A classification of groups with a centralizer condition II: Corrigendum and addendum

Zvi Arad and Marcel Herzog

Abstract

The aim of this note is to prove a theorem which extends the results of the authors' earlier paper, Bull. Austral. Math. Soc. 16 (1977), 55-60. As one of the corollaries we prove Theorem 2 of that paper, the proof of which was incomplete.

We prove the following theorem.
THEOREM 1. Let G be a finite group and let M be a CC-subgroup of G. Denote the set of primes dividing $|M|$ by π. Then, either $O_{\pi}(G) \neq 1$ and
(1) G is a Frobenius group with M as the Frobenius kermel, or $O_{\pi}(G)=1$ and one of the following holds:
(2) G is a Frobenius group with M as a Frobenius complement;
(3) $G=O_{\pi^{\prime}}(G) N_{G}(M)$, a solvable group;
(4) there exists $H \triangleleft G$ satisfying
(a) $H \cap M \neq 1$, and
(b) H / O_{π} (H) is simple.

Proof. If G is simple, then clearly (4) holds. Thus assume that $N \neq 1$ is a minimal normal subgroup of G and Theorem 1 is true for groups

Received 1 June 1977.
of order less than $|G|$.
Case 1. N is a π-group. Then $N \subseteq M$ and consequently $V=\cap\left\{M^{G} \mid g \in G\right\} \supset 1$. If $V=M$ then $M \triangleleft G$ and (1) holds. So assume that $1 \subset V \subset M$. As V is a normal $C C$-subgroup of M and of G, both M and G are Frobenius groups with the kernel V. Let C be a complement of V in M. Then C is a $C C$-subgroup of G and by [2, Lemma 1], $C V / V$ is a $C C$-subgroup ef G / V. However, by [4. Theorem V. 8.18]. G / V has a nontrivial center, a cortradict,ion.

Thus we may assume that $O_{\pi}(G)=1$.
Case 2. N is a π^{\prime}-group. In view of Lemma 1 in [2], G / N sat.isfies the assumptions r.1 Theorem l with respect to $M N / N$. By the inductive hypotehsis G / N satisfies one of (1)-(4). Since N is a nontrivial normal π '-subgroup of $G, N_{G}(M)$ is solvable (see Theorem 2.3.h in [3]). Thus if G / N satisfies (1), then by [2, Lemma 2] G satisfies (3). If G / N satisfies (2), then also G satisfies (2) and if G / N satisfies (3) then by [2, Lemma 2] so does G. Finally, if G / N satisfies (4), then it is easy to see that so does G. Thus, in Case 2, the theorem holds.

Consequently we may assume that $O_{\pi}(G)=O_{\pi^{\prime}}(G)=1$. As M is a Hall subgroup of G, it follows that $M \cap N \neq 1$ and since $M \cap N$ is a CC-subgroup of N, N is simple. Thus (4) holds with $H=N$, and the proof of Theorem 1 is complete.

The theorem immediately yields
COROLLARY 1. If G is solvable, then $G=O_{\pi},(G) N_{G}(M)$.
We also have
COROLLARY 2. If $N_{G}(M)=M$, then $O_{\pi}(G)=1$ and either (2) holds or $O_{\pi},(G)=1$ and (4) holds with a simple H.

Proof. Suppose that (2) doesn't hold. It suffices to show that $L \equiv O_{\pi^{\prime}}(G)=1$. Otherwise, $M L$ is a Frobenius group with a complement M. Thus $Z(M) \neq 1 \quad[4$, Theorem $\mathrm{V}, 8.18]$ and M is a $T I$-group [3, Theorem 2.1]. As $N_{G}(M)=M$, it follows that G satisfies (2), a contradiction.

As a final corollary we prove Theorem 2 of [2]:
THEOREM 2. If in Theorem $1, N_{G}(M)=M$ and $3||M|$, then either (2) holds or $G \cong \operatorname{PSL}(2, q)$ for some $q \geq 4$.

Proof. If $2||M|$, then by [5], either (2) holds or $G \cong \operatorname{PSL}\left(2,2^{2 n}\right)$. Thus assume that 2$\}|M|$ and by Corollary 2 we may assume that (4) holds, with a simple H. In addition, we shall assume that Theorem 2 holds for groups of order less than $|G|$.

Case 1. $H \subset G$. If $3||H|$, then $H \cong S z(q)$ by Thompson 's classification of simple 3^{\prime}-groups, and if $3||H|$, then $H \cong \operatorname{PSL}(2, q)$ for some q or $H \cong \operatorname{PSL}(3,4)$ by [1, Theorem B]. In all cases H has one class of involutions and all involutions of $M H$ belong to H. As M is a $C C$-subgroup of $M H$ and $2||M|$, counting of involutions forces $M \subset H$. By induction $H \cong \operatorname{PSL}(2, q)$ and as $N_{H}(M)=M, M$ is the normalizer of a Sylow group in H. Thus G-conjugates of M are already conjugate in H and counting conjugates of M yields $H=G$, a contradiction.

Case 2. $H=G$. Thus G is simple and M satisfies $3||M|$, $2\left||M|\right.$, and $N_{G}(M)=M$. By [1, Theorem B], $G \cong \operatorname{PSL}(2, q), q$ odd. The proof of Theorem 2 is complete.

References

[1] Zvi Arad, "A classification of groups with a centralizer condition", Bull. Austral. Math. Soc. 15 (1976), 81-85.
[2] Zvi Arad and Marcel Herzog, "A classification of groups with a centralizer condition II", BulZ. Austral. Math. Soc. 16 (1977), 55-60.
[3] Marcel Herzog, "On finite groups which contain a Frobenius subgroup", J. Algebra 6 (1967), 192-221.
[4] B. Huppert, Endliche Gmuppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[5] Michio Suzuki, "Two characteristic properties of (ZT)-groups", Osaka Math. J. 15 (1963), 143-150.

Department of Mathematics,
Bar llan University,
Ramat-Gan,
|srael;
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

