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SOME PROPERTIES OF THE LATTICE OF

SUBALGEBRAS OF A BOOLEAN ALGEBRA

IVO DUNTSCH

We investigate the structure of the lattice of subalgebras of

an infinite Boolean algebra; in particular, we make a

contribution to the question as to when such a lattice is

simple.

0. Introduction

For a Boolean algebra (D, +, ° , ~, 0, 1) , the set Sub D of all

subalgebras is an algebraic lattice under set inclusion with least element

2 = {0,1} and greatest element D . If A , B < D , then A A B is just

A n B , and A v B is the subalgebra of D generated by A u B .

One of the earliest results in the study of Sub D is the fact that,

if D is finite, then Sub D is dually isomorphic to a finite partition

lattice, the base set being At(D) , the set of all atoms of D , see [I].

Subsequently it was shown by D. Sachs that, for an arbitrary Boolean

algebra D , Sub D is dually isomorphic to a sublattice of a partition

lattice, and that Sub D characterizes D. Birkhoff's result cited above

implies that Sub D is simple, if D is finite.

In this note, the structure of Sub D is investigated further; in

particular we make a contribution to the question when Sub D is simple for
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infinite D .

1. Notation

For any lattice L , we set Lx,y) = {z e L\x < z < y} ,

Ex) = (s e L\x S Z) ; other intervals are defined analogously.

Let D be a Boolean algebra; for M £ D we define

M+ = {x £ Mix > 0} , -Af = {x|x e A/} , and [W] to be the subalgebra of D

generated by M . If M = {x} , we just write [x] instead of [{x}] .

For A S D , x e D\A , we call LA u {x}] a simple extension of A , and

denote it by A (x) . Note that every element of A(x) is of the form

M o x + V o x for some u, V e A .

For d e D+ , D\d = {x e D\x < d} is the relative algebra of d in

Z? . Note that D\d also is the principal ideal of D generated by d ,

and we sometimes alternatively write (d] for D\d , if we want to

emphasize this fact. It is well known that D is isomorphic to

D\d x D\d ,- conversely, if D is isomorphic to A x B , then there exists

a d e D such that A = D\d , and B = D\d~ .

If C is a linearly ordered set with least element, the set of all

finite unions of right closed, left open intervals is a Boolean subalgebra

of the power set of C , and denoted by I(C) ,- this algebra is called the

interval algebra of C . In an unpublished paper, S. Todorcevid [6] has

shown that for an interval algebra D , Sub D is sectionally complemented,

that is Sub A is complemented for every A < D .

For the remaining unexplained notation and terminology the reader is

referred to Gratzer's book [3].

2. General structure of Sub D

A lattice L is called semimodular if, for x , y e L , the fact that

x covers x A y implies that x v y covers y . Note that every modular

lattice is semimodular.

PROPOSITION 2.1. If \D\ = 8 , then Sub D is modular; if \D\ > 16

then Sub D is not semimodular.

Proof. If \D\ = 8 , then Sub D is easily seen to be a diamond, so

it is modular. If \D\ > 16 , then D has a subalgebra with four atoms,
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Lattice of subalgebras of a Boolean algebra 179

so, let without loss of generality D be generated by its atoms

{a, b, a, d} , and set A = [a+c] , B = la+d] . Then A covers

A n B = 2 , but A v B = D does not cover B . D

In contrast to this, Sachs [5] has remarked that (Sub D) , the dual

lattice of Sub D , is semimodular; however, (Sub D) usually is not

algebraic.

PROPOSITION 2.2. If D is infinite, then (Sub D) is not

algebraic.

Proof. We show that no dual atom of Sub D is dually compact. As

noted by Sachs, the dual atoms of Sub D are of the form l u - I , where

J is the intersection of two different prime ideals P. and P~ of D ,

so, let A ^ D have this form.

Assume that {a, b, a} c D\A , and a, b, a are pairwise disjoint.

