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1. Introduction. Throughout this paper H will be a complex, separable, infinite-
dimensional Hilbert space and B(H) will denote the algebra of all bounded linear
operators on H.

If T ∈ B(H) and x ∈ H we shall denote by Orb(T, x) the orbit of x under T which
means the set

{Tnx; n ≥ 0}.
An operator T is called hypercyclic if there is x ∈ H such that Orb(T, x) is dense

in H. The set of all hypercyclic operators on H will be denoted by HC(H).
An operator T is called weakly hypercyclic if there is x ∈ H such that Orb(T, x) is

weakly dense in H. We will use WHC(H) for the set of all weakly hypercyclic operators.
It is clear that HC(H) ⊂ WHC(H). It was proved in [3] that there are weakly

hypercyclic operators which are not hypercyclic.
An operator is called supercyclic if the set {λOrb(T, x); λ ∈ �} is dense in H for

some vector x. The set of all supercyclic operators on H will be denoted by SC(H).
An operator is called weakly supercyclic if there is a vector x such that the set

{λOrb(T, x); λ ∈ �} is weakly dense in H. We shall use WSC(H) for the set of all
weakly supercyclic operators.

It is clear that SC(H) ⊂ WSC(H). The paper [7] contains examples of weakly
supercyclic operators which are not supercyclic.

For an operator T we shall use σ (T) to denote the spectrum of T and σp(T)
for the set of all eigenvalues of T (point spectrum) while σp0(T) is the set of all
isolated eigenvalues of T of finite (geometric) multiplicity (normal eigenvalues). If
λ ∈ σp0(T) then T is similar to A ⊕ B, where λ /∈ σ (A), σ (B) = {λ} and B is an operator
on a finite dimensional subspace. It is easy to see from this characterization that
λ ∈ σp0(T) ⇐⇒ λ ∈ σp0(T∗).

We shall denote the unit circle of the complex plane by � and the open unit disc
by �.

The semi Fredholm domain of an operator T will be denoted by ρsF (T) and, for
λ ∈ ρsF (T), ind(λ − T) will stand for the semi Fredholm index of λ − T . Recall that the
Weyl spectrum of an operator is the set σW (T) = σ (T) \ {λ ∈ ρsF (T); ind(λ − T) = 0}.
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The spectral properties of the operators are not much different in the case of weak
density. In fact, we didn’t find any difference.

The classes HC(H) and SC(H) have been extensively studied in the last 25 years.
The study of WHC(H) and WSC(H) is just at the beginning, from this point of view
[3], [4] and [7] being really pioneering work. In this paper we will do for WHC(H) and
WSC(H) what was done for HC(H) and SC(H) in [6].

2. Weakly hypercyclic operators. In this section we will list some spectral proper-
ties of weakly hypercyclic operators and we will use them to prove that the sets HC(H)
and WHC(H) have the same interior and the same closure (in the norm topology).

PROPOSITION 2.1. On a finite dimensional space there is no weakly hypercyclic
operator.

Proof. If there is any such operator then, because of the finite dimension, it will
be hypercyclic and it is known that in finite dimension there are no hypercyclic
operators. �

THEOREM 2.2. If T ∈ WHC(H) then:
(i) for every invariant subspace M of T the compression of T to the orthogonal

complement of M is weakly hypercyclic on the space M⊥;
(ii) σp(T∗) = ∅;

(iii) ind(λ − T) ≥ 0 for every λ ∈ ρsF (T);
(iv) σW (T) = σ (T);
(v) σW (T) ∪ � is a connected set.

Proof. (i). This follows from the definition by considering the matrix form of T
with respect to the decomposition H = M ⊕ M⊥.

(ii) and (iii). These are simple consequences of (i).
(iv). It is implied by (ii).
(v). The result follows from part (iv) and [4, Theorem 3]. �
THEOREM 2.3. The closure of WHC(H) is the class of all operators in B(H) satisfying

the conditions:
(1) σW (T) ∪ � is connected;
(2) σp0(T) = ∅;
(3) ind(λ − T) ≥ 0 for all λ ∈ ρsF (T).

Proof. Let C be the set of all operators satisfying the three conditions.
We have that HC(H) ⊂ WHC(H) and, by Theorem 2.2, WHC(H) ⊂ C.
By [6, Theorem 2.1], the closure of HC(H) = C, which completes the proof. �
COROLLARY 2.4. Every weakly hypercyclic operator is limit of hypercyclic operators.

REMARK 2.5. dist(T, WHC(H)) = dist(T, HC(H)) and is explicitly given in [6,
Theorem 2.1].

We shall show next that the interior of the class is empty. If K is a subset of the
complex plane we shall denote by K∗ the set of the conjugates of the elements of K .

PROPOSITION 2.6. For every n ≥ 1, the set of all operators having at least n isolated
eigenvalues of finite multiplicity is dense in B(H).
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Proof. The result is really a consequence of the approximation by Apostol-Morrel
simple models, see [1, Theorem 2.5], but we will offer here a different argument.

