As this is being written, particle physics stands on the threshold of a new era, with the commissioning of the Large Hadron Collider (LHC) not even two years away. In writing this book, I hope to help prepare graduate students and postdoctoral researchers for what will hopefully be a period rich in new data and surprising phenomena.

The Standard Model has reigned triumphant for three decades. For just as long, theorists and experimentalists have speculated about what might lie beyond. Many of these speculations point to a particular energy scale, the teraelectronvolt (TeV) scale, which will be probed for the first time at the LHC. The stimulus for these studies arises from the most mysterious – and still missing – piece of the Standard Model: the Higgs boson. Precision electroweak measurements strongly suggest that this particle is elementary (in that any structure is likely to be far smaller than its Compton wavelength), and that it should be in a mass range where it will be discovered at the LHC. But the existence of fundamental scalars is puzzling in quantum field theory, and strongly suggests new physics at the TeV scale. Among the most prominent proposals for this physics is a hypothetical new symmetry of nature, supersymmetry, which is the focus of much of this text. Others, such as technicolor, and large or warped extra dimensions, are also treated here.

Even as they await evidence for such new phenomena, physicists have become more ambitious, attacking fundamental problems of quantum gravity and speculating on possible final formulations of the laws of nature. This ambition has been fueled by string theory, which seems to provide a complete framework for the quantum mechanics of gauge theory and gravity. Such a structure is necessary to give a framework to many speculations about Beyond the Standard Model physics. Most models of supersymmetry breaking and theories of large extra dimensions or warped spaces cannot be discussed in a consistent way otherwise.

It seems, then, quite likely that a twenty-first-century particle physicist will require a working knowledge of supersymmetry and string theory, and in writing this text I hope to provide this. The first part of the text is a review of the Standard Model. It is meant to complement existing books, providing an introduction to perturbative and phenomenological aspects of the theory, but with a lengthy introduction to non-perturbative issues, especially in the strong interactions. The goal is to provide an understanding of chiral symmetry breaking, anomalies and instantons that is suitable for thinking about possible strong dynamics and about dynamical issues in supersymmetric theories. The first part of the book also introduces grand unification and magnetic monopoles.

The second part of the book focuses on supersymmetry. In addition to global supersymmetry in superspace, there is a study of the supersymmetry currents, which are important for understanding dynamics and also for understanding the BPS conditions which play an
important role in field theory and string theory dualities. The Minimal Supersymmetric Standard Model (MSSM) is developed in detail, as well as the basics of supergravity and supersymmetry breaking. Several chapters deal with supersymmetry dynamics, including dynamical supersymmetry breaking, Seiberg dualities and Seiberg–Witten theory. The goal is to introduce phenomenological issues (such as dynamical supersymmetry breaking in hidden sectors and its possible consequences), and also to illustrate the control that supersymmetry provides over dynamics.

I then turn to another critical element of Beyond the Standard Model physics: general relativity, cosmology and astrophysics. The chapter on general relativity is meant as a brief primer. The approach is more field theoretic than geometrical, and the uninitiated reader will learn the basics of curvature, the Einstein Lagrangian, the stress tensor and the equations of motion and will encounter the Schwarzschild solution and its features. The subsequent two chapters introduce the basic features of the Friedmann–Robertson–Walker (FRW) cosmology, and then very early universe cosmology: cosmic history, inflation, structure formation, dark matter and dark energy. Supersymmetric dark matter and axion dark matter, and mechanisms for baryogenesis, are all considered.

The third part of the book is an introduction to string theory. My hope, here, is to be reasonably comprehensive while not being excessively technical. These chapters introduce the various string theories, and quickly compute their spectra and basic features of their interactions. Heavy use is made of light cone methods. The full machinery of conformal and superconformal ghosts is described but not developed in detail, but conformal field theory techniques are used in the discussion of string interactions. Heavy use is also made of effective field theory techniques, both at weak and strong coupling. Here, the experience in the first half of the text with supersymmetry is invaluable; again supersymmetry provides a powerful tool to constrain and understand the underlying dynamics. Two lengthy chapters deal with string compactifications; one is devoted to toroidal and orbifold compactifications, which are described by essentially free strings; the other introduces the basics of Calabi–Yau compactification. Four appendices make up the final part of this book.

The emphasis in all of this discussion is on providing tools with which to consider how string theory might be related to observed phenomena. The obstacles are made clear, but promising directions are introduced and explored. I also attempt to stress how string theory can be used as a testing ground for theoretical speculations. I have not attempted a complete bibliography. The suggested reading in each chapter directs the reader to a sample of reviews and texts.

What I know in field theory and string theory is the result of many wonderful colleagues. It is impossible to name all of them, but Tom Appelquist, Nima Arkani-Hamed, Tom Banks, Savas Dimopoulos, Willy Fischler, Michael Green, David Gross, Howard Haber, Jeff Harvey, Shamit Kachru, Andre Linde, Lubos Motl, Ann Nelson, Yossi Nir, Michael Peskin, Joe Polchinski, Pierre Ramond, Lisa Randall, John Schwarz, Nathan Seiberg, Eva Silverstein, Bunji Sakita, Steve Shenker, Leonard Susskind, Scott Thomas, Steven Weinberg, Frank Wilczek, Mark Wise and Edward Witten have all profoundly influenced me, and this influence is reflected in this text. Several of them offered comments on the text or provided specific advice and explanations, for which I am grateful. I particularly wish
to thank Lubos Motl for reading the entire manuscript and correcting numerous errors. Needless to say, none of them are responsible for the errors which have inevitably crept into this book.


I have used much of the material in this book as the basis for courses, and I am also grateful to students and postdocs (especially Patrick Fox, Assaf Shomer, Sean Echols, Jeff Jones, John Mason, Alex Morisse, Deva O’Neil and Zheng Sun) at Santa Cruz, who have patiently suffered through much of this material as it was developed. They have made important comments on the text and in the lectures, often filling in missing details. As teachers, few of us have the luxury of devoting a full year to topics such as this. My intention is that the separate supersymmetry or string parts are suitable for a one-quarter or one-semester special topics course.

Finally, I wish to thank Aviva, Jeremy, Shifrah and Melanie for their love and support.