Since a ° b = 0 , we suppose, without loss of generality, that

a e P-,\P2 • then a ° a = 0 implies a e P2^i ' a n d f r o m

a°b=c°b=O we get b e P. n P. ^ A , a contradiction. Now we

choose an element u from D\A , and a set {u.\i < u} of pairwise
is

disjoint elements such that u = u , and u. e J for 0 < i < a) . For

each i < u , let m. = M + ... + u• , and, for j < u , let M • i D be
% o v . 0

generated by {m.lj S i < u} ; then, {A/.]j < to} is a decreasing chain of

s u b a l g e b r a s o f D w i t h n { M . | j < u } = 2 ^ 4 . S i n c e n o m . i s i n A , w e
3 I'

have M • i A for all j < m , which implies that ,4 is not dually

compact. D

The next result shows that Sub D is in fact far from being

distributive. Call an element a of a lattice L

(i) distributive, if a v (IAJ/I = (avil A (avz/) for all x , y e L

(ii) prime, if x A y < a implies x S a or y < a

(iiil irreducible, if x A y = a implies x = a or y = a .

If a is prime, it is irreducible, and if L is distributive, the

converse also holds.
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PROPOSITION 2.3.

1. Sub D has no proper distributive or prime elements.

2. A £ D is irreducible if and only if A is a dual atom of

Sub D .

Proof.

1. We may suppose that \D\ > 8 ; let 2 < A < D , b e D\A , and

a e A(b)\A , e ? b . Then A = A v ([&] n Lai) , but e e /He) n ;4(Z>] ,

showing that A is not distributive. Since [e] n [i>] = 2 S ji , and

Ce] , Lbl % A , A is not prime.

2. The if-part is obvious, so, let A < D be irreducible. First,

assume that A is not of the form I u- I for some ideal J of D . Then

t h e r e e x i s t a e A , b , b^ e D\A , s u c h t h a t b. ° a = b 2 ° a = 0 .

Let x e i4(i.) n A(b ) ,- then there exist s~,S-,t,t~ e /4 , such that

x = s ° 2> + s ° FT = £ ° 2>2 + *2 ° J5J . So, a ° x = a ° t2 ° &2

= a ° t e A , and a ° x = a ° s » h~ = a ° s. e A , which together imply

that X e A ; it follows that A = A(b.) n ̂ (t,^ ' contradicting the fact

that A is irreducible. Thus, let A = Iu-I for some ideal I of D ,

and assume that I is not the intersection of two prime ideals; then

there exists a B S D such that A n B = 2 , and B is generated by its

atoms ^T'^2'^3 ' I f X e ^ ^ V n ^ ^ 2 * n ^ ^ 3 ' ' t h e n t h e r e exist

. , s . , £ . £ 4 , 1 < £ < 2 , s u c h t h a t
1* u u

X =

S2 ° b3 + S2

Using A = I u -J , it is straightforward, if somewhat cumbersome, to show

that x e A , again contradicting the irreducibility of A . Q

The question of the existence of prime ideals in Sub D will be

touched on later.

3. Congruences on Sub D

We start with the following easy observation:
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LEMMA 3 .1 . Let 8 be a nontrivial congruence on Sub D j then

A a 2 (6) for every finite A < D .

Proof. I t i s enough to show tha t [M] = 2 (8) for every u e D .

Since 8 i s non t r iv i a l , there e x i s t A , B < D , such t h a t A c B ,

A ji B , and A = B (8) . Let b e B\A ; then

2 = [fe] n A = .[&] n B = [Z>] .

If M € ZACZ?] » let C be generated by {b°u,b°u} ; then

2 = [M] n C =0[M] n C(b) = [w] . D

COROLLARY 3.2. Sub D is subdireatly irreducible, weakly modular, and

weakly complemented.

In the sequel, we shall just write A = B , if A is congruent to B

modulo the smallest nontrivial congruence on Sub D . Note that 3.2

implies that, if A < D and Sub A is simple, then A = 2 ; consequently,

if D = D x n x .. . x n , and Sub D. is simple for each i < n , then
O X ?Z t-

Sub 5 is simple.

