On soluble groups of prime-power exponent

Warren Brisley and L. G. Kovács

Let p be a prime and \underline{A}_p^2 the variety of elementary abelian by elementary abelian p-groups. A result of Brisley and Macdonald is generalized as follows. If H is a finite group in \underline{A}_p^2 and G is a soluble group of p-power exponent such that no section of G is isomorphic to H, then G is nilpotent and its class is bounded by a function of three variables: H, the exponent of G, and the soluble length of G. It is a corollary that if the variety generated by a soluble group G of finite exponent contains \underline{A}_p^2 , then each finite group in \underline{A}_p^2 is isomorphic to some section of G.

In a recent paper [1], Macdonald and the first-named author proved (on the way to their Theorem 3.3) that the class of a metabelian regular p-group of exponent p^m is at most 1 + m(p-1). This paper is concerned with extending their result.

The first step (suggested by Dr James Wiegold) is to use a well-known argument based on a theorem of Hall [3] (sharpened by Stewart [6]) to eliminate the assumption "metabelian" at the cost of replacing the class bound 1 + m(p-1) by a function which depends also on the soluble length of the group (and which we shall not attempt to optimize). The second is to note that while in [1] regular p-groups were nilpotent by definition, in this context it is sufficient to assume that we are dealing with a soluble group (of finite exponent) whose finite sections are all regular

Received 14 December 1970.

p-groups. Thus if \underline{H} is the class of those finite p-groups which are not regular, then \underline{H} has the property (p): if G is a soluble group of p-power exponent such that no section of G belongs to \underline{H} , then G is nilpotent and its class is bounded in terms of its exponent and soluble length. It is then natural to ask what other classes of groups have (p). (By a class of groups we always mean a union of isomorphism classes, but of course we do not insist that a class should contain the one-element groups.) The answer is that a class \underline{H} has (p) if and (obviously) only if it contains at least one finite group from \underline{A}_p^2 (the variety of elementary abelian by elementary abelian p-groups). Since the standard wreath product of two groups of order p is an irregular group in \underline{A}_p^2 , this answer includes the claims made above. Its nontrivial core is the

THEOREM. If H is a finite group in \underline{A}_p^2 and G a soluble group of p-power exponent such that no section of G is isomorphic to H, then G is nilpotent and its class is bounded by a function of three variables: H, the exponent of G, and the soluble length of G.

The proof splits into two parts. The first, based on the Hall-Stewart Theorem mentioned earlier, results in

LEMMA 1. Let G be a soluble group of length s and exponent p^m . If the \underline{A}^2 -sections of G are all nilpotent, then G is nilpotent, and its class is bounded in terms of s, p^m , and the maximum of the classes of its \underline{A}^2 -sections.

The second part, which exploits properties of wreath products of elementary abelian p-groups and makes use of a result of Gupta and Newman [2], yields what is still needed for the Theorem:

LEMMA 2. Let H be a finite group in \underline{A}_p^2 . If G is a group in \underline{A}_p^2 such that no section of G is isomorphic to H, then G is nilpotent and its class is bounded in terms of H.

In fact, the result in [1] did not need to use the exponent of the

https://doi.org/10.1017/S0004972700046736 Published online by Cambridge University Press

group: the exponent of the commutator subgroup would have served equally well. Exploring the possibilities suggested by this fact, one may enquire about classes $\underline{\mathrm{H}}$ with the property (p, c): if G is a soluble p-group such that the (c+1)st term $\underline{\mathrm{N}}_{\mathcal{C}}(G)$ of the lower central series of G has finite exponent and no section of G belongs to $\underline{\mathrm{H}}$, then G is nilpotent and its class is bounded in terms of c, the exponent of $\underline{\mathrm{N}}_{\mathcal{C}}(G)$, and the soluble length of G. The answer (for c > 0) is that a class $\underline{\mathrm{H}}$ has (p, c) if and only if it contains at least one finite elementary abelian by cyclic p-group and at least one finite group from $\underline{\mathrm{A}}_p^2$. The proof runs along similar lines and we do not present it.

It is an immediate consequence of Lemma 2 that if a group G generates \underline{A}_p^2 then each finite group in \underline{A}_p^2 is isomorphic to some section of G. We do not know of any other varieties with this property. For \underline{A}_p^2 , we have the more general

COROLLARY. If a class \underline{X} of groups generates a soluble variety of finite exponent which contains \underline{A}_p^2 , then every finite group in \underline{A}_p^2 is isomorphic to some section of some group in \underline{X} .

