
JFP 20 (5 & 6): 537–576, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796810000201 First published online 27 January 2011

537

Implicitly threaded parallelism in Manticore

MATTHEW FLUET∗
Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA

(e-mail: mtf@cs.rit.edu)

MIKE RAINEY

Department of Computer Science, University of Chicago, Chicago, IL, USA

(e-mail: mrainey@cs.uchicago.edu)

JOHN REPPY

Department of Computer Science, University of Chicago, Chicago, IL, USA

(e-mail: jhr@cs.uchicago.edu)

ADAM SHAW

Department of Computer Science, University of Chicago, Chicago, IL, USA

(e-mail: ams@cs.uchicago.edu)

Abstract

The increasing availability of commodity multicore processors is making parallel computing

ever more widespread. In order to exploit its potential, programmers need languages that

make the benefits of parallelism accessible and understandable. Previous parallel languages

have traditionally been intended for large-scale scientific computing, and they tend not to be

well suited to programming the applications one typically finds on a desktop system. Thus,

we need new parallel-language designs that address a broader spectrum of applications. The

Manticore project is our effort to address this need. At its core is Parallel ML, a high-level

functional language for programming parallel applications on commodity multicore hardware.

Parallel ML provides a diverse collection of parallel constructs for different granularities of

work. In this paper, we focus on the implicitly threaded parallel constructs of the language,

which support fine-grained parallelism. We concentrate on those elements that distinguish

our design from related ones, namely, a novel parallel binding form, a nondeterministic

parallel case form, and the treatment of exceptions in the presence of data parallelism.

These features differentiate the present work from related work on functional data-parallel

language designs, which have focused largely on parallel problems with regular structure and

the compiler transformations—most notably, flattening—that make such designs feasible. We

present detailed examples utilizing various mechanisms of the language and give a formal

description of our implementation.

1 Introduction

Parallel processors are becoming ubiquitous, which creates a software challenge: how

do we harness this newly-available parallelism across a broad range of applications?

∗ Portions of this work were completed while the author was affiliated with the Toyota Technological
Institute at Chicago.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

538 M. Fluet et al.

We believe that existing general-purpose languages do not provide adequate support

for parallel programming, while most existing parallel languages, which are largely

targeted at scientific applications, do not provide adequate support for general-

purpose programming. We need new languages to maximize application performance

on these new processors.

A homogeneous language design is not likely to take full advantage of the

hardware resources available. For example, a language that provides data parallelism

but not explicit concurrency is inconvenient for the coarse-grained concurrent

elements of a program, such as its networking and GUI components. On the other

hand, a language that provides concurrency but not data parallelism is ill-suited to

the components of a program that demand fine-grained parallelism, such as image

processing and particle systems.

Our belief is that parallel programming languages must provide mechanisms

for multiple levels of parallelism, both because applications exhibit parallelism

at multiple levels and because hardware requires parallelism at multiple levels

to maximize performance. Indeed, a number of research projects are exploring

heterogeneous parallelism in languages that combine support for parallel compu-

tation at different levels into a common linguistic and execution framework. The

Glasgow Haskell Compiler (GHC n.d.) has been extended with support for three

different paradigms for parallel programming: explicit concurrency coordinated

with transactional memory (Peyton Jones et al. 1996; Harris et al. 2005), semi-

implicit concurrency based on annotations (Trinder et al. 1998), and nested data

parallelism (Chakravarty et al. 2007), the last paradigm inspired by Nesl (Blelloch

et al. 1994; Blelloch 1996).

The Manticore project (Fluet et al. 2007a, 2007b) is our effort to address the

problem of parallel programming for commodity systems. It consists of a parallel

runtime system (Fluet et al. 2008b) and a compiler for a parallel dialect of Standard

ML (SML) (Milner et al. 1997), called Parallel ML (PML). The PML design

incorporates mechanisms for both coarse-grained and fine-grained parallelism. Its

coarse-grained parallelism is based on Concurrent ML (CML) (Reppy 1991), which

provides explicit concurrency and synchronous message passing. PML’s fine-grained

mechanisms include nested data parallelism in the style of Nesl (Blelloch et al. 1994;

Blelloch 1996; Blelloch & Greiner 1996) and Nepal (Chakravarty & Keller 2000;

Chakravarty et al. 2001; Leshchinskiy et al. 2006), as well as other novel constructs

described below.

This paper focuses on the design and implementation of the fine-grained parallel

mechanisms in PML. After an overview of the PML language (Section 2), we present

four main technical contributions:

• the pval binding form, for parallel evaluation and speculation (Section 4),

• the pcase expression form, for nondeterminism and user-defined parallel

control structures (Section 5),

• the support of exceptions and exception handlers as a key component of

data-parallel programming (Section 6), and

• a formalization of our implementation of all of the above (Section 8).

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 539

We describe the nested data parallelism mechanism (parallel arrays) in Section 3,

and we illustrate the language design with a series of examples in Section 7. Our

method has been to collect together varied mechanisms in order to provide the

programmer a diverse group of complementary tools for attacking many different

kinds of parallel programming problems. The examples are meant to demonstrate

PML’s flexibility, as well as its suitability for irregular parallel applications. We

review related work and conclude in Sections 9 and 10.

2 An overview of the PML language

Parallel language mechanisms can be roughly grouped into three categories:

• Implicit parallelism, where the compiler and runtime system are solely re-

sponsible for partitioning the computation into parallel threads. Examples

of this approach include Id (Nikhil 1991), pH (Nikhil & Arvind 2001), and

Sisal (Gaudiot et al. 1997).

• Implicit threading, where the programmer provides annotations, or hints to

the compiler, as to which parts of the program are profitable for parallel

evaluation, while the mapping of computation onto parallel threads is left to

the compiler and runtime system. Examples include Nesl (Blelloch 1996) and

its descendants Nepal (Chakravarty et al. 2001) and Data Parallel Haskell

(DPH) (Chakravarty et al. 2007).

• Explicit threading, where the programmer explicitly creates parallel threads.

Examples include CML (Reppy 1991) and Erlang (Armstrong et al. 1996).

These design points represent different trade-offs between programmer effort and

programmer control. Automatic techniques for parallelization have proven effective

for dense regular parallel computations (e.g., dense matrix algorithms) but have been

less successful for irregular problems.

PML provides both implicit threading and explicit threading mechanisms. The

former supports fine-grained parallel computation, while the latter supports coarse-

grained parallel tasks and explicit concurrent programming. These parallelism

mechanisms are built on top of a sequential functional language. In the sequel,

we discuss each of these in turn, starting with the sequential base language. For

a more complete account of PML’s language design philosophy, goals, and target

domain, we refer the reader to our previous publications (Fluet et al. 2007a, 2007b).