It is easy to see that the property under consideration is a similarity invariant.
If T has the property in the statement and {λj}n

j=1 ⊂ σp0(T), then T is similar
to A ⊕ ⊕n

j=1Bj, where σ (A) = σ (T) \ {λ1, λ2, . . . , λn, σ (Bj) = {λj}} and each Bj is an
operator on a finite dimensional subspace. Thus, if S ∈ B(H) and σ (S) ∩ σ (T) = ∅,
{λj}n

j=1 ⊂ σp0(T ⊕ S) and so T ⊕ S has at least n normal eigenvalues. Also, if α and
β are complex numbers then {α + βλj}n

j=1 ⊂ σp0(α + βT). Hence the property under
consideration is a “bad property”. Therefore, using Theorem 3.51 on page 91 in [5],
we conclude that the class is dense. �

THEOREM 2.7. int(WHC)(H) = ∅.

Proof. By the previous proposition, every operator T is the limit of a sequence of
operators Tn with σp0(Tn) 
= ∅.

Since σp0(T∗
n ) = σp0(Tn)∗, (see the argument following the definition of the normal

eigenvalues in the introduction) we conclude that σp(T∗
n ) 
= ∅ and so the operators Tn

are not in WHC(H). Thus T is not in the interior of the set. �
COROLLARY 2.8. The operators which are not weakly hypercyclic are dense in B(H).

3. Weakly supercyclic. In this section we shall determine some spectral properties
of weakly supercyclic operators and we shall use them to prove that the sets SC(H)
and WSC(H) have the same interior and the same closure (in the norm topology).

PROPOSITION 3.1. (i) On a finite dimensional space there is no weakly supercyclic
operator except for a nonzero operator on an one dimensional subspace.

(ii) If T ∈ WSC(H) then for every invariant subspace M of T the compression of T
to the orthogonal complement of M is weakly supercyclic on the space M⊥.

(iii) If T ∈ WSC(H) then 0 /∈ σp(T∗).
(iv) If T ∈ WSC(H) and M is an invariant subspace of T then M has codimension

either 1 or ∞.

Proof. (i) If there is any such operator then, because of the finite dimension, it will
be supercyclic and it is known that in finite dimension the only supercyclic operators
are the nonzero operators on a one dimensional subspace.

(ii) This follows from the definition by considering the matrix form of T with
respect to the decomposition H = M⊕ M⊥.

(iii) Suppose that 0 ∈ σp(T∗). Since ker T∗ is an invariant subspace of T , by part
(ii) it follows that T1, the compression of T to ker T∗, is weakly supercyclic. This
contradicts part (i) because T1 = 0.

(iv) It is a simple consequence of (i). �
THEOREM 3.2. If T ∈ WSC(H) then:

(i) σp(T∗) has at most one element;
(ii) ind(λ − T) ≥ 0 for every λ ∈ ρsF (T);

(iii) if α ∈ σp(T∗) then for every k ≥ 1, ker(T∗ − α)k is a one dimensional subspace;
(iv) if there is any λ ∈ σ (T) \ σW (T) then λ is the unique eigenvalue of T∗ which in

this case is an isolated eigenvalue of finite geometric multiplicity;
(v) there is r > 0 such that σ (T) ∪ r� is connected;

(vi) there is r > 0 such that σW (T) ∪ r� is connected.
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Proof. (i) If α and β are two different eigenvalues of T∗ and x, y are two
corresponding eigenvectors then Span{x, y}⊥ is an invariant subspace of T of
codimension 2, which contradicts part (iv) of Proposition 3.1.

(ii) If there is any component with negative index then, since the component is an
open set, σp(T∗) has infinitely many elements, which contradicts (i).

(iii) The proof is similar to part (i).
(iv) Follows from (iii).
(v) Suppose not. Then there is R > 0 such that R� separates the components of

the spectrum of T . Since a scalar multiple of a weakly hypercyclic operator is weakly
hypercyclic we can assume without loss of generality that R = 1.Thus T is similar to
a direct sum T1 ⊕ T2 where σ (T1) ⊂ � and σ (T2) ⊂ � \ �, T1 is an operator on some
H1, T2 is an operator on some H2 and of course H = H1 ⊕ H2. Here the overline
stands for the closure.

By part (iv) of Proposition 3.1, H1 and H2 have dimension either one or ∞.
Let us consider first the case when one of the dimensions is one, let say the

dimension of H2. Then, by part (iv), T = T1 ⊕ αI , where |α| > 1. Thus, using [7,
Theorem 2.2], we conclude that α−1T1 is weakly hypercyclic. This contradicts part (v)
of Theorem 2.2 which states that every component of the spectrum of α−1T1 intersects
the unit circle because the spectrum of the operator is in fact included in �.

