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Abstract

An equidistant permutation array is a v X r array A(r, A; v) defined on a /--set X such that every row
of A is a permutation of X and any two distinct rows agree in precisely A common columns. Define

R(r, A) = max{u: there exists an A(r, A; v)}.

In this paper, we show that

R(r, A) =c m a J R(n + 1 , 1 ) , \(n + if, n2 - 5« + 7,2 +

ffl
where « = /• — A. Certain results pertaining to irreducible equidistant permutation arrays are also
established.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15.

1. Introduction

An equidistant permutation array "EPA" A(r, A; v) is a v X r array defined on a
set A" of A- symbols such that every row is a permutation of X and any two distinct
rows have precisely A common column entries. Define R(r,X) to be the maximum
value of v such that an A(r, A; u) exists. A number of results on R(r, A) have
been obtained. In particular, the asymptotic behaviour of this function was shown
in [11].

R(r,\) =

[fl
whenever A > I — n)
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12] Equidistant permutation arrays 263

where n — r — X and [x\ and \x] are respectively, the greatest integer less than
or equal to x and the least integer greater than or equal to x. In [6], it is shown
that

r
X

R{r, X) =£ max j / ? (« + 1 , 1 ) , ^ ( " + 2) , n2 - In

[Si
One of the results of this paper is to improve this bound. As for a lower bound, it
follows immediately from the results in [4] that

R(r, X) > In — 4 whenever « 5* 5.

There are a number of constructions for EPAs which exceed this bound but there
is no known uniform lower bound which is better than this one.

An EPA is said to be reducible if it contains at least one column c} such that
every entry in this column is identical. An EPA which is not reducible is
irreducible. Define Rx{r, X) to be the maximum value of v such that there exists
an irreducible A(r, X; v). In [5] it is shown that

R](r,X)>(X + l ) ( « - 2 ) + 1

if there exists a set of X + 1 mutually orthogonal latin squares of order « — 2 with
two disjoint common transversals. Section 3 establishes that if 1 < X < n, then

R,(r, X) < m a x | ( " ^ 2 ) , (A + 1)(« - 2) + l l .

We also evaluate i?,(r, X) exactly for an infinite number of values of r and X.

2. Preliminaries

Rather than study EPAs directly, consider the closely related system called
orthogonally resolvable (r, X)-designs. To do this, we require a number of
definitions.

An (/•, X)-design D is a collection B of subsets (called blocks) of a finite set V of
elements (called varieties) such that any two distinct varieties of V are contained
in precisely X common blocks and every variety is contained in exactly r blocks of
D. In this paper n will always equal r — X. A block is said to be complete if it
contains all the varieties of D. A block of cardinality (or size) one is called a
singleton (block).

It is important to distinguish the following two special classes of (r, \)-designs.
An (/-, X)-design which only has blocks of size 1, v — 1 or v, where v = | V\ , is
called near-trivial.
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264 G. H. J. van Rees and S. A. Vanstone [3]

An (r, X)-design D is said to be resolvable or contain a resolution R if the
blocks of D can be partitioned into classes (called resolution classes) such that
every variety of D is contained in precisely one block of each resolution class. We
say that an (r, \)-design D is orthogonal or orthogonally resolvable (denoted by
OD(r,X)) if D contains resolutions R and R' and Ru R2,...,Rr and R\,
R'2,... ,R'r are the resolution classes of R and R' respectively such that for all i
and j (1 < i,j < r) Rt and R'j have at most one labelled block in common. The
blocks of D are considered labelled so that a given subset can occur repeatedly as
distinct blocks.

The connection between equidistant permutation arrays and orthogonal designs
is given in the following theorem proved by Deza, Mullin and Vanstone [2].

THEOREM 2.1. An A(r, X; v) exists if and only if an OD(r, X) with v varieties
exists.

An orthogonal design will be defined in this paper to be irreducible if it does
not contain a complete block. Then noting that a complete block in an orthogonal
design corresponds to a column containing only one symbol in the corresponding
EPA, Theorem 2.1 can be extended to the following theorem.

THEOREM 2.2. An irreducible A{r, X; v) exists if and only if an irreducible
OD(r, X) with v varieties exists.

We will use the concept of orthogonal designs to establish results on EPAs.
Before we are able to do this several more definitions and known results on
(r, A)-designs are required.