2.1 Sequential programming

The PML’s sequential core is based on a subset of SML. The main differences are that

PML does not have mutable data (i.e., reference cells and arrays) and implements

only a subset of SML’s module system. PML does include the functional elements of

SML (datatypes, polymorphism, type inference, and higher-order functions) as well

as exceptions. As many researchers have observed, using a mutation-free language

greatly simplifies the implementation and use of parallel features (Hammond 1991;

Reppy 1991; Jones & Hudak 1993; Nikhil & Arvind 2001; Dean & Ghemawat

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

540 M. Fluet et al.

2004). In essence, mutation-free functional programming reduces interference and

data dependencies—it provides data separation for free. We recognize that the lack

of mutable data means that certain techniques, such as path compression and cyclic

data structures, are not supported, but there is evidence of successful languages

that lack this feature, such as Erlang (Armstrong et al. 1996). The interaction

of exceptions and our implicit threading mechanisms adds some complexity to our

design, as we discuss below, but we believe that an exception mechanism is necessary

for systems programming.

As the syntax and semantics of the sequential core language are largely orthogonal

to the parallel language mechanisms, we have resisted tinkering with core SML. The

PML Basis, however, differs significantly from the SML Basis Library (Gansner &

Reppy 2004). In particular, we have a fixed set of numeric types—int, long, float,

and double—instead of SML’s families of numeric modules; furthermore, integer

operations provide modular arithmetic (and do not raise an Overflow exception).

2.2 Explicitly threaded parallelism

The explicit concurrent programming mechanisms presented in PML serve two

purposes: they support concurrent programming, which is an important feature

for systems programming (Hauser et al. 1993), and they support explicit parallel

programming. Like CML, PML supports threads that are explicitly created using the

spawn primitive. Threads do not share mutable state; rather they use synchronous

message passing over typed channels to communicate and synchronize. Additionally,

we use CML communication mechanisms to represent the interface to system

features such as input/output.

The main intellectual contribution of CML’s design is an abstraction mechanism,

called first-class synchronous operations, for building synchronization and communi-

cation abstractions. This mechanism allows programmers to encapsulate complicated

communication and synchronization protocols as first-class abstractions called event

values. This encourages a modular style of programming where the actual underlying

channels used to communicate with a given thread are hidden behind data and type

abstraction. Events can range from simple message-passing operations to client-

server protocols to protocols in a distributed system. Further details about the

design and implementation of CML’s concurrency mechanisms can be found in the

literature (Reppy 1991; Reppy 1999; Reppy et al. 2009).

2.3 Implicitly threaded parallelism

PML provides implicitly threaded parallel versions of a number of sequential forms.

These constructs can be viewed as hints to the compiler and runtime system

about which computations are good candidates for parallel execution. Most of

these constructs have deterministic semantics, which are specified by a translation

to equivalent sequential forms (Shaw 2007). Having a deterministic semantics is

important for several reasons:

• It gives the programmer a predictable programming model;

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 541

datatype tree
= Lf of int
| Nd of tree * tree

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) =

(op *) (|trProd1 tL, trProd1 tR|)

Fig. 1. Tree product with parallel tuples.

• Algorithms can be designed and debugged as sequential code before porting

to a parallel implementation; and

• It formalizes the expected behavior of the compiler.

The requirement to preserve a sequential semantics does place a burden on the

implementation. For example, we must verify that subcomputations in an implicit-

parallel construct do not send or receive messages. If they do so, the construct must

be executed sequentially. Similarly, if a subcomputation raises an exception, the

implementation must delay the delivery of the exception until all sequentially prior

computations have terminated. We consider the issues related to the propagation of

exceptions in more detail in Section 6.

2.3.1 Parallel tuples

Parallel tuple expressions are the simplest implicitly threaded construct in PML. The

expression

(|e1, . . ., en|)

serves as a hint to the compiler and runtime system that the subexpressions

e1, . . . , en may be usefully evaluated in parallel. This construct describes a fork-

join parallel decomposition, where up to n threads may be forked to compute the

expression. There is an implicit barrier synchronization on the completion of all of

the subcomputations. The result is a normal tuple value. Figure 1 illustrates the use

of parallel tuples to compute the product of the leaves of a binary tree of integers.

The sequential semantics of parallel tuples is trivial: they are evaluated simply as

sequential tuples. The sequential semantics immediately determines the behavior of

an exception-raising subexpression: if an exception is raised when computing its ith

element, then we must wait until all preceding elements have been computed before

propagating the exception.

2.3.2 Parallel arrays

Support for parallel computations on arrays is common in parallel languages. In

PML, we support such computations by using a nested parallel array mechanism

that was inspired by Nesl (Blelloch 1996), Nepal (Chakravarty et al. 2001), and

DPH (Chakravarty et al. 2007). A parallel array expression has the form

[|e1, . . ., en|]

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

542 M. Fluet et al.

which constructs an array of n elements. The delimiters [| |] alert the compiler

that the ei may be evaluated in parallel.

Parallel array values may also be constructed using parallel comprehensions, which

allow concise expressions of parallel loops. A comprehension has the general form

[| e | p1 in e1, . . ., pn in en where ef |]

where e is an expression (with free variables bound in the pi) computing the

elements of the array, pi are patterns binding the elements of ei, which are array-

valued expressions, and ef is an optional boolean-valued expression that is used to

filter the input. If the input arrays have different lengths, all are truncated to the

length of the shortest input, and they are processed, in parallel, in lockstep.1 For

convenience, we also provide a parallel range form

[| el to eh by es |]

which is useful in combination with comprehensions. (The step expression “by es”

is optional and defaults to “by 1.”)

2.3.3 Parallel bindings

Parallel tuples and arrays provide fork-join patterns of computation, but in some

cases, more flexible scheduling is desirable. In particular, we may wish to execute

some computations speculatively. PML provides the parallel binding form

let pval p = e1

in
e2

end

that hints to the system that running e1 in parallel with e2 would be profitable. The

sequential semantics of a parallel binding is similar to lazy evaluation: the binding

of the value of e1 to the pattern p is delayed until one of the variables in p is used.

Thus, if an exception were to be raised in e1 or the matching to the pattern p were

to fail, it is raised at the point where a variable from p is first used. In the parallel

implementation, we use eager evaluation for parallel bindings, but computations

are canceled when the main thread of control reaches a point where their result is

guaranteed never to be demanded.

2.3.4 Parallel case

The parallel case expression form is a parallel nondeterministic counterpart to SML’s

sequential case form. Parallel case expressions have the following structure:

pcase e1 & . . . & em
of π1,1 & . . . & πm,1 => f1

| . . .

| π1,n & . . . & πm,n => fn

1 This behavior is known as zip semantics, since the comprehension loops over the zip of the inputs. Both
Nesl and Nepal use zip semantics, but Data Parallel Haskell (Chakravarty et al. 2007) supports both
zip semantics and Cartesian-product semantics where the iteration is over the product of the inputs.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 543

fun up() = up()
val x = (pcase up() & ... & up() & 1

of 1 & ... & ? & ? => false
| ? & ... & ? & 1 => true)

Fig. 2. An illustration of the infinite processor assumption.