For, suppose *H* is a finite group in $\frac{A^2}{P}$ which does not occur as a section of any group in \underline{X} . By our Theorem, every *p*-section of every group in \underline{X} is nilpotent of class at most *c*, say. By Lemma 4.3 of Higman [4], each finite group of $\frac{A^2}{P}$ is isomorphic to some section of some finite direct product $G_1 \times \ldots \times G_n$ of groups from \underline{X} , and hence to a section of a direct product *K* of finite subgroups K_1, \ldots, K_n of groups from \underline{X} . The *p*-sections of *K* are sections of a Sylow *p*-subgroup *P* of *K*, and *P* is isomorphic to a direct product of Sylow *p*-subgroups P_i of the groups K_i . As the P_i are *p*-subgroups of groups in \underline{X} , their classes do not exceed *c*, so the class of *P* is also at most *c*. Thus it would follow that every finite group in \underline{A}_2^2 has class at most *c*,

which is not the case.

Before proceeding to technicalities, we mention that it would be interesting to know more about classes, especially single isomorphism classes, which have the property (p^*) : if G is a soluble group of p-power exponent such that no section of G belongs to \underline{H} , then G is nilpotent. A slight extension of the proof of Lemma 2, together with Lemma 1, shows that if H is a direct product of a countably infinite elementary abelian p-group and a finite group from \underline{A}_p^2 , then (the isomorphism class of) H has (p^*) . Does every extension of a finite elementary abelian p-group by a countable elementary abelian p-group have (p^*) ? In particular, does a central product of countably many nonabelian groups of order p^3 have (p^*) ? Does the countable, restricted direct power of a cyclic group of order p_i^2 have (p^*) ? Can any nonnilpotent group have (p^*) ? We have no answers.

The rest of the paper consists of the proofs of the two lemmas. We shall use the notation and terminology of Hanna Neumann's book [5], with three exceptions: we use "section" rather than "factor"; we write the verbal subgroup of a group G corresponding to the variety \underline{V} as $\underline{V}(G)$ rather than V(G), and we do not reserve the letters G and H for relatively free groups. Some additional notation will be introduced as it becomes necessary.

Our first aim is to prove Lemma 1 under the additional assumption that $G \in \underline{A} \xrightarrow{A}_{p}$. This is done by induction on the exponent, say p^{n} , of $\underline{A}_{p}(G)$. If n = 1 then $G \in \underline{A}_{p}^{2}$ and there is nothing to prove. For n > 1, put $q = p^{n-1}$ and let c denote the class of $G/\underline{A} \xrightarrow{A}_{q-p}(G)$. If $g_{0}, g_{1}, \ldots, g_{2c}$ are arbitrary elements of G, we have that $[g_{0}, g_{1}, \ldots, g_{c}] = g^{q}$ for some g in $\underline{A}_{p}(G)$ and that $[g, g_{c+1}, \ldots, g_{2c}] \in \underline{A} \xrightarrow{A}_{q-p}(G)$. Exploiting the facts that G is metabelian and $\underline{A} \xrightarrow{A}_{q-p}(G)$ has exponent dividing q, standard commutator calculations show that

$$[g_0, g_1, \dots, g_{2c}] = [g^q, g_{c+1}, \dots, g_{2c}] = [g, g_{c+1}, \dots, g_{2c}]^q = 1$$

so that G is nilpotent of class (at most) 2c. (Clearly, a little more care would have produced a much better estimate, but we are only concerned here with showing the existence of a bound.)

We are now ready to prove Lemma 1 in general. Note that as G is soluble of length s and has exponent p^m , it lies in \underline{A}_p^{ms} , so that if k is the least positive integer with $G \in \underline{A}_p^k$ then $k \leq ms$. The proof runs by induction on k, starting with trivial initial steps k = 1, 2. For the inductive step, put $N = \underline{A}_p(G)$ and assume, as $N \in \underline{A}_p^{k-1}$, that N is nilpotent and its class d is bounded in terms of the relevant parameters. By the previous paragraph, we know that G/N' is also nilpotent and its class c is similarly bounded. It remains to appeal to Stewart [6] to obtain that G is nilpotent of class at most cd + (c-1)(d-1). This completes the proof of Lemma 1.