Next, we want to give some simple conditions for Sub D to be simple.

PROPOSITION 3.3. If D = A * A , then Sub D is simple.

Proof. Let E = {(a,a) \a e A} <D, u = (0,1) e D , B = A x 2 ,

C = 2 x 4 ; then Eiu) = D , and BnE=CnE=2, implying B , C = 1 .

On the other hand, D = B v C , thus, £> = 2 . D

In particular, every homogeneous D has Sub D simple.

PROPOSITION 3.4. If \D\ = X > m , and D contains a free subalgebra

with X generators, then Sub D is simple.

Proof. Choose some u e D , such that both («] and (w] contain an

independent set of cardinality \. Let {m.|'£< X} be an enumeration of (wl ,

{b.\i < X} an independent set of elements below w , and let F < D be

generated by this set; furthermore, let B, £ D be generated by CM] ,

that is B = CM] U [M) . For each i < X set c. = m• + b. , and let
1* "V 1,

C £ D be generated by the a. . The independence of the b• then implies

that S. n C = 2 . Also, m. = e. ° fe. and b. = c. ° m. , so we have
l i l l i, i i
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S, vF = B1vC = FvC. Since F is free, F = 2 by the preceding

proposition, and therefore C = F v C1 . Hence,

2 = B, n C = B, (l (F v C] = B (i (J v C) = J By symmetry, we find that

B = (w] u [w) also is congruent to 2 . Since D = B. v B , Sub £> is

simple. •

In particular, if D is complete, Sub D is simple by the theorem of

Baldar and Fraftek.

If A < D , u e. D , call u independent of A , if a ° U > 0 and

a o u > 0 for all a e A . Note that this is equivalent to

An («] = A n (w] = {0} .

PROPOSITION 3.5. J/ Z> is the free produat of A and B , then

Sub D is simple.

Proof. This follows from the simple fact, that C < D , u e D

independent of C , imply C = 2 : Indeed, independence implies that for

E = Cw] U [«) , E = (it] U Lu) , we have CnE=CnE=2 ; since

C = C(w) , this gives us C(M) n j? = 2 and C(w) n #_ = 2 . On the other

hand, C < (C(M) n ff ) v (C(M) n E \ . If a e C , then c ° u e C(u) n E\, ,

and a ° u e C(u) n #2 . This shows C = 2 . For the rest, observe that

each b e B\2 is independent of A and vice versa. D

Now, let us turn to conditions which ensure us that Sub D is not

simple. Each ideal I of Sub D induces an equivalence relation 9_ on

Sub D , if we let A = B (.9 ) if there exists a C e I such that

A v C = B v C . Clearly, 8 is a v_Congruence on Sub D . If J is a

distributive element of the lattice of ideals of Sub D , then 6_ is a

lattice congruence on Sub D , see [3] III.3.4. For each cardinal y ,

w < y < X = \D\ , let J = {A<D\ \A]<y} , and 9 be the relation defined

above. The following lemma simplifies later considerations.

LEMMA 3.6. Let \D\ = X ; for <o < y < X , 8 is a congruence if

and only if the following condition holds:
If A , B , C < D , \C] < y , and B < A v C , then there exists an
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S e I , (iJnB) v s = s v s .
Y '

Moreover, if y is regular, C can be assumed to have only four elements.

Proof. We only show sufficiency, and it is enough to prove that

A = B (6 ) and Q < D imply QnA=QnB(.Q) . Let, for some C e Iy ,

A v C = B v C , and set Q1 = Q n {A v C) = § n (B v C) ; then

Q. n 4 = § n A , and Q n 5 = $ n B , so we can suppose, without loss of

generality, that Q<AvC = BvC. By the condition, there exist 5 ,

S2 e I , such that (Q nA) v S± = Q v S1 , and (Qn B) v S2 = Q v 52 ;

hence, (§nA) v 51 v 52 = (§nS) v 5 1 v 52 , and S^ v 52 e Jy .