Let D be an (r, X)-design on v varieties and let x be a variety in D which occurs
in blocks Bx, B2,...,Br. If Vdenotes the variety set of D, then the r-complement,
Dx, of D with respect to x is the system obtained from D by replacing Bt

(1 < i < r) to V\Bj. It is easily verified that Dx is a (2n, n)-design on v — 1
varieties. If X < n, the augmented r-complement, D*, of D with respect to x is the
system obtained from D by replacing Bt (i — 1,2,... ,n + X) by V\(Bt \ {x}) and
then adjoining n — X blocks consisting of {x}.

The next result due to Deza [1], puts some restrictions on the block sizes in
(r, A)-designs.

THEOREM 2.3. / / D is an (n + X)-design having v varieties and block sizes kx,

k2,...,kt, thenkt(v+ 1 - kt) < n(v + 1), 1 < / « f.
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If v > j(n + 2)2, then Theorem 2.1 can be used to show that all the blocks in D
have size either at least ^(n2 + 2« + 2) (called Big blocks) or at most n + 1
(called Little blocks). Also the Big blocks contain over half the varieties.

The following two theorems will be used extensively in the sequel. The first
theorem was proved by Hall [3] and in a slightly weaker version by Vanstone and
McCarthy [11]. The second theorem was proved by Vanstone [9]. Because the
proofs are lengthy, they will not be given here.

THEOREM 2.4. Let D be a (2n, n)-design on v^ j(n + 2)2 varieties. Then
precisely one of the following is true.

(i) D contains n — I Big blocks all of which are complete.
(ii) D contains n complete blocks and D is trivial.

(iii) D contains n + 1 Big blocks and every variety of D is contained in exactly n
of these blocks.

(iv) D contains n + \ Big blocks. One variety of D occurs in all the Big blocks
and every other variety occurs in exactly n Big blocks.

THEOREM 2.5. Let D be an (r, X)-design having v > \{n + 2)2 varieties and I Big
blocks, Bx, B2,. •. ,B,. Assume also that D is not near-trivial. If 2?, is replaced by
V\BJor all i, 1 < j *£ /, then either

(a) the resulting blocks form an (n + 1, \)-design on the variety set V or
(b) some variety x E V only occurs in n — 1 blocks of size one and the remaining

blocks form an (n + 1, \)-design on the variety set V\{x}.

The resultant (« + 1, l)-design will be denoted by DB.

3. Upper bounds for /?,(/•, \ )

We will use the results of the previous section to improve the upper bounds on
the number of varieties in an irreducible orthogonal non-near-trivial design
(IONN designs) with v > ±(n + 2)2 and X > 1.

LEMMA 3.1. In an OD(n + X,\) with v > j(n + I)2, if a resolution class
contains a Big block which is not complete, then that resolution class contains only
that Big block and singletons.

PROOF. Assume that a resolution class contains a Big block Bx, and a block B2

of size greater than one. Since Big blocks contain more than half the varieties of
D, B2 is not a Big block. Now, B2 contains a pair of varieties, a and b, neither of
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which is contained in Bx. Then, by Theorem 2.5., if DB is formed, an (n + 1,1)-
design on v or v — 1 varieties will result. In this design, 5 , , the complement of Bx,
and B2 both contain a and b. But this contradicts A = 1 and if x is a singleton
block in that resolution class containing the Big block Bx, then in the orthogonal
resolution, x occurs in a different singleton block.

LEMMA 3.2. In an IONN (n + A, \)-design (A > 1) having v > $(n + if
varieties, the number of Big blocks is X + 2k + 1 and every variety except possibly
one occurs in X + k Big blocks for some k > 0.

PROOF. Assume a variety, x, is in X — 2 or fewer Big blocks of D. Thus, x is in
n + 2 or more little blocks of D. Then Dx is a (2«, «)-design with at least n + 2
Big blocks. But this contradicts Theorem 2.4.

So let us assume x is in exactly X — 1 Big blocks. Thus, it is in n + 1 Little
blocks of D. Then, Dx is in (2n, «)-design with at least n + 1 Big blocks. By
Theorem 2.4, this is the maximum number of Big blocks possible in Dx. So, in D,
there are only these X — 1 Big blocks. But these blocks would have to be complete
blocks which is a contradiction of D being irreducible. Thus every variety occurs
in at least X Big blocks and, since complete blocks are ruled out, there must be at
least X + 1 Big blocks.