Here, both e and f range over expressions. The expressions ei, which we refer to

as the subcomputations of the parallel case, evaluate in parallel with one another.

Note that pcase uses ampersands (&) to separate both the subcomputations and

the corresponding patterns from one another. This syntax simultaneously avoids

potential confusion with tuples and tuple patterns and recalls the related join-

pattern syntax of JoCaml (Mandel & Maranget 2008).

The πi,j in a parallel case are parallel patterns, which are either normal patterns

or the special nondeterministic wildcard ?. A normal wildcard matches a finished

computation and effectively discards it by not binding its result to a name. A

nondeterministic wildcard, by contrast, matches a computation (and does not name

it) even if it has not yet finished.

Unlike the other implicitly threaded mechanisms, parallel case is nondeterministic.

We can still give a sequential semantics, but it requires including a source of

nondeterminism, such as McCarthy’s amb (McCarthy 1963), in the sequential

language.

PML operates under an infinite processor assumption, which is of particular

importance with respect to the subcomputations of parallel case expressions. That

is, there is always an additional (virtual) processor available for the spawning of

new computational threads: the machine never “fills up.” Our semantics asserts that

all terminating subcomputations of a parallel case will be computed to completion,

even in the presence of diverging subcomputations running in parallel with them.

Consider the excerpt in Figure 2. Even though the (arbitrarily many) calls to up

will never terminate, the constant 1 enables a match with the second branch, and

the value x must evaluate to true. Please note that this semantic detail neither

prevents the programmer from writing infinite loops using pcase nor guarantees

termination in other parallel constructs such as parallel tuples, where, for example,

the expression

(| up(), 1 |)

does in fact diverge, in keeping with its sequential semantics. We delay further

discussion of parallel case until Section 5.

3 Parallel arrays

Parallel arrays, like lists, vectors, and arrays, are ordered sequences whose values

are all of the same type. The elements of parallel arrays can all be computed simul-

taneously. PML supports a standard complement of parallel functional collection

operations over parallel arrays, including mapping, filtering, and reducing with an

associative operator.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

544 M. Fluet et al.

Parallel comprehensions in PML are similar to those of Nesl. For example, to

double each positive integer in a given parallel array of integers nums, one may use

the following expression:

[| 2 * n | n in nums where n > 0 |]

This expression can be evaluated efficiently in parallel using vector instructions.

Parallel array comprehensions are first-class expressions; hence, the expression

defining the elements of a comprehension can itself be a comprehension. For example,

the main loop of a ray tracer generating an image of width w and height h can be

written as
[| [| traceRay(x,y) | x in [| 0 to w-1 |] |]

| y in [| 0 to h-1 |] |]

This parallel comprehension within a parallel comprehension is an example of nested

data parallelism.

A key aspect of nested data parallelism is that the dimensions of the nested arrays

do not have to be the same. This feature allows many irregular-parallel algorithms

to be encoded as nested data parallel algorithms. One of the simplest examples of

this technique is sparse matrices, which can be represented by an array of rows,

where each row is an array of index-value pairs. This has the type

type sparse_vector = (int * float) parray
type sparse_matrix = sparse_vector parray

We can define the dot product of a sparse vector and a dense vector as an array

comprehension:

fun dotp (sv, v) = sumP [| x * v!i | (i,x) in sv |]

Using that operation, multiplying a sparse matrix times a dense vector is

fun smvm (sm, v) = [| dotp (row, v) | row in sm |]

The sequential semantics of parallel arrays is defined by translating them to lists

(see (Fluet et al. 2007a) or (Shaw 2007) for details). The main subtlety in the parallel

implementation is that if an exception is raised when computing its ith element, then

we must wait until all preceding elements have been computed before propagating

the exception. Section 8 describes our implementation strategy for this behavior.

There is an important difference between parallel tuples and parallel arrays: with

parallel tuples, the elements may have different types, while with parallel arrays, the

elements must have the same type. In languages with only a parallel array construct,

a programmer can evaluate expressions of different types by, for example, injecting

them into an ad hoc union datatype, collecting them in a parallel array, and then

projecting them out of that datatype, but this incurs uninteresting complexity in the

program and adds runtime overhead.

4 Parallel bindings

Parallel bindings allow more flexibility in decomposing computations into parallel

subtasks than the fork-join patterns provided by parallel tuples and arrays. Fur-

thermore, they support speculative parallelism, since the implementation is able to

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 545

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) = let

pval pL = trProd tL
pval pR = trProd tR
in
if (pL = 0)
then 0
else (pL * pR)

end

Fig. 3. Short-circuiting tree product with parallel bindings.

identify and cancel unneeded computations in progress. Our compiler uses a program

analysis to determine those program points where a subcomputation is guaranteed

never to be demanded and, thus, a cancelation may be inserted.

As in Figure 1, the function in Figure 3 computes the product of the leaves of

a tree. This version short-circuits, however, when the product of the left subtree of

a Nd variant evaluates to zero. Note that if the result of the left product is zero,

we do not need the result of the right product. Therefore its subcomputation and

any descendants may be canceled. This cancelation behavior is not visible in the

semantics of pval, but is an optimization provided by the implementation. The

analysis to determine when a pval’s computation is subject to cancelation is not

as straightforward as it might seem. The following example includes two parallel

bindings linked by a common computation:

val v = let
pval x = f 0
pval y = (| g 1, x |)
in
if b then x else h y

end

In the conditional expression, the computation of y can be canceled in the then
branch, but the computation of x cannot be canceled in either branch because y

depends on x. Our analysis, explained in detail in Section 8, must respect this and

other similar subtle dependencies.

There are many more examples of the use of parallel bindings in Section 7.

We discuss the specific mechanisms—most importantly, futures (Halstead 1984)—by

which we realize their semantics in Section 8. A future is, in brief, a computation

whose evaluation is ongoing in parallel with subsequent computations, until its

result is demanded, or touched, at which point the program blocks until its value is

available.

Note that a speculative computation bound with a pval can escape its immediate

scope by its inclusion in a closure. Consider the following expression:

val g = let
pval x = f 1
in
fn y => x + y

end

Note that the value x is bound to the computation f 1, which may at any point in

the program still be ongoing. The value of x will be demanded at any applications

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

546 M. Fluet et al.

fun mkFuture susp = let
pval x = susp ()
in
fn () => x

end

Fig. 4. Future encoding with pval.

of g, at which point the future will be touched and its result forced if not already

evaluated. This behavior enables the following lightweight encoding of futures to be

written directly in PML’s surface language, as shown in Figure 4. Touching a future

encoded in this way is simply applying it to unit.

5 Parallel case expressions

We recall the syntax of the parallel case construct first, before giving an account

of its semantics. We make a distinction between sequential patterns, which are,

informally, destructuring patterns as they appear in ML and other languages, and

parallel patterns, which are defined below.

pcase e1 & . . . & em
of π1,1 & . . . & πm,1 => f1

| . . .

| π1,n & . . . & πm,n => fn

The πi,j metavariables denote parallel patterns. A parallel pattern is either

• p, a sequential pattern, or

• ?, a nondeterministic wildcard pattern.