For the second part, let C = {a.\i<6} , 6 < y , and Q < A v C . Set

A = A , A += A {a ) , and 4 = U{^ |g<a} , if a is a limit. Then

4 v C = U{4 |a<6} . For i < 6 , set §. = 6 n A- ; then, § = U{0.|i<6} .

It suffices to show that for each i < 6 there exists an S• e I , such
I Y

that fl. v S. = (Qn/1) v 5- . Set S = [U{S. |i<6}] ; then

QvS=lQnA)vS, and S e I by the regularity of Y • L e t i = 0 ;

then Q =QnA=QnA, and we set 5 = 2 . Suppose that for all

a < B < 6 we have Q v 5 = (QnA). v 5 , 5 e J . If B is a limit,

set Sg = [U{5a|a<0}] , and note that Q = U{Qa\a<$] . So, let B = a + 1 ;

then, Q = Q n A = Q n A {a ) ; thus, by our hypothesis, there exists a
p (X+-L Ot Ot

Tel which satisfies (Q n A } v 21 = (.$ n A {.a )) v f . By the induction

hypothesis there exists an S e J satisfying

($ n A ) v 5 = (Q n i4) v 5 ; now se t So = 5 v y . Q
Ot Ot Ot p Ot

The proof of the following easy lemma is left to the reader.LEMMA 3.7. Let D be infinite and sub D be sectionally
lemented; if u < Y - |z?|

the following condition holds:

If C e 1
lees than y .

complemented; if ta < y < \j)\ , then 6 is a congruence if and only if

If C e. I , then every Q < A v C disjoint from A has cardinality
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Our next aim is to describe thfi congruence lattice of Sub D for

D = FC(.a) , the finite-cofinite algebra with a atoms. Note that FCtot)

is a subalgebra of an interval algebra, hence i ts lattice of subalgebras is

sectionally complemented.

PROPOSITION 3 .8 . Let D = FCtct) , where a = « . Then the

congruences of Sub D form a chain of type y + 3 , if y < u> , and of

type y + 2 otherwise.

Proof. We f i r s t show that for all g , u < g < a , the ideal I has
p

the property of 3.7; so, together with the two improper congruences, the

9a form a chain of the desired type. Afterwards we proceed to show that
p

every proper congruence on Sub D is of the form 6 for some infinite
p

& ̂  a .

Let C e I and assume the existence of A , B < D , such that
P

B < A v C , \B\ = 3 , and A n B = 2 . Let At(B) = {b.\i<B} be the set of

atoms of B , and suppose b • = a, ° e1 + ... + a ... ° c ... , where

a . £ A and c. e C . If c . is cofinite, then a » c . i A for only
3 3 3 3

finitely many atoms of A . Since there are only less than 3 elements

c. , we may suppose, without loss of generality, that each b • has the form
3 %

h = a\ + a\° °l+ ••• + V * ) ° ol{i) ' where each °) i s f i n i t e -
% % i, i.

Now we set S . = a^ ° <2_ + . . . + a . .. ° c .. ; since, for each

i < 3 , b • i s not an element of A , we must have s . > 0 . On the other

hand, each C, is f in i te , and there are only less than g such, c, , so,

we must have s. = s . for some i , j < (3 . This contradicts b. ° b . = 0
i' 3 1* 3

Next, l e t \j> be a nontrivial congruence on Sub D , and consider the
property •

(.*) If A < D , U | = X > a) , and A E 2 (4>) , then B = 2 (iJO
for a l l B e J + .

A

We show this by induction. Call an atom m of A proper, i f m is
an atom of D -, otherwise call m improper.
(a) Let |^| =a) , and suppose that A has infinitely many proper atoms
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{m.|-i<0)} ; since A = 2 (i()) , we may assume that A is generated by these
Is

atoms. Let \B\ = a ; then all atoms of B are finite. Let {a.|i<a)}
Is

be the set of atoms of D which are < some atom of B , but not in A ,

and let C be generated by the o. . If C is finite, then B = A v Q
1s

for some finite Q < D , and thus B = 2 (i{i) . Thus, let a • ? a . for

i / j . Clearly, A n C = 2 and A v B < A v C . For each £ < u , let

<7. = m. + e. , and let $ be generated by the q. . Then,
Is 1s 1s IS

QnA = QnC= 2 , and Q\A = QvC = AvC. This implies § = C (i|i) ,

and it follows that C = 2 (<Jj) , observing that Q n C = 2 . Since

B < 4 v C , we have S E 2 (ifi) .