Let there be X + p Big blocks in D. Since p > 0, there can only be one variety,
say oo, that occurs in every Big block. Since every variety occurs in at least X Big
blocks, oo does not occur with any variety in a Little block.

Since D is non-near-trivial either a Little block, Bx, of size greater than or equal
to two must exist or a Big block, B2, of size less than v — 1 must exist. If Bx

exists, let x be a variety of Bx. If Bx does not exist, let x be a variety of the
complement of B2. Then x occurs in X + t Big blocks where t < p and / s* 0. Thus
p — t Big blocks do not contain x. Also x is contained in n — / Little blocks.
Therefore Dx is a (2/i, n)-design which contains (p — t) + (n — t) = p + n — 2t
Big blocks, all of which cannot be complete due to either B2 or the complement of
Bx. Then Theorem 2.3 states that Dx is a (2n, «)-design with n + 1 Big blocks.
Hence/? + n — 2t = n + 1 or It — p — 1. Let/? = 2k + 1, then / = k.

If any other variety y ¥= oo is r-complemented the number of Big blocks is
either n + 1, n or n — 1. It is not n as p + n — 2t — n implies p is even. Thus
every other variety occurs in either X + koiX + k+ 1 Big blocks. If y occurs in
X + k + 1 Big blocks, it must occur in X Big blocks with x and every Big block
must contain an x or a y or both. But then in DB, no block contains the pair xy
which contradicts Theorem 2.5 as x, y ^ oo.

If k > 0, then all varieties occur in X + k Big blocks. If k = 0, oo may occur in
each Big block and every other variety occurs in A Big blocks. Note the similarity
to Theorem 2.4.
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THEOREM 3.3. / / 1 < A =s n then

R^r, X) < max{^(« + if, (X + \)(n - 2) + l}.

PROOF. Let D be an IONN (n + X, X)-design having v > \{n + 2)2. The blocks
of D can be partitioned into Big and Little blocks. Suppose some variety x is
missing from at least two Big blocks of D. The augmented r-complement of x is a
(2n, «)-design with at least one element missing from at least two Big blocks. This
contradicts Theorem 2.4. Thus every variety of D is missing from at most one Big
block. By Lemma 3.2, this implies that D contains precisely X + 1 Big blocks and
every variety, except possibly the variety oo, is contained in exactly X of these
blocks.

Let Bv B2,... ,BX+, be the Big blocks. Since every variety of D except oo is in
X Big blocks, it follows that Bt n Bj = 0 1 < i: <j *s X + 1 and that U ^ , 1 ^ -
V\ {oo} where V is the variety set of D. Let x G B± and x be different from oo.
Now x must occur with each of the varieties of Bj in Little blocks of D. The
elements of BB would have a pair of varieties occurring twice which is a
contradiction in an (« + 1, l)-design. Hence x must occur in at least n — 1 of
these Little blocks. Lemma 3.1 implies that x is contained in at least two singleton
blocks as x is missing from one Big block. Hence x is contained in at least
n — \+2+\—n + 2 blocks of DB which contradicts the fact that it is an
(n + 1, l)-design. Therefore \Bj\<n-2, for all j , 1 <y < X + 1 and \V\<
(X+ l ) ( n - 2 ) + 1.

If, on the other hand, D is an irreducible, orthogonal near-trivial (n + X, X)-
design then it can have at most n + X — 1 varieties which is less than {{n + 2)2

for X < n.

COROLLARY 3.4. If n — 2 is a prime power greater than 16 and \{n + 4) < X <
n — 5 is a positive integer then Rt(r, X) = (X + 1)(« — 2) + 1.

PROOF. When n — 2 is a prime power, the construction of [5] gives an OD(r, X)
having (X + l)(n — 2) + 1 varieties. This and the bound in the preceding theo-
rem give the desired result.

We now prove a partial converse to theorem given in [5].

THEOREM 3.5. Let n, X, a be positive integers such that {{n + 4) < X < n — 5,
n - 2 > | ( a 4 + 2a3 + 2a2 + 3a) where a - n - X - 3. Then Rx(r, X) =
(X + 1)(« — 2) + 1 if and only if there exists a set of X + 1 pairwise orthogonal
Latin squares of order n — 2 having two disjoint common transversals.
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P R O O F . The sufficiency has been shown by the construction in [5].