We refer to the expressions e1 . . . em as the subcomputations of the pcase expression

and the patterns as the discriminants. Each arm of the expression, with discriminants

on the left-hand side and an expression fj on the right-hand side, is a branch.2

The dynamic behavior of a parallel case is as follows: the expression’s subcompu-

tations execute in parallel, and, periodically, the branches are compared with the

subcomputations. The branches are compared in order, and a branch that matches

the subcomputations transfers control to its right-hand side. Note that if more than

one branch matches the evaluating or evaluated subcomputations, then the textually

first branch is taken.

A nondeterministic wildcard pattern, written ?, can match either any finished

computation or a computation that is still running. Whether the computation in

question is not yet finished, it has finished normally by evaluating to a value,

or it has terminated by raising an exception, the ? matches the computation,

does not bind it to any name, and proceeds. Sequential wildcards, by contrast,

must wait for the potentially matching computation to complete before matching

and proceeding. The choice between a nondeterministic wildcard and a sequential

wildcard is consequential and has profound effects on the behavior of a program.

2 We have dropped the otherwise branch form (Fluet et al. 2008a) from our design; it is convenient
but not necessary.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 547

pcase e1 & e2

of x & ? => x
| ? & y => y

Fig. 5. Parallel choice with pcase.

Nondeterministic wildcards can be used to implement speculative computation.

Speculation is an important tool for programming in PML and other parallel

languages, notably Cilk and JCilk. Consider the following pcase expression:

pcase isPrime(1024) & longRunning()
of false & ? => 0

Once the constant pattern false has been matched against the result of the first

subcomputation, which we assume happens quickly, the program need not wait for

longRunning to finish; it can immediately return 0. During the compilation process,

the compiler will enact this improvement by inserting an explicit cancelation of

the longRunning subcomputation on the right-hand side of the branch, before

evaluating and returning 0. In this way, the resources devoted to the fruitless

computation can be dynamically released and made available elsewhere.

Originally, the parallel case expression was designed as a generalization of parallel

choice. A parallel choice expression nondeterministically returns either of two

subexpressions e1 or e2. We write parallel choice with the infix operator |?|,

as in

e1 |?| e2

This construct is useful in a parallel context, because it gives the program the

opportunity to return whichever of e1 or e2—two computations that might be

running in parallel—evaluates first.

As an example, we might want to write a function to obtain the value of a

leaf—any leaf—from a given tree. (We use the tree datatype defined in Figure 1.)

fun trLeaf (Lf i) = i
| trLeaf (Nd (tL, tR)) = trLeaf(tL) |?| trLeaf(tR)

This function evaluates trLeaf(tL) and trLeaf(tR) in parallel. Whichever finishes

sooner, loosely speaking, determines the value of the choice expression as a whole.

Hence, the function is likely, though not required, to return the value of the

shallowest leaf in the tree. Furthermore, the evaluation of the discarded component

of the choice expression—that is, the one whose result is not returned—is canceled,

as its result is known not to be demanded. If the computation is running, this

cancelation will make computational resources available for use elsewhere. If the

computation is completed, this cancelation will be a harmless nonoperation.

The parallel choice operator is a derived form in PML, as it can be expressed as

a pcase in a straightforward manner. The expression e1 |?| e2 is equivalent to the

expression in Figure 5.

By slightly modifying this usage pattern, other powerful parallel idioms arise. For

example, parallel case gives us yet another way to write the trProd function (see

Figure 6). This function will short-circuit when either the first or the second branch

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

548 M. Fluet et al.

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) = (

pcase trProd(tL) & trProd(tR)
of 0 & ? => 0
| ? & 0 => 0
| pL & pR => pL * pR)

Fig. 6. Short-circuiting tree product with parallel case.

fun trFind (p, Lf i) =
if p(i) then SOME(i) else NONE

| trFind (p, Nd (tL, tR)) =
pcase trFind(p,tL) & trFind(p,tR)
of SOME(n) & ? => SOME(n)
| ? & SOME(n) => SOME(n)
| NONE & NONE => NONE

Fig. 7. Finding an element in a tree, using a parallel abort pattern.

is matched, implicitly canceling the computation of the other subtree. Note that

this short-circuiting behavior is symmetric, unlike similar encodings using parallel

bindings, for example. Because it is nondeterministic as to which of the matching

branches is taken, the programmer must ensure that all branches that match the

same results yield sensible answers. Specifically, if both trProd(tL) and trProd(tR)

eventually evaluate to 0, then either the first or the second branch may be taken,

but either right-hand side will yield the correct result, 0.

As a second example, consider a function to find a leaf value in a tree that satisfies

a given predicate p. The function should return an int option to account for the

possibility that no leaf values in the tree match the predicate. We might mistakenly

write the following code:

fun trFindB (p, Lf i) = (* B for broken *)
if p(i) then SOME(i) else NONE

| trFindB (p, Nd (tL, tR)) =
trFindB(p,tL) |?| trFindB(p,tR)

In the case where the predicate p is not satisfied by any leaf values in the tree, this

implementation will always return NONE, as it should. However, if the predicate is

satisfied at some leaf, the function will nondeterministically return either SOME(n),

for a satisfying n, or NONE. In other words, this implementation will never return a

false positive, but it will, nondeterministically, return a false negative. The reason for

this is that as soon as one of the operands of the parallel choice operator evaluates

to NONE, the evaluation of the other operand might be canceled, even if it were

eventually to yield SOME(n).

A correct version of trFind appears in Figure 7. When either trFind(p,tL) or

trFind(p,tR) evaluates to SOME(n), the function returns that value and implicitly

cancels the other evaluation. The essential computational pattern here is an abort

mechanism.

We believe that the abort mechanisms that are part of important idioms in, for

example, the Cilk and JCilk programming languages can be encoded in PML by

means of the pcase mechanism and, in some cases, the exception system. In JCilk,

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 549

(* solve : state -> unit *)
fun solve(s) = if isSol(s)

then raise Sol(s)
else (case next(s)

of NONE => ()
| SOME(t,u) =>

(pcase solve(t) & solve(u) of () & () => ())
(* end case *))

(* main : state -> state option *)
fun main(init) = (solve(init); NONE) handle Sol(s) => SOME(s)

Fig. 8. Searching a tree space speculatively with exceptions.

a spawned computation can be aborted when that computation raises an exception

and is in turn caught in a try/catch block. A recent JCilk publication (Danaher

et al. 2006) presents a parallel n-queens solver with the following strategy: spawn

a solver, which in turn spawns subsolvers in parallel, with any process that finds

a solution raising an exception that includes that solution as data. That exception

can be caught in a try/catch block, bypassing the stack that may have built up

in the meantime. The solution value contained in that exception value can then be

collected and used elsewhere in the program.