(b) Let \A\ = to , and ./} be generated by the improper atoms {m.|i<to} .
For each i < a> , let m • = a;. + z/. , where x • is an atom of D , and

1s 1s 1r Is

y. = x. o m. . Let Q be generated by the x• , and i? be generated by
1* "V 1* t-

the y . ; t h e n , a s b e f o r e , A n Q = A n R = R n Q = 2 , a n d
Is

AvQ = A v R = Q v R . This implies Q = 2 (iji) , and we can proceed as in

(a) with Q instead of A , noting that all atoms of Q are proper.

Now suppose that (*) holds for all K < X < a , and let A , B < D

such that \A\ = |s| = X , and A =1 W .

(c) A is generated by the X proper atoms {m-\i<\} . Let {e.|i<6} be

the set of all atoms of D which are below some atom of B , but not in

A , and let C be generated by the a- . If 6 < X , then C = 2 (i|>) by

our induction hypothesis, and thus B = 2 (I|I) , since B < A v C . If

6 = X , proceed as in (a).

(d) A has less than X proper atoms. Construct an algebra Q with X

proper atoms and Q = 2 (iji) similar to (b) ; then proceed as in (c) .

This proves that (.*! holds for all X < a .

Now let X be the smallest cardinal such that |i?| = A implies

E | 2 (*) for all E < D . Let A , B < D , A c B , and A = B ($] ; let

C be a complement of A in Sub B ; then 2 = A nC=.BnC=C, and

thus, \C\ < A by our definition of X . This implies A B B (_Q ) .
A

For the converse, let ABB (6.) , A g B , and C a complement of A
A

in Sub B . Since 4 = B C6.) , we have \c\ < A , and hence, C = 2(<J/) by
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186 Ivo Diintsch

(*) and our choice of X . It follows that A =. A v C = B . D

Call a Boolean algebra D X-like, if for all d e V , D\d or

has cardinality less than X , that is the set {deD \D\d has cardinality

less than X} is a prime ideal of D . If, for example, D is the interval

algebra of an infinite cardinal X , then D is X-like. The only

countable w-like algebra is FC(u) ; more generally, it can be shown that

an infinite Boolean algebra D is co-like if and only if D is a finite-

cofinite algebra.

PROPOSITION 3.9. Let \D\ = X > o> , X regular, and D be \-like.

Then Sub D is not simple.

Proof. By 3.6, it suffices to show that D has the following

property:

(*) If A , B < D, u eD such that \A\ = \B\ = X , and B < A{u) ,

then there exists a C < D with ]C] < X , such that (A n B) v C = B v C .

So, let A , B , and u be as described above, and suppose, without

loss of generality, that (u] has cardinality less than X . Using this

fact and the regularity of X , we may suppose, after a simple thinning

process, that there exists a ^ 6 ^ 4 , and, if B is generated by

{b.\i<\} , for each i < X there exists an a-eA satisfying

b' = a.°u + q°u; furthermore, we may assume that for all i , j < X ,

a • ° u = a • ° u . Then, for i , j < X ,

b . o h = fa o u + q ° u) ° (a • + u) ° (q + u)

= a. ° a • • u

= a • ° a . e. A , since a. ° u = a • ° u .
t' 3 I* 3

This in turn implies that also FT + b • c A .

If (£> ] has cardinality less than X , then so has the set

{bQ o b.\i<\] , and in this case we set M = (b ] . Since

b. = b o h + b~ o b. , and b~ ° b • e A , we have (AnB) v [W] = B v [Af] .