Suppose Rx(r, A) = (A + l)(n - 2) + 1. Then v > \(n + 8)(n - 2) + 1 >

{(n + 2)2 + 1 for appropriate n. Then as in the previous theorem we may assume

that D is an I O N N (n + A, A)-design having X + 1 Big blocks. Also the comple-

ments of the Big blocks are disjoint and of maximum size n — 2. Since v —

(A + l)(n — 2) + 1, each complement must be of size n — 2 and there must be an

oo variety in D. Since a variety (except for oo) is missing from exactly one Big

block, it occurs twice as a singleton by Lemmata 3.1 and 3.2. Furthermore no

singletons can occur in the intersection of two resolution classes containing Big

blocks. Then in DB, if two singletons are deleted for every other variety, an

(n — 1, l)-design is obtained. The blocks for this design are the X + 1 comple-

ments of the Big blocks and the Little blocks which occur in the (n — I)2

intersections of the resolution classes which contain no Big blocks. (An intersec-

tion need not contain a block.)

Now any {n + X, A)-design with (A + 1)(« — 2) varieties and at most n2 — In

+ A — 2 blocks of which A + 1 are of size n — 2 is an example of a pseudoparal-

lel complement and it has been shown by Mullin and Vanstone [8] that whenever

n — 2 > K « 4 + 2 « 3 + 2 a 2 + 3a) where a = n — A — 3 that this design is em-

beddable in an affine plane of order n — 2. This implies the existence of a set of /

(1 < t < n — 4) pairwise orthogonal Latin squares of order n — 2 having two

distinct common transversals.

4 . An improved upper bound for R(r, A)

In this section, we obtain a universal bound for /?,(« + A, A) by calculating

limits on the size of the Little blocks and the number of Big blocks. This leads to

an improved bound for R(r, A). These next lemmata will prove useful throughout

this section.

LEMMA 4.1. In an IONN design D, with v > {{n + 2)2 and A > 1, any two

varieties can occur together in at most one of a Little block or a complement of a Big

block.

P R O O F . Suppose that in D there are two varieties, a and b which occur together

either in two Little blocks or in a Little block and the complement of a Big block.

If DB is formed, then an (« + 1, l)-design exists with the pair ab occurring twice.

This is a contradiction.
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COROLLARY 4.2. In an IONN design D with v > j(n + 2)2, X > 1 and X + 2k
+ 1 Big blocks, if Bx is the largest Little block, then the number of Big blocks is
greater than or equal to (k + 1) | Bx \ .

PROOF. Every variety of Bx occurs in k + 1 complements of Big blocks by
Theorem 3.2 and the previous lemma states that these blocks are distinct.

The next lemma is one of the fundamental lemmata in the study of (r, ^-de-
signs and is useful in the later lemmata.

LEMMA 4.3. In a non-trivial (r, \)-design, D, the size of a block is less than or
equal to r.

PROOF. Assume a block, Bt, in D has size at least r + 1. Since D is non-trivial,
there is a variety x & Bx and x must occur with the varieties of 5 , in distinct
blocks as X = 1. Hence x occurs at least r + 1 times which is a contradiction.

With this lemma we can now limit the size of the blocks in an (n + X, X)
design.

LEMMA 4.4. In an IONN («.+ X, X)-design with t> > {{n + 2)2, X + 2k + 1 Big
blocks and X > 1, the size of a Little block and the complement of a Big block is at
most n — k.

PROOF. By Lemma 3.2, a variety, x, occurs in X + k Big blocks which means it
does not occur in k + 1 Big blocks. These Big blocks are all in distinct resolution
classes and by Lemma 3.1, x occurs as a singleton in these resolution classes. This
is true for every variety except oo. Then in DB, if k + 1 singletons are deleted for
every variety, an (n — k, l)-design is obtained. This design has block size at most
n ~ k by Lemma 4.3.

Thus a variety in the above (n — k, l)-design occurs in n — k blocks of size at
most n — k. This implies there are at most 1 + (« — k)(n — k — 1) varieties in
this design and in the original design D (not counting oo). Thus we have proved
the following theorem.

T H E O R E M 4.5. In an IONN (n + X, X)-design D, with v>{(n + 2 ) 2 and X>\,
if the number of Big blocks is X + 5 or more then v < n2 — 5n + 7.