We present an abstract problem solver that roughly follows the strategy given in

that parallel n-queens solver in Figure 8. We assume the existence of a state type,

representing the state of whatever space (e.g., chess boards) is being searched; a

predicate isSol for identifying solution states; and a function next which returns

SOME pair3 of successor states to the current state or NONE if the current state is

terminal. As soon as a solution is discovered in the solve function, it is wrapped in

an exception value and raised to the outer context.

This example highlights an important facet of the semantics of pcase: if the

evaluation of a subcomputation raises an exception, then, nondeterministically,

the pcase reraises the exception (and cancels the other subcomputations).4 The

nondeterminism in exception propagation is due to the fact that a pcase may

successfully match a branch before the subcomputation raises the exception. There

is an additional element of nondeterminism in that if multiple subcomputations

raise exceptions, then the reraised exception is chosen nondeterministically. This

nondeterminism is acceptable for this example, since the solver is allowed to return

any solution. If we had used a parallel tuple instead of a pcase, then we would

have imposed additional overhead on the computation. In the expression

(| solve(t), solve(u) |)

3 This can be generalized to any finite number of successor states. If next were to return an arbitrary
number of states, we need some slightly heavier weight tools.

4 In a prior publication (Fluet et al. 2008a), we presented handle patterns as an additional kind of
parallel pattern that would match an exception-raising subcomputation. We have since removed it
from our design in the interest of simplicity.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

550 M. Fluet et al.

(* solve : state -> state option *)
fun solve(s) = if isSol(s)

then SOME(s)
else (case next(s)

of NONE => NONE
| SOME(t,u) => (pcase solve(t) & solve(u)

of SOME(s) & ? => SOME(s)
| ? & SOME(s) => SOME(s)
| NONE & NONE => NONE

(* end pcase *))
(* end case *))

(* main : state -> state option *)
fun main(init) = solve(init)

Fig. 9. Searching a tree space speculatively with options.

if an exception were raised in evaluating solve(u), the system would, in keeping

with PML’s sequential semantics, be obliged to wait for solve(t) to complete to

see if it too were raising an exception, in which case that exception would take

precedence. The combination of pcase and exceptions is the means by which

parallel nonlocal exit is achieved in PML programming.

It is worth noting that in JCilk, all programs that abort speculative computations

do so by means of the exception system. In PML, the exception system is only one

way of encoding speculation. We present another abstract problem solver in Figure 9,

using options in place of exceptions. Thus, we have two stylistically different ways of

writing similar parallel programs with similar intentions, but which might be better

written in one style or another depending on their purposes and expected uses.

5.1 A comparison of pval and pcase

There are many computations one can express either as a pcase or as a pval,

sometimes with no clear advantage either way. At a glance, it might seem that

among pval and pcase, one form could be used to derive the other. This is not

the case. For one, pval expressions are deterministic, while pcase expressions

are nondeterministic. Another important difference is that ongoing computations

are able to escape the scope of a pval, whereas all such computations are either

touched or canceled in the evaluation of a pcase. They are distinct control structures

describing different behaviors, and there are cases where only a pval or pcase will

do as we show below.

Since pval is a deterministic expression form, it cannot be used to express parallel

choice as shown in Figure 5. The code in Figure 5 enables whichever subexpression

finishes evaluating first to match a branch and become the value of the whole

expression, enabling a (benevolent) race between two computations that are in

some sense interchangeable. Any attempt to encode similar behavior with pval is

doomed. Consider the following expression:

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 551

let pval f1 = e1

pval f2 = e2

in case coinFlip()
of Heads => f1
| Tails => f2

end

Like parallel choice, this returns the value of either e1 or e2; however, the choice

of which value to return is left entirely to a coinFlip and has nothing to do with

whichever of the two expressions ran faster than the other. In other words, even if e1

requires much more time to compute than e2, if coinFlip chooses e1, the program

is stuck waiting for it. Clearly, this is not the desired parallel choice behavior. No

matter how we attempt to simulate pcase’s nondeterminism, we will encounter

similar difficulties.

There is no way to construct a pcase that allows an ongoing computation to

escape its scope. In Figure 4, we presented a use of pval that is designed to allow a

running computation to escape its scope by capturing it inside a closure. Any time

we evaluate some computation susp () as a subcomputation of a pcase, we have

two choices. Assuming we are not matching the value against a constant, we can

either name it with a pattern

pcase susp ()
of x => (fn _ => x)

or ignore it with a wildcard pattern (either ? or _)

pcase susp ()
of ? => . . .

In the first expression, we complete the evaluation of susp () at the point of binding

its result to x; in the second, by using a wildcard, we forfeit the ability to refer to

the result (and we should cancel the computation if it is still running). In neither

case do we allow the computation to continue computing, as we did in Figure 4.

The following pval also has no pcase equivalent:

let pval x = e1

in if t1 then x+1
else if t2 then x-1 else 0

end

In this expression, the computation of e1 is started, and t1 is evaluated in parallel.

If t1 is false, then t2 starts evaluating. Note that the evaluation of e1 need not be

finished at the point t2 begins. If t2 is true, then we wait for x to be ready in the

true branch; otherwise we cancel it in the false branch. The important points are

that e1 can run throughout the evaluation of t1 and t2 and t1 is done before any

evaluation of t2.

If we attempt to translate this expression to a pcase, we evaluate either the

second conditional after matching false

pcase t1 & e1

of true & x => x+1
| false & x => if t2 then x-1 else 0

end

or all three expressions at the same time:

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

552 M. Fluet et al.

pcase t1 & t2 & e1

of true & ? & x => x+1
| false & true & x => x-1
| false & false & ? => 0

In the former expression, x is demanded before we begin to compute t2. In the latter,

t1, t2, and e1 are all computed in parallel together. In the former, t2 has no influence

on whether we wait for x to finish or not; it is finished before we get there. In the

latter, if t2 is, for example, nonsense if t1 is true, we nonetheless expend resources

computing it; it is no longer guarded by t1. In either case, the would-be translations

have different behavior than the original program, so we cannot in general consider

either one a proper translation.

There are also some less critical mismatches between pval and pcase, where

although meanings can be preserved in translation, clarity and performance suffer.

Order-sensitive pattern matching, for example, a fundamental technique of ML-style

programming, is sometimes an awkward fit for pcase, since any matching branch

can be chosen at any time. For example, the following expression runs e1 and e2 in

parallel, returning 1 if both evaluate to Yes and 2 otherwise.

datatype answer = Yes | No | Maybe
let pval y = e2

in case (e1, y)
of (Yes, Yes) => 1
| _ => 2

end

If we use pcase to write a similar program, it is much more verbose. Since we

cannot depend on the order of branches in a pcase, we are forced to write down a

set of mutually disjoint branches.

pcase e1 & e2
of Yes & Yes => 1
| No & ? => 2
| ? & No => 2
| Maybe & ? => 2
| ? & Maybe => 2

end

This is not merely a syntactic inconvenience; it compiles to a more expensive piece of

object code (per the implementation sketch in Section 8.4). We present an example

in Section 7.1, where we favor a pval for essentially this reason. This problem

gets worse when there are more computations to run in parallel or more datatype

variants against which to match.