If (J ] has cardinality less than X , then so has ib ) ,- in this
o o

case, we set M = [£> ) , observing that b. = (& +£>.) ° (.b~ + b.) , and

5; + ̂  e A . D
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As we shall see later, the hypothesis that X is regular, is

essential.

Proposition 3.9 also implies a partial answer to problem 29 of [2]:

Call an algebra D almost Jonsson, if for each B < D with

\B\ = \D\ = X , there exists an A < D such that \A\ < X and A v B = D .

Call D packed, if A , B < D , \A\ = \B\ = \D\ = X imply \AnB\ = X .

Note that an almost Jonsson or packed Boolean algebra is |Z)|-like. The

question mentioned above asks if there is an almost Jonsson algebra which

is not packed, and vice versa.

PROPOSITION 3.10. Let D be an infinite Boolean algebra which is

almost Jonsson and has regular cardinality X j then D is packed.

Proof. Let A , B < D , \A\ = \B\ = X ; since D is almost Jonsson,

there exists a C < D with \c\ < X which satisfies A v C = D . Since

B < A v C , and D is X-like, 3.9 implies the existence of a Q < D ,

such that \Q\ < X , and (/In 5) v § = B v § . Thus, A n B must have

cardinality X . Q

Next we turn our attention to the interval algebras of well-ordered

sets.

If D is the interval algebra of a chain C , then each, d e D has

a unique representation d = ta^/jO U ... u [x ,y ) , where

Xo < yo K Xl < • • • < xn < yn ' a n d Possit)1Y l)n = °° '
 t h a t i s

Lxn,yn) = [a: ) . If d e D has this form, we set

J(d) = {x.\i<n} u {y.\i<n) .

PROPOSITION 3.11. Let X > u be an ordinal and D its interval

algebra. Then Sub D is not simple if and only if X is a regular

cardinal.

Proof. One direction follows immediately from Proposition 3.9, thus,

let us suppose that X is not a regular cardinal. In what follows, we shall

use the symbols + and ° both for ordinal addition and multiplication, and

for the operations on D ; the meaning will be clear from the context.

If X = 6 + y , with e > Y • then

D a I(B) x J(Y) s j(y) x j(g) s J(.Y+B) = J(B) , so we can assume that in

particular X is a limit ordinal. If X = (5 ° n for some n < m , then D
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188 Ivo Diintsch.

is isomorphic to the product of n copies of J(3) , and it follows from

3.3 that Stab D is simple. Thus, let us suppose that X is not of the

form B o n , and that af X = y < \ ; then there exists a y-termed

sequence {a |£<y} °f limit ordinals with supremum X , such that

a = y , and a ° 3 < a for all £ < y .

Our goal is to construct a finite number of subalgebras of D , each

of which is congruent to 2 , and whose supremum is D .

The crucial observation is the following: Let A, < D be generated

by {[a ,a )|?<p<y} , A2 ^ D be generated by {[£,p)|£<p<y) , A^ < D be

generated by {[£,p) u [a ,a ) |?<p<y} . Then, A, n A, = Ao n 4. = 2 , and

A., A2 S A (\-0,aQ)) ; it follows that A, and A^ are congruent to 2 ,

and so is A = A.^ v A^ . Next, let B S D be generated by

{[a ,a£ o 2)|C<Y) / and B ^ D be generated by

{[£,£+1) u La£,a^ o 2) | E,<y} . Note that B is isomorphic to FC(y) ; as

before, B n Sx = 2 , and B < B-^IO,^)) , hence, B 5 2 .

Let C < D be generated by {[a +C,a.+ p) U<Y,£<p<a .} , and J? < D be

generated by {[<x. + £,a. + p) U [a . ° 2 + 5,a • •> 2 + p) |i<v, C<p<a } . Let

o c C such that X 4 -T(<3) ; then, for each z e J(e) there exists a

£ < y / such that a < z < a£ ° 2 ; if r e R such that X 4 X(r) ,

there exists a z e X(z») and a £, < y such that c t ° 2 < 2 < c t _ ° 3 .