Let 0 < r < 1 be the spectral radius of T1 and let r < q < 1. Since limn ‖Tn
1 ‖ 1

n = r,
there is n1 such that ‖Tn

1 ‖ 1
n < q for every n ≥ n1. Thus ‖Tn

1 ‖ < qn for every n ≥ n1.
Let x1 ⊕ x2 be a weakly supercyclic vector for T1 ⊕ T2. Modulo a scaling, we can

assume without loss of generality that ‖x2‖= 1.
Let q < p < 1. Since

lim
n→∞

(
p
q

)n p
‖x1‖ = ∞

there is n2 such that

(
p
q

)n p
‖x1‖ > 1

for all n ≥ n2.
Since σ (T2) ⊂ � \ �, there is s > 1 and n3 such that ‖Tn

2 x‖ > sn‖x‖ for all n ≥ n3.
Let u1 be a unit vector such that u1 ⊥ x1. Let u2 be a unit vector such that

u2 ⊥ {x1, Tx1, u1}. Let u3 be a unit vector such that u3 ⊥ {x1, Tx1, T2x1, u1, u2}.
Continuing in the same way we construct a sequence un, of unit vectors, such that
un ⊥ {x1, Tx1, . . . Tn−1x1, u1, . . . un−1} for every n.

Let

u =
∞∑

n=1

pnun.

Then, for every n, 〈u, un〉 = pn.
Since T1 ⊕ T2 is weakly supercyclic, there is a net of complex numbers λα and a

net of natural numbers kα such that λα(T1 ⊕ T2)kα (x1 ⊕ x2) converges weakly to u ⊕ 0.
Therefore λαTkα

1 x1 converges weakly to u while λαTkα

2 x2 converges weakly to 0.
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Let m ≥ max{n1, n2, n3}, fixed. Then

lim
α

〈
λαTkα

1 x1, um
〉 = 〈u, um〉 = pm.

Since pm+1 < pm, there is α0 such that
∣∣〈λαTkα

1 x1, un
〉∣∣ > pm+1

for all α ≥ α0.
Suppose that there is α ≥ α0 such that kα < m. Then, by construction,

〈λαTkα

1 x1, um〉= 0, which is a contradiction. Thus for every α ≥ α0, kα ≥ m.
Now, for α ≥ α0,
∣∣〈λαTkα

1 x1, um
〉∣∣ ≤ |λα| · ∥∥Tkα

1 x1
∥∥ · ‖um‖ = |λα| · ∥∥Tkα

1 x1
∥∥ ≤ |λα| · ∥∥Tkα

1

∥∥ · ‖x1‖
≤ |λα|qkα‖x1‖ ≤ |λα|qm‖x1‖.

Hence, for every α ≥ α0,

pm+1 < |λα|qm‖x1‖,
which implies that

|λα| >

(
p
q

)m p
‖x1‖ > 1.

Let y be a vector in H2 and ε > 0. Since λαTkα

2 x2 converges weakly to 0, there is
α1 such that

∣∣〈λαTkα

2 x2, y
〉∣∣ < ε

for every α ≥ α1.
Let αε be such that αε ≥ α0 and αε ≥ α1 and let α ≥ αε. Then, since

|λα| ∣∣〈Tkα

2 x2, y
〉∣∣ < ε

we obtain
〈
Tkα

2 x2, y
〉∣∣ <

ε

|λα|| < ε.

From this we conclude that 0 is in the weak closure of the set {Tkα

2 x2; α ≥ α0}. The set
is included in {Tn

2 x2; n ≥ m} and so 0 is in the weak closure of this last set.
Now, for n ≥ m,

∥∥Tm
2 x2

∥∥ ≥ cn‖x2‖ = cn.

According to [4, Lemma 1], 0 is not in the weak closure of {Tn
2 x2; n ≥ m}, which

provides us with a contradiction.
(vi) The proof follows from part (iv) and part (v). �
We can proceed now to characterize the closure of WSC(H).

THEOREM 3.3. The closure of WSC(H) is the class of all operators in B(H) satisfying
the conditions:
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(1) σ (T) ∪ r� is connected for some r > 0;
(2) σW (T) ∪ r� is connected for some r > 0;
(3) σp0(T) has at most one element;
(4) ind(λ − T) ≥ 0 for all λ ∈ ρsF (T).

Proof. Let C be the set of all operators satisfying the four conditions.
We have that SC(H) ⊂ WSC(H) and, by Theorem 3.2, WSC(H) ⊂ C.
By [6, Theorem 3.3], the closure of SC(H) = C, which completes the proof. �
COROLLARY 3.4. Every weakly supercyclic operator is limit of supercyclic operators.

REMARK 3.5. dist(T, WSC(H)) = dist(T, SC(H)) and is explicitly given in [6,
Theorem 3.3].

THEOREM 3.6. int WSC(H) = ∅.

Proof. Using again Proposition 2.6, we infer that every operator T is the limit of
a sequence of operators Tn with at least two points in σp0(Tn).

Since σp0(T∗
n ) = σp0(Tn)∗ we conclude that σp(T∗

n ) has at least two elements which
implies that the operators Tn are not in WSC(H). Thus T is not in the interior of the
set. �

COROLLARY 3.7. The operators which are not weakly supercyclic are dense in B(H).

After this paper was submitted we learned of a different proof of part (v) of
Theorem 3.2 obtained in [2].
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