There remains a middle ground where either a pval or a pcase would do. In

those instances, the programmer is free to choose whichever construct expresses the

desired program more naturally.

6 Exceptions and exception handlers

The interaction of exceptions and parallel constructs must be considered in the im-

plementation of the parallel constructs. Raises and exception handlers are first-class

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 553

expressions, and, hence, they may appear at arbitrary points in a program, including

in a parallel construct. The following is a legal parallel array expression:

[| 2+3, 5-7, raise A |]

Evaluating this parallel array expression should raise the exception A.

Note the following important detail. Since the compiler and runtime system are

free to execute the subcomputations of a parallel array expression in any order,

there is no guarantee that the first raise expression observed during the parallel

execution corresponds to the first raise expression observed during a sequential

execution. Thus, some compensation is required to ensure that the sequentially first

exception in a given parallel array (or other implicitly threaded parallel construct

with a deterministic sequential semantics) is raised whenever multiple exceptions

could be raised. Consider the following minimal example:

[| raise A, raise B |]

Although B might be raised before A during a parallel execution, A must be the

exception observed to be raised in order to adhere to the sequential semantics. Real-

izing this behavior in this and other parallel constructs requires our implementation

to include compensation code, with some runtime overhead. In the present work, we

give details of our implementation of this behavior, compensation code included, in

Section 8.

In choosing to adopt a strict sequential core language, PML is committed to

realizing a precise exception semantics in most of the implicitly threaded parallel

features of the language (the exception is the nondeterministic pcase expression).

This is in contrast to an imprecise exception semantics (Peyton Jones et al. 1999) that

arises from a lazy sequential language. While a precise semantics requires a slightly

more restrictive implementation of the implicitly threaded parallel features than

would be required with an imprecise semantics, we believe that support for exceptions

and the precise semantics is crucial for systems programming. Furthermore, as

Section 8 will show, implementing the precise exception semantics is not particularly

onerous.

It is possible to eliminate some or all of the compensation code with the help of

program analyses. There already exist various well-known analyses for identifying

exceptions that might be raised by a given computation (Yi 1998; Leroy & Pessaux

2000). If, in a parallel array expression, it is determined that no subcomputation may

raise an exception, then we are able to omit the compensation code and its overhead.

As another example, consider a parallel array expression where all subcomputations

can raise only one and the same exception.

[| if x<0 then raise A else 0,
if y>0 then raise A else 0 |]

The full complement of compensation code is unnecessary here, since any exception

raised by any subcomputation must be A.

Exception handlers are attached to expressions with the handle keyword:

e1 handle e2

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

554 M. Fluet et al.

Although exception handlers are first-class expressions, their behavior is orthog-

onal to that of the parallel constructs and mostly merits no special treatment in

the implementation. At the present time, our PML compiler does not implement

any form of flattening transformation on data-parallel array computations. Once

we incorporate flattening into our work, however, we will need to take particular

account of exception handlers, since flattening and exception handlers are not

orthogonal (Shaw 2007).

Note that when an exception is raised in a parallel context, the implementation

should free any resources devoted to parallel computations whose results will never

be demanded by virtue of the control flow of the raise. For example, in the parallel

tuple

(| raise A, fact(100), fib(200) |)

the latter two computations should be abandoned as soon as possible. Section 8

details our approaches when this and similar issues arise.

7 Examples

We consider a few examples to illustrate the use and interaction of our language

features in familiar contexts. We choose examples that stress the parallel binding

and parallel case mechanisms of our design, since examples exhibiting the use of

parallel arrays and comprehensions are covered well in the existing literature.

7.1 A parallel typechecking interpreter

First we consider an extended example of writing a parallel typechecker and

evaluator for a simple model programming language. The language in question,

which we outline below, is a pure expression language with some basic features

including boolean and arithmetic operators, conditionals, let bindings, and function

definition and application. A program in this language is, as usual, represented as

an expression tree. Both typechecking and evaluation can be implemented as walks

over expression trees, in parallel when possible. Furthermore, the typechecking and

evaluation can be performed in parallel with one another. In our example, failure

to type a program successfully implicitly cancels its simultaneous evaluation.

While this is not necessarily intended as a realistic example, one might wonder why

parallel typechecking and evaluation is desirable in the first place. First, typechecking

constitutes a single pass over the given program. If the program involves, say,

recursive computation, then typechecking might finish well before evaluation. If

it does, and if there is a type error, the presumably doomed evaluation will be

spared the rest of its run. Furthermore, typechecking touches all parts of a program;

evaluation might not.

Our language includes the following definition of types.

datatype ty = Bool | Nat | Arrow of ty * ty

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 555

For the purposes of yielding more useful type errors, we assume that each

expression consists of a location (some representation of its position in the source

program) and a term (its computational part). These are encoded as follows:

datatype term
= N of int | B of bool | V of var
| Add of exp * exp
| If of exp * exp * exp
| Let of var * exp * exp
| Lam of var * ty * exp
| Apply of exp * exp
...

withtype exp = loc * term

For typechecking, we need a function that checks the equality of types. When we

compare two arrow types, we can compare the domains of both types in parallel

with comparison of the ranges. Furthermore, if either the domains or the ranges

turn out to be not equal, we can cancel the other comparison. Here we encode this,

in the Arrow case, as an explicit short-circuiting parallel computation:

fun tyEq (Bool, Bool) = true
| tyEq (Nat, Nat) = true
| tyEq (Arrow(t,t’), Arrow(u,u’)) =

(pcase tyEq(t,u) & tyEq(t’,u’)
of false & ? => false
| ? & false => false
| true & true => true)

| tyEq _ = false

We present a parallel typechecker as a function typeOf that consumes an

environment (a map from variables to types) and an expression. It returns either a

type, in the case that the expression is well typed, or an error, in the case that the

expression is ill-typed. We introduce a simple union type to capture the notion of a

value or an error.

datatype ’a or_error
= A of ’a

| Err of loc

The signature of typeOf is

val typeOf : env * exp -> ty or_error

We consider a few representative cases of the typeOf function. To typecheck an

Add node, we can simultaneously check both subexpressions. If the first subexpression

is not of type Nat, we can record the error and implicitly cancel the checking of

the second subexpression. The function behaves similarly if the first subexpression

returns an error.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

556 M. Fluet et al.

fun typeOf (G, (p, Add (e1,e2))) = let
pval t2 = typeOf(G, e2)
in
case typeOf(G, e1)
of A Nat => (case t2

of A Nat => A Nat
| A _ => Err(locOf(e2))
| Err q => Err q)

| A _ => Err(locOf(e1))
| Err q => Err q

end

Note that we choose to use a sequential case inside a pval block in this

implementation. This way we guarantee that errors in e1 are caught if present.