It follows that R n C = 2 ; since C < R v B and B = 2 , this implies

C H 2 .

For each £ < y * partition [a- .,a. . ° 2) into faithfully

enumerated subsets J?" = {/n_ 16<a. n} , and fl = {n.[6<a. ,} , and set
1 o' t+1 z o' t+l

Pi = [

Qi KCa^ 2+C,a^ °2+p] u

Let P be generated by U{p̂ ,|-£<Y} , § be generated by
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Similarly as before, i t is shown that P n Q = 2 . Also,

P v i 4 v B v C = £ v i 4 v B v C = £ > .

This implies P H Q s D , and it follows from P n Q = 2 that 0 = 2 . D

Now we can describe the congruences of Sub D if D is countable.

PROPOSITION 3.12. Let D be countable; then Sub D is not simple

if and only if D is isomorphio to FC(GJ) .

Proof. If D s FC(m) , then Sub D is not simple by 3.8. If

D 4 FCLm) , there are two cases:

(a] D contains an infinite free subalgebra: then Sub D is simple by 3.4.

(b) D does not contain an infinite free subalgebra: then D is super-

atomic, and it is well known that in this case D is the interval algebra

o

of a) o n , where 0 < n < to , and 0 < g < u . So, Sub D is simple by

the preceding proposition. D

Thus far, all the proper congruences we have exhibited on Sub D

were of the form 6 , and in all cases D was |Z)|-like. We would like to

conclude this section with an example which shows two things:

1. There exists a Boolean algebra D such that \D\ = u, , D is not

lo -like, and Sub D is not simple.

2. 9U is not a congruence on Sub D .

EXAMPLE 3.13. Let M be a subset of the real numbers, such that M

has a smallest element and \M\ = u. , and let E = JCM x I{M\ ; then

\E\ = 0)̂  , E is an interval algebra, and Sub E is simple. Now set

D = E x FCiu ) ; then

1. D is not oi.-like;

2. Sub D is sectionally complemented;

3. 6^ is not a congruence on Sub D ;

4. E and FClu^) have no isomorphic uncountable subalgebras.

For C2), observe that D is a subalgebra of an interval algebra, and

to see (3), note that the canonical copy of E in Sub D is congruent to 2 ,

since Sub E is simple.
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Let u e D such that D\u -E and D\u = FC(u) ; let P , Q < D

be canonical copies of D\u and D\u respectively. Then, P(w) = (u] u [w) ,

and S = (w] u [w) .

Let J be the ideal of Sub D which is generated by

{?} u {S < D \S\ < oi} . Consider the following condition on J :

(.*) C4] n [i v (Si) = ((4]nl) v (4 n S] , for all A , B <. D .

(Here, the appearing intervals and v are to be taken in the lattice of

ideals of Sub D .)

If J satisfies (*) , that is if I is standard, then it induces a

proper congruence on Sub D , see [3], IIL3.5. Since 2 holds in any

lattice, we only have to show g . So, let A , B , C < D, C < A , and

C s P(w) v 2\ v B for some countable T1 < D . We have to show the

existence of an S < D such that S < A , S e I , and C < S v M n S ) .

If A , B , or C are countable, there is nothing to show, so let us

suppose that they are all uncountable.

Let C be a complement of C n B in Sub C ; then

C'=Cr\B<AnB.

Let C be a complement of C. n P(u) in Sub C, ; then

C2 = Cl " P ( M ) £ X ' a n d C2 ~ ̂  -

Let C = Q(.u) n C"2 and T be a complement of C, in Sub C, .

Then, T. n Z?|w = T~ n D|w = {0} , which implies that u is independent of

T2 . Assume that T. is uncountable; let h : T~ -> D\u be the canonical

projection h(t) = t ° u ; it is not hard to see that h is an embedding,

so D\u has a subalgebra isomorphic to T- ; likewise, D\u has a

subalgebra isomorphic to T^ ; since T- is uncountable, this contradicts

(.4).