Next we consider the case in which the design has X + 3 Big blocks.
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270 G. H. J. van Rees and S. A. Vanstone (9|

THEOREM 4.6. In an IONN (n + X, Xydesign D, with v > {(n + if and X > 1,
// the number of Big blocks is X + 3 then v < n2 — 5n + 7.

PROOF. Let the design D have orthogonal resolutions R and R' where Ru

R2,...,Rn^3 and R\, R'2,...,R'n_3 are the respective resolution classes which do
not contain Big blocks and Rn-2,

 R
n - v • >Rn+\ a n d ^'n-2> ^'n-i>- • • >R'n+\ a r e

the respective resolution classes which do contain Big blocks. Notice that D
contains no variety in all Big blocks.

By Lemma 4.4, the size of a Little block is at most n — 1. Let Bx be a Little
block that has size n — 1. Without loss of generality, assume that U, is in
resolution classes Rx and R\. Let x be a variety that occurs in block B2 in
resolution class Rt. Now by Theorem 3.2, x does not occur in two Big blocks. By
Lemma 3.1, x must occur in singleton blocks in the two resolution classes of R
which contain those two Big blocks. Hence in DB, x occurs in a singleton block
twice, in B2, and in n — 1 distinct blocks containing varieties of Bx. This implies
that x occurs n + 2 times in an (« + 1, l)-design which is a contradiction.
Therefore Little blocks have size at most n — 2.

Let B3 be the complement of a Big block B3. Assume that B3 has size n — 1.
Also assume that the number of Big blocks is greater than n. By Theorem 3.2,
each variety of B3 occurs in one more complement of a Big block. Hence the
varieties of B3 occur in n complements of Big blocks. Let x be a variety that
occurs in a complement of a Big block B4 that does not contain any varieties of
B3. Now by Lemma 3.1, x must occur in a singleton block in the two resolutions
which contain the Big blocks not containing x. Hence in DB, x occurs in two
singleton blocks, in BA and in n — 1 distinct blocks containing varieties of B3.
Again this is a contradiction.

So let us assume that there are at most n Big blocks. Therefore the number of
varieties (including multiplicities) in the complements of the Big blocks is at most
n(n — 1). But by Theorem 3.2 each variety occurs twice in these blocks so that the
number of varieties in D is {n{n — 1). But {~n(n — 1) < {~(n + 2)2 which is a
contradiction. Therefore the complement of a Big block has size at most n — 2.

Consider resolution class Rx. If there are no blocks of /?, which are also in
resolution class Rx for i > n — 3 then any variety of D must occur in one of the
n — 3 Little blocks of Rt of size at most n — 2. Hence, there are at most
(n — 3)(« — 2) varieties. If there is such a block it is a singleton block by Lemma
3.1. Let x be the singleton. By Lemma 3.1, x occurs in a singleton block in the two
resolution classes of R which contain Big blocks which do not contain x. Hence in
DB, x occurs in three singleton blocks and in n — 2 blocks of size at most n — 2.
This implies that there are at most 1 + (n — 2){n — 3) = n2 — 5n + 7 varieties in
DB and in D.
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Finally we consider the case when the design has X + 1 Big blocks.

THEOREM 4.7. In an IONN (n + X, X)-design, D, with v > $(n + 2)2, n>5and
X > I, if there are X + 1 Big blocks then v < n1 — 5n + 7.

PROOF. The size of a Little block or the complement of a Big block is at most n
by Lemma 4.4. As in the previous theorem, D has orthogonal resolutions R and
R' where the first « — 1 resolution classes do not contain Big blocks while the
remaining resolution classes do.

Let Bn be a Big block occurring in the intersection of resolution classes Rn and
R'n. Let us assume that | Bn \= n or n — 1. Then let x be a variety of any other
complement of a Big block. By Lemmata 3.1 and 3.2 every variety of D occurs in
at least two singleton blocks. So in DB, x occurs in three blocks which do not
contain varieties of Bn and in n or n — 1 blocks which do. This contradicts DB

being an (n + 1, l)-design. So the size of the complement of a Big block is at most
n-2.

Let the size of a Little block, Bx, be n or n — 1. Let Bx be the intersection of
resolution classes Rx and R\. Consider a variety y which occurs in a block which
is the intersection of resolution class Rx and a resolution class R\, i ¥= 1, which
does not contain a Big block. Since y must occur as a singleton twice, y, in DB,
occurs in three blocks no containing varieties of Bx and n or n — 1 blocks which
do. This contradicts DB being an (n + 1, l)-design.