Had we used a pcase, we would catch errors in e1 or e2 nondeterministically (if

both were in error). That might be acceptable, but in this example, we demonstrate

the former approach.

In the Apply case, we require an arrow type for the first subexpression and the

appropriate domain type for the second.

| typeOf (G, (p, Apply (e1, e2))) = let
pval t2 = typeOf(G, e2)
in
case typeOf(G, e1)
of A(Arrow(d,r)) => (case t2

of A t => if tyEq(d,t) then A r else Err p
| Err q => Err q)

| A _ => Err(locOf(e1))
| Err q => Err q

end

Where there are no independent subexpressions, no parallelism is available:

| typeOf (G, (p, IsZero(e))) = (case typeOf(G,e)
of A Nat => A Bool
| _ => Err p)

Throughout these examples, the programmer rather than the compiler is identify-

ing opportunities for parallelism.

For evaluation, we need a function to substitute a term for a variable in an

expression. Substitution of closed terms for variables in a pure language is well

suited to a parallel implementation. Parallel instances of substitution are completely

independent, so no subtle synchronization or cancelation behavior is ever required.

Parallel substitution can be accomplished by means of our simplest parallel construct,

the parallel tuple. We show a few cases here.

fun subst (t, x, e as (p, t’)) = (case t’
of V(y) => if varEq(x,y) then (p,t) else e
| Let(y,e1,e2) => if varEq(x,y)

then (p, Let(y, subst(t,x,e1), e2))
else (p, Let(|y, subst(t,x,e1), subst(t,x,e2)|))

...

Like the parallel typechecking function, the parallel evaluation function simulta-

neously evaluates subexpressions. Since we are not interested in identifying the first

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 557

runtime error (when one exists), we use a parallel case for expressions for which all

subexpressions must be evaluated:

| eval (p, Add(e1,e2)) = (pcase eval(e1) & eval(e2)
of N(n1) & N(n2) => N(n1+n2)
| _ & _ => raise RuntimeError)

Note that a raised RuntimeError in either eval(e1) or eval(e2) will be propagated

through the pcase to the surrounding context.

The If case is notable in its use of speculative evaluation of both branches. As

soon as the test completes, the abandoned branch is implicitly canceled.

| eval (p, If(e1, e2, e3)) = let
pval v2 = eval(e2)
pval v3 = eval(e3)
in
case eval(e1)
of B(true) => v1
| B(false) => v2
| _ => raise RuntimeError

end

We conclude the example by wrapping typechecking and evaluation together into

a function that runs them in parallel. If the typechecker discovers an error, the

program implicitly cancels the evaluation. If the typechecking function returns any

type at all, we discard it and return the value computed by the evaluator.

fun typedEval e =
(pcase typeOf(emptyEnv,e) &

(SOME(eval(e)) handle RuntimeError => NONE)
of (Err p, ?) => Err p
| (A _, SOME v) => A v)

7.2 Parallel game search

We now consider the problem of searching a game tree in parallel. This has

been shown to be a successful technique by the Cilk group for games such as

Pousse (Barton et al. 1998) and chess (Dailey & Leiserson 2002).

For simplicity, we consider the game of tic-tac-toe. In this implementation, every

tic-tac-toe board is associated with a score: 1 if X holds a winning position, −1 if O

holds a winning position, and 0 otherwise. We use the following polymorphic rose

tree to store a tic-tac-toe game tree.

datatype ’a rose_tree
= Rose of ’a * ’a rose_tree parray

Each node contains a board and the associated score, and every path from the root

of the tree to a leaf encodes a complete game.

A player is either of the nullary constructors X or O; a board is a parallel

array of nine player options, where NONE represents an empty square. Extracting

the available moves from a given board is written as a parallel comprehension as

follows:

fun allMoves b = [|i | s in b, i in [|0 to 8|] where isNone(s)|]

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

558 M. Fluet et al.

Generating the next group of boards given a current board and a player to move is

also a parallel comprehension:

fun successors (b, p) = [| moveTo (b, p, i) | i in allMoves b |]

With these auxiliaries in hand, we can write a function to build the full game tree

by using the standard minimax algorithm, where each player assumes the opponent

will play the best available move at the given point in the game.

fun minimax (b : board, p : player) = if gameOver(b)
then Rose ((b, boardScore b), [||])
else let
val ss = successors (b, p)
val ch = [| minimax (b, other p) | b in ss |]
val chScores = [| treeScore t | t in ch |]
in
case p
of X => Rose ((b, maxP chScores), ch)
| O => Rose ((b, minP chScores), ch)

end

Note that at every node in the tree, all subtrees can be computed independently of

one another, as they have no interrelationships. Admittedly, one would not write

a real tic-tac-toe player this way, as it omits numerous obvious and well-known

improvements. Nevertheless, as written, it exhibits a high degree of parallelism and

performs well relative to both a sequential version of itself in PML and similar

programs in other languages.

Using alpha–beta pruning yields a somewhat more realistic example. We imple-

ment it here as a pair of mutually recursive functions, maxT and minT. The code

for maxT is shown in Figure 10, omitting some obvious helper functions; minT,

not shown, is similar to maxT, with appropriate symmetrical modifications. Alpha–

beta pruning is an inherently sequential algorithm, so we must adjust it slightly.

This program prunes subtrees at a particular level of the search tree if they are

at least as disadvantageous to the current player as an already-computed subtree.

(The sequential algorithm, by contrast, considers every subtree computed thus far.)

We compute one subtree sequentially as a starting point, then use its value as the

pruning cutoff for the rest of the sibling subtrees. Those siblings are computed in

parallel by repeatedly spawning computations in an inner loop by means of pval.

Pruning occurs when the implicit cancelation of the pval mechanism cancels the

evaluation of the right siblings of a particular subtree.

8 Implementation

We sketch our implementation of PML by defining a formal translation from its

high-level implicitly threaded constructs to a small collection of parallel operations

supporting well-known idioms. The set of low-level parallel operations in our

translated code includes futures (Halstead 1984) and m-variables (Barth et al.

1991) (the complete set is given in the next section). In the PML compiler, this

transformation is performed on the abstract-syntax-tree (AST) representation.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 559

fun maxT (board, alpha, beta) = if gameOver(board)
then Rose ((board, boardScore board), [||])
else let
val ss = successors (board, X)
val t0 = minT (ss!0, alpha, beta)
val alpha’ = max (alpha, treeScore t0)
fun loop i = if (i = plen ss)

then [||]
else let
pval ts = loop (i+1)
val ti = minT (ss!i, alpha’, beta)
in
if (treeScore ti >= beta)
then [|ti|] (* prune *)
else [|ti|] |@| ts

end
val ch = [|t0|] |@| loop(1)
val maxScore = maxP [| treeScore t | t in ch |]
in
Rose ((board, maxScore), ch)

end

Fig. 10. The maxT half of parallel alpha–beta pruning.

We separate the formal translation into three distinct phases:

1. Translation of parallel arrays to ropes (Boehm et al. 1995) and parallel

comprehensions to higher-order parallel functions over ropes. The parallel

rope functions are implemented internally using PML’s parallel tuples.