So, C 2 = C 3 v T2 , where T2 e I and T2 < A , C < Q(.u\ . Since each

complement of C^ n Q in Sub C^ is finite, we may as well suppose that

C3 < Q .
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Let us pause for a moment to recapitulate what we have so far:

(a) C = C'x v C'2 v T2 v C3 ;

(b) C£ < A n B ;

(c) C'2 v T2 < A , C'2 v T2 e J ;

Cd) C3 < § , C3 n B = 2 .

So we are finished, if we can show that C is an element of J .

Now let us look at B ; let B. be a complement of B n P{u) in

Sub B . If B. is countable, then Bel, and we are done, so, let us

suppose tha t B. i s uncountable.

Jl '
B' n D]u = B' n D\u = {0} , we conclude as in a previous argument that B'

is countable. Also as before, we suppose that B. < Q .

We now have

C3 < P(u) v Tx v B2 v B2 .

Let i? = C31-, VB') n Q(u) and suppose, without loss of generality,

that u e R . Then,

C < P v R v B .

Now it is not hard to show that C2 £ R v B- . We also note that R is

countable as a subalgebra of T v B' .

Our final aim is to show that there is a countable U £ Q such that

C3 < U v B3 .

Let e e C. , such that, without loss of generality, a < u , and let

a = rQ ° bQ + ... + rn ° bn for some r^ e R , b^ e B2 , and

r. o Z>. > 0 for i < n .

Let M be the free prime ideal of D\u generated by the atoms of

D\u ; then, Q = M u -M . Since c e M , observe that each r. o 3. i s an

element of # . Suppose, without loss of generality, that V is not an
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element of Q ; then either r < u , or r = u + x for some x < u

with X e M .

(a) v i u : then u + r e Q . Assume that b i M , hence,

b = u + y for some y i M . We now have r ° b = r ° Lu+y)

= r o y e M , which implies r e M or y e M , a. contradiction.

Thus, b e M , in particular, £> < u ; then, (u+r ) ° b = r ° b

and M + r e S •

(b) r = M + x for some x e M ; then clearly £> < M ,

v ° b = x ° b , and x e Q .

If we replace each r. if necessary by one of the elements of Q as
Is

described above, and then let U £ D be generated by these elements and

R n Q , then U is countable, since R is countable, U is a subalgebra

of § , and C3 < U v B2 . Since C"3 n B2 = 2 , it follows from 3.7 and
3.8 that C. is countable, hence, C, £ J . D

4. Concluding remarks

Just looking briefly at prime ideals of Sub D , we state the

following theorem without proof, since it would involve too much new

notation and preliminary results which do not seem to be justified.

PROPOSITION 4.1. If P is a prime ideal in sub D , then A E B and

A e P imply B e P . It follows that Sub D is not simple.

If Sub D is not simple, it need not have a prime ideal. Let

D = FC(\) , and partition the set of atoms of D into {x.\i<\} , and

{y. \i<\] ; then set A = L{x- k<X}] , B = [{y.|i<X}] , and
Is If U

C = L{x-+y .\i<X)l . These algebras generate a 0,1-diamond in Sub D , so

it cannot have a prime ideal. Incidentally, this shows that for no

countable D Sub D has a prime ideal. Indeed, the only algebra D we

know where Sub D has a prime ideal is the packed algebra constructed by

M. Rubin [4] under A

H
PROBLEM 1. Find an algebra D such that D is not packed, and

Sub D has a prime ideal.
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The results of the preceding chapter seem to suggest that a nice

characterization of those D having Sub D (not) simple is hard to come

by. All the congruences that we have been able to exhibit on Sub D arose

from a distributive ideal; this suggests

PROBLEM 2. Find an algebra D and a congruence on Sub D which is

not induced by a distributive ideal.

Note that such an algebra cannot have Sub D sectionally complemented,

in particular, D is not a subalgebra of an interval algebra. Finally, it

might be worthy of mention, that the facts that D\d has cardinality

A 2: a), for all d e D and 9. is a congruence on Sub D , imply that D

is Bonnet-rigid in the sense of [2].
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