In preparation for the proof of Lemma 2, we note that it is sufficient to prove that lemma for the case when H is a (standard) wreath product W_k of a group C of order p and an elementary abelian group C^k of order p^k . Indeed, suppose H is any finite group in \underline{A}_p^2 , say, with $|\underline{A}_p(H)| = p^{\alpha}$ and $|H/\underline{A}_p(H)| = p^{\beta}$. By the embedding theorem (22.21 in [5]), H can be embedded in C^{α} Wr C^{β} , which in turn (use 22.14 of [5]) can be embedded in W_k provided $p^k \ge \alpha p^{\beta}$. Thus if no section of a group G is isomorphic to H, no section of G can be isomorphic to W_k either.

As further preparation, we take the (presumably well-known) fact that W_k is the *unique* extension of the regular c^k -module V_k (over the field of p elements: all modules considered will be over this field) by c^k . Uniqueness turns on the claim that every extension of V_k by c^k splits;

one quick way to see this is by exploiting the details of the embedding theorem (22.21 of [5]) as follows. Let V be an arbitrary extension of V_k by C^k , and identify V_k with the appropriate normal subgroup of V. Embed V and C^k in the wreath product W of V_k by C^k , the latter as a complement of the "base group" B of W, in such a way that the action of C^k on V_k by conjugation in W is the original regular action. Then V_k , as a regular and hence injective submodule of the C^k -module B, has a complement K in B which is also a submodule of B, that is, a normal subgroup of W. Since VB = W and $V \cap B = V_k$ so that VK = W and $V \cap K = 1$,

$$V \cong VK/K = W/K = C^{k}B/K = C^{k}K/K.V_{k}K/K$$

with $c^{k}K/K \cap V_{k}K/K = 1$. As in the isomorphism above V_{k} corresponds to $V_{k}K/K$, this shows that V splits over V_{k} as claimed.

We shall need one more fact, a direct consequence of the work of Gupta and Newman [2]: a group G in \underline{A}_p^2 is nilpotent of class 1 + k(p-1) if $[g, (p-1)g_1, \ldots, (p-1)g_k] = 1$ whenever $g \in G'$ and $g_1, \ldots, g_k \in G$.

In order to prove Lemma 2, it is now sufficient to show that if G is a group in \underline{A}_p^2 and $g \in G'$, $g_1, \ldots, g_k \in G$ such that $[g, (p-1)g_1, \ldots, (p-1)g_k] \neq 1$, then some section of G is isomorphic to W_k . We proceed to select such a section. Let A denote $\underline{A}_p(G)$, and S the subgroup of G generated by g_1, \ldots, g_k , and A: then S/A is an elementary abelian p-group generated (possibly redundantly, for what we know at this stage) by g_1A, \ldots, g_kA , and A is an S/A-module in the obvious sense. Denote by U the normal closure of g in S, that is, the submodule of A generated by g. Write W_k as a semidirect product c^kV_k ; let $\{c_1, \ldots, c_k\}$ be a generating set of c^k , and v a (free) generator of V_k qua c^k -module. Consider A also as a c^k -module via the homomorphism α of c^k onto S/A which maps each c_i to g_iA , and let ϕ be the c^k -homomorphism of V_k onto U which maps v to g. Now it is well known that $[v, (p-1)c_1, \ldots, (p-1)c_k]$ generates the unique minimal normal subgroup of W_k , that is, the unique minimal submodule of V_k ; since this element is mapped by ϕ to the nontrivial element $[g, (p-1)g_1, \ldots, (p-1)g_k]$, ϕ must be an isomorphism. As V_k is a faithful c^k -module, this implies that so are U and A, and therefore that α is also an isomorphism. Moreover, now we know that U is a regular and hence injective submodule of A, so that U has a complement T in A which is also a submodule, that is, a normal subgroup of S. It follows that S/T is an extension of A/T by S/A, or of V_k by c^k on account of α and the composite of ϕ with the natural isomorphism $U \to UT/T = A/T$. Hence $S/T \cong W_k$, and the proof is complete.

References

- [1] Warren Brisley and I.D. Macdonald, "Two classes of metabelian p-groups", Math. Z. 112 (1969), 5-12.
- [2] N.D. Gupta and M.F. Newman, "On metabelian groups", J. Austral. Math. Soc. 6 (1966), 362-368.
- [3] P. Hall, "Some sufficient conditions for a group to be nilpotent", *Illinois J. Math.* 2 (1958), 787-801.
- [4] Graham Higman, "Some remarks on varieties of groups", Quart. J. Math. Oxford (2) 10 (1959), 165-178.
- [5] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).

[6] A.G.R. Stewart, "On the class of certain nilpotent groups", Proc. Roy. Soc. Ser. A 292 (1966), 374-379.

University of Newcastle, Newcastle, New South Wales, and Institute of Advanced Studies, Australian National University, Canberra, ACT.