<B <z Z)) > ¢ min{v(B(z, 1)), v(B(y, r))}. 0
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PROPOSITION 9. There exists a constant ¢ = c¢(n) > 0 such that if f : S(X) — R* is smooth and
generic and II belongs to F, N CP<SF for some small enough r > 0, then

maxu(f L > Zwl m(mch),

cRk

where wy(r) is equal to w(r) in codimension I.

Proof. By assumption, there exists z € R¥ such that for every measure v in the support of II, there
exists x € conv. hull(M, (v)) such that f(z) = z. If the support of v is ¢ dimensional, Lemma 6.11

and our previous computations give
r
c

= /u"/c( )

¢ min v,
My (v)

=c max Uy,
support(v)

c vy (Mo(v))
v(B(Mo(v), 1))

= cwi(p).

X
7~
~

L
O
+
I3
S~
WV

WV

WV

Again, for generic smooth f, one can integrate this with respect to II.

(1) + 1) = / V(1) + 1) dTIW)
MC
>c Z wy(p MCK O

LEMMA 6.20. For every |l < k, we have

lin% wy (1) /wg(r) = o0.

r—
Proof. Simple observation shows that for every m € N, lim,_,g G(m, r) — 0 and lim, .o F'(m, r) =
1. Simple calculation leads to

L+ (1—26(r/2))" k(F(k,r/2)/G(k,7/2))(k + 1)k+! G(l,r)
14+ (1—=28(r/2)"HF(,r/2)/G(,7/2))(l + 1)1 Tro G(k,r)

and, by the well-known asymptotic behavior of the function G(m, r), we have

G(l,r) - Pk
G(k,r) r—0 ’

Hence, the proof of the lemma follows. O

w(r)/wi(r) =

Proof of Theorem 1.
PROPOSITION 10. Let ¢ > 0. Let f:S(X)— RF be a continuous map. Then

max u(f () + €) > w(e).
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Proof. Assume first that f is smooth and generic. Then there exists a constant W such that for
all sufficiently small r,

max p(f1(z) +7) < Wrk,
2€ERF

For every r >0, there exists a convex partition II, € CPS¥ N F, which is r-adapted to f
(Corollary 6.12). Proposition 9 yields

éwl(r)ﬂr(MCe) < maw(fl(z) i ) W ()’“

C zc€RFK c c \c

As r tends to 0, this implies that for all £ < k (including ¢ = 0), II,(MC") tends to 0, and thus
IT, (MCF) tends to 1. Letting = tend to 0 in Proposition 8 then shows that

max u(f~1(2) +2) > w(e). 0

z€RK
Every continuous map f:S(X) — R¥ is a uniform limit of smooth generic maps. Hausdorff
semi-continuity of X — p(X + ) then extends the result to all continuous maps. Indeed, let the

continuous map f : S(X) — R¥ of Theorem 1 be fixed. Let g; : S(X) — R¥ be a sequence of C*°
maps such that §; = ||g; — f|/co tends to 0. For every j, there exists a z; € R* such that

(g5 (z5) + &) = w(e).
We know that for every j, g;l(zj) C f~Y(B(2j,d;)). Then
p(fH (B2, 05)) +€) = ulg; ' (25) +€) = we).

Up to extracting a subsequence, we can assume that {z;} converges to a point z. There exists a
decreasing sequence ¢; — 0 such that for every j, |z — 2| <¢;. Then

FUB(z,8))) +e C fH(B(2, 65 + €5)) + &5
thus, for all j,
u(fTH(B(z, 65 +¢j) + ) > w(e)
and, by the Fatou lemma,

i B8 42+ ¢) 2 ue)

If, for all j, x € f~1(B(2,d; + £;)) + €, then there exists y; such that d(z,y;) <e and f(y;) €
B(z,d; +¢€5). We choose a subsequence y;, which converges to y. By construction, d(z, y) <e,
f(y) =z and thus = € f~1(2) + €. Hence,

() /71(B(2,8+¢5) +e) CfH(2) +e
j
and

n(fH2) +e) = wle).

7. Why all these complications?

Remember the following theorem.

THEOREM 11 (Gromov [Gro03]). Let f:S"™ — R¥ be a continuous map from the canonical unit
n-sphere to a Euclidean space of dimension k, where k < n. There exists a point z € RF such
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that the n-spherical volume of the e-tubular neighborhood of f~!(z), denoted by f~'(z) +e,
satisfies, for every € > 0,

vol, (f71(2) + &) = vol, (8" % 4 ¢).
Here S"* is the (n — k)-equatorial sphere of S™.
Several times during the last sections, we used the radial projection between the canonical
sphere and the unit sphere S(X). One could ask why bother with all we did and not just radially

project the result of Theorem 11 on S(X)? Indeed, this gives another lower bound for the waist
of S(X), as we will show in the next proposition.

PROPOSITION 12. Let S(X) be the unit sphere of an (n + 1)-dimensional normed space X, for
which the distance is induced from the norm of X. The measure defined on S(X) is the conical
probability measure. A lower bound for the waist of S(X) relative to R* is given by

e VOL(S™TF e/ (n+ 1))

vol(S™) '
Proof of the proposition. Let pr be the radial projection of S” to S(X). We apply Theorem 11
to the map g = pr—! o f. Hence, there exists a fiber X such that for every > 0,

vol(X 4 ¢) = vol(S" 7 + ¢).
We radially project X + ¢ to S(X). We have
pr(X +¢) Cpr(X) + (n+ 1)e.

wa(e) = (n+1)

Hence,
pu(pr(X) +¢) = u(p'r (X + ni1>)
s el 1)
> (n+ 1)_n_1V01(S”_jo—li—(§7{)(n +1))
The proposition is proved. o

We see that a brutal application of Gromov’s theorem gives a lower bound for the waist of
the unit sphere of a uniformly convex normed space, S(X). But, comparing w1 (¢) and ws(e), we
can see that the lower bound w;(¢) has a much better dependence on the variable n, even if the
dependence on the variable & is very bad.

For example, if k is fixed and n tends to infinity, wa(e) tends (exponentially fast) to 0, while,
for this case, the lower bound wj(g) tends to 1. One can hope to have a better dependence on
the variable k& by knowing the best degree of dilation of the radial projection of S — S(X). Here
we gave a trivial bound for the degree of dilation, not taking into account uniform convexity.

8. Comparison between the waist of S(X) with the waist of the round sphere

One major benefit of having a metric invariant is the ability to compare it between different
metric spaces. For instance, Theorem 11 gives the sharp estimation of the waist of the round
(canonical) sphere for every n and k. Our main Theorem 1 gives an estimation of the waist of
S(X) which is not sharp. It may seems strange that using the sharp estimate of the waist of the
round sphere to obtain an estimate of the waist of S(X) brings a sharp value to a nonsharp one.
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But, this is not surprising, since to obtain our value we had to integrate on a round sphere and
then use the radial projection. This is why we obtain a result which is far from being optimal.
We believe for a sharp value of the waist of S(X), one needs to use other methods than the one
used in this paper. Denote the optimal value of the waist of S(X) (for every ¢ >0) by wg(e).
Then clearly
Wop(e) = w(e).

Unfortunately, the annoying factor (k + 1)(k+1) in the expression w(¢) makes the comparison
of w(e) and wgn(g) = vol(S" % +¢)/ vol(S") uninteresting. But, we believe in the following
conjecture.

CONJECTURE 8.1. For every € >0, k and n,

vol(S"* + ¢
wop(e) > wen (0) =

9. Comparison with Gromov—Milman’s inequality

We want to compare the result of Theorem 1 for £ = 1 with Gromov—Milman’s isoperimetric-type
inequality, which we recall here. This inequality was proved first by Gromov—Millman in [GMS87].
The proof was completed later on by Alesker in [Ale99] (S. Sodin had the kindness of referring
Alesker’s paper to the author). There is a very short and easy proof given by Arias-de-Reyna,
Ball and Villa in [ABV9S].

THEOREM 13. Let S(X) be a uniformly convex unit sphere with modulus §. For every Borel set
A C S(X) such that u(A) > % and for every € > 0, we have

w(A+e)>1—eo@m
where a(e) = 6(¢/8 — 6,,) and where 8, is such that §(8,) =1 — (1/2)/(=1,

Our Theorem 1, in the case k =1, recovers a version of the above inequality.
We need the following proposition, which relates isoperimetry and 1-waist.

PROPOSITION 14. 1-waist = isoperimetry: for every open subset A C S(X) and for all e > 0, we
have

max{u(A +¢€), p(A°+ )} = w(e).

For the proof, see [Mem10a], where we proved this proposition in a more general context.

Proposition 14 is far from optimal for small £ and fixed n. To see this, compare w(e) of our
main theorem with the right-hand side of the inequality of Theorem 13 when € — 0. One can see
that when € — 0, w(g) — 0 but lim. (1 — e=4") =1 — m90n) > 1/2 (since 1 — (1/2)/(1) =
log(2)/(n —1)). On the other hand, let ¢ be fixed and let n — co. The complicated expression
of our main theorem in this particular case simplifies as

1
) T (= @)/ ) (A~ (/D)

In this regime, our main Theorem 1 combined with Proposition 14 yields
max{j(A+¢), u(A°+e)} =1 — e bEn=ele),

where b(e) = 26(¢/2) and ¢(¢) has an ugly expression. Since b() = 26(g/2) > §((/8) — 6,,) = a(e),
our Theorem 1 gives a better estimate.
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