2. Translation of parallel tuples and parallel bindings to futures.

3. Translation of parallel cases.

By means of this multiple-phase approach, we achieve a separation of concerns;

consequently, it becomes easier to reason about the translation’s workings.

8.1 Low-level parallel primitives

Before describing our transformations, we must describe the low-level parallel-

language primitives to which we are compiling. The signature of these types and

operations is given in Figure 11, and we describe them in the remainder of this

section.

We use a variant of futures (Halstead 1984) to implement many of our implicitly

threaded parallel constructs. A future value is a handle to a computation that may

be executed parallel to the main thread of control. The new operation creates a

new future from a thunk. The touch operation demands the result of the future

computation, blocking until the computation has completed. If the subcomputation

raised an exception, then that exception will be reraised by the touch. Lastly,

the cancel operation terminates a future computation and any children of the

computation. It is an unchecked error to touch a future value after it has been

canceled, but a program may cancel a future value multiple times and may cancel

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

560 M. Fluet et al.

structure Future : sig
type ’a future
val new : (unit -> ’a) -> ’a future
val touch : ’a future -> ’a

val cancel : ’a future -> unit
end

structure MVar : sig
type ’a mvar
val new : ’a -> ’a mvar
val take : ’a mvar -> ’a

val put : (’a mvar * ’a) -> unit
end

structure Cancel : sig
type cancelable
val new : unit -> cancelable
val spawn : (cancelable * (unit -> unit)) -> unit
val cancel : cancelable -> unit

end

Fig. 11. Primitive parallel operations.

a future that has already been touched. In these cases, the cancel operation is a

no-op. Many of the translations below depend on these properties of the cancel

operation.

M-variables are a form of synchronous mutable memory (Barth et al. 1991). An

m-variable has two states: empty and full. The take operation changes the state

from full to empty and returns the contents of the variable. The put operation

changes the state from empty to full by storing a value in the variable. Attempting

to take a value from an empty variable causes the calling thread to block. This

property means that a take–modify–put protocol is atomic.

As we discussed above, our futures support cancelation. That mechanism is

built on a more primitive notion of cancelable objects that record parent–child

relationships. The spawn operation creates a new thread of computation and

associates it with a given cancelable object. It also makes the cancelable object

a child of the object associated with the calling thread. If the cancel operation is

used on a cancelable object, the associated thread and any children that it might

have are all terminated and removed from the scheduling queues. As with futures, it

is a no-op to cancel an already canceled object. It is also a no-op to cancel oneself.

These properties simplify the use of cancelable objects. Cancelation is implemented

using “scheduler actions”, which are described elsewhere (Fluet et al. 2008b).

8.2 Translating parallel comprehensions

Adopting DPH’s strategy, the first phase of our translation rewrites parallel com-

prehensions as function applications. It is a translation from the source language in

Figure 12 to itself such that no comprehensions remain after the rewriting. The rules

for this translation are given in Figure 13 and follow the standard pattern developed

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 561

e ::= x variables

| fn x⇒ e functions

| if e1 then e2 else e3 conditionals

| [| e1 | p in e2 |] parallel comprehensions

| [| e1 | p in e2 where e3 |] parallel comprehensions with filter

| (|e1, e2|) parallel tuples

| plet p = e1 in e2 parallel bindings

| pcase e1 & e2 of m1 | · · · | mk parallel cases

| · · ·
m ::= π1 & π2 ⇒ e

π ::= ?

| p

p ::= x

| b

| (p1, p2)

Fig. 12. Source language for translation.

[[[| e1 | p in e2 |]]] =

⎧⎨
⎩

mapP (fn p⇒ [[e1]]) [[e2]] if p is

irrefutable

mapPartialP (M1(p, e1)) [[e2]] otherwise

[[[| e1 | p in e2 where e3 |]]] =

⎧⎨
⎩

mapPartialP (M2(p, e1, e3)) [[e2]] if p is

irrefutable

mapPartialP (M3(p, e1, e3)) [[e2]] otherwise

M1(p, e) = fn p ⇒ SOME[[e]] |_ ⇒ NONE

M2(p, eb, et) = fn p⇒if [[et]] then SOME[[eb]] else NONE

M3(p, eb, et) = fn p ⇒ if [[et]] then SOME[[eb]] else NONE |_ ⇒ NONE

Fig. 13. Translating parallel comprehensions.

for Nepal (Chakravarty et al. 2001). Only the rules rewriting parallel comprehensions

are given here; the rules for other expression forms are straightforward recursive

applications to subexpressions and are omitted. In the figure, terms to be translated

are marked with double brackets, as in [[e]].

Note that we have abbreviated the source language by leaving out sequential

forms, such as constants and function application, that do not affect the translation.

We represent parallel arrays by using an immutable balanced-binary-tree data

structure called a rope (Boehm et al. 1995). Ropes, originally proposed as an

alternative to strings, are immutable balanced binary trees with vectors of data at

their leaves.

datatype ’a rope
= Leaf of ’a vector
| Cat of ’a rope * ’a rope

Read from left to right, the data elements at the leaves of a rope constitute the data

of the parallel array it represents. Ropes support distributed construction and fast

concatenation. One disadvantage of ropes is that random access to individual data

elements requires logarithmic time. We do not expect this to present a problem for

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

562 M. Fluet et al.

many programs, as random access to elements of a parallel array will, in many cases,

not be needed. Nevertheless, a PML programmer should be aware of the potential

performance implications of this representation for certain operations.

Since ropes are physically dispersed in memory, they are well suited to being built

in parallel, with different processing elements simultaneously working on different

parts of the whole. Furthermore, ropes embody a natural tree-shaped parallel

decomposition of common parallel array operations like maps and reductions. Note

that the rope datatype shown above is an oversimplification of our implementation

for the purposes of presentation. In our prototype system, rope nodes also store

their depth and data length. These values assist in balancing ropes and make length

and depth queries constant time operations.

The parallelism in the translated code is provided by the mapP and mapPar-

tialP operations over ropes. For example, the mapP function has the following

implementation:

fun mapP f r = (case r
of Leaf v => Leaf(Vector.map f v)
| Cat(r1, r2) => Cat(| mapP f r1, mapP f r2 |)

(* end case *))

The mapPartialP combinator, named after SML’s mapPartial, has the following

type specification:

val mapPartialP : (’a -> ’b option) -> ’a rope -> ’b rope

(The analogous Haskell function, on lists, is called mapMaybe.) Its implementation

is similar to mapP, except that at the leaves, it maps a partial function across the

elements, which may result in fewer results than elements. Thus, as the new rope

is constructed, it must be rebalanced (we implement a parallel version of Boehm’s

original rope-balancing algorithm, Boehm et al. 1995). We prefer to use mapP over

mapPartialP when possible to avoid the extra cost of balancing.

8.3 Translation of parallel tuples and parallel