Let Bx and Bn be as before except Bx has size n — 2 and Bn contains no varieties
of Bx. Let x be a variety of Bn. Then the singleton blocks containing x must occur
in the intersection of resolution classes Rx and R\ and resolution classes R\ and
Rn. If not, x occurs in a Little block of Rx (or/and R'x) containing no variety of
By Then in DB, x would be in four blocks which contain no varieties of Bx and
n — 2 blocks which do. This is a contradiction. Since this argument is true for any
variety in Bn, Bn must be a singleton.

Now assume a Little block B2¥= Bx has size n — 2 and does not contain x. Let
B2 be in the intersection of resolution class Rj and R'j. As in the previous
paragraph x must occur as a singleton in the intersection of Rt and R'n and R'j and
Rn. But this implies / —j = 1 and B2 = £,. So the only Little blocks of size « — 2
are 5 , and possibly blocks containing x.

Let us further assume that there exists another complement, Bn+X, of a Big
block which contains no varieties from By Then the previous arguments must
hold for it as well as Bn so Bn+, is a block containing one element, say y. And the
only Little blocks of size n — 2 are Bt and possibly blocks containing y.
Combining this with the previous paragraph proves that the only Little blocks of
size n — 2 are Bx and possibly the block containing the pair xy. Thus x, in DB,
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occurs in three singleton blocks, one block of size at most n — 2 and n — 3 blocks
of size at most n — 3. Hence the number of varieties in DB is at most 1 + n — 3
+ (n - 3)(« - 4) = n2 - 6n + 10 and in D, at most n2 - 6w + 11 < n2 - 5n +
7 for n > 5.

Thus there is at most one complement, Bn, of a Big block which contains no
varieties of By This implies that the X + 1 < n — 2 + 1.

Now consider a variety which is not in By say z, which occurs in a comple-
ment, Bn+,, of a Big block. Let fin+, occur in the intersection of resolution classes
Rn+] and R'a+l. Now z must occur as a singleton twice, but assume that no
singleton occurs in the intersection of /?, and R'n+i and R\ and Rn+l. Then z
must occur in resolution classes R{ and R\ in blocks that contain no varieties of
Bv Then, in DB, z must occur in 4 blocks which contain no variety of 5 , and
n — 2 blocks which do. Again this is a contradiction. Hence any element z which
is not in 5 , must occur as a singleton either in the intersection of Rt and R'n or
the intersection R\ and Rn. But in resolution class R{ there is room for only
X + 1 > n — 1 such singletons. Similarly for R\. Hence the number of varieties in
DB is at most X + l + \ + l + |2? , |=3« and the number of varieties in D is at
most 3n + 1 <•£(/! + 2)2.

We can now assume that the size of a Little block is at most n — 3 and the size
of a complement of a Big block is at most n — 2. Then since each variety occurs
in two singleton blocks and one complement of a Big block, the number of
varieties including ooinZ) is2 + « — 3 + (n — 2){n — 4) = n2 — 5n + 7.

Combining the last three theorems gives the following theorem.

THEOREM 4.8. In an IONN (n + X, X)-design with v > {{n + 2)2, X > 1, the
number of varieties is at most n2 — 5n + 7.

Having this result, the following bound is easily obtained.

THEOREM 4.9.

R(r,X)*zmax\R(n + 1,1), - ( « + 2)2, n2 - 5w + 7, 2 +

PROOF. Consider an OD(r, X)-design D having v varieties. Delete all complete
blocks from D to get an OD(r', X')-design D' where r' - X' = r - X - n. If D' is
an IONN design with X > 1 and with v > \{n + 2)2 we have the bound of
Theorem 4.8. If D' has X' = 1, the number of varieties is bounded by R(n + 1,1).
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Finally, if D' is near-trivial, we have the bound

A
2 +

5. Conclusion

In order to improve the bound of Theorem 4.9, one must improve the results on
R(n + 1,1). The best general lower bound for this case as shown in [4] is
R(n + 1,1) > In - 4 whenever n 3= 5. It was shown in [7] that R(n + 1,1) «= n2

— 2« — 2 for n > 4. This is the best upper bound known for this function. It has
recently been shown ([13]) that R(q2 + q + 1,1) > q3 + q2 whenever q is a prime
or prime power. This is the first result for X = 1, showing that R(r, 1) is nonlinear
in r for some values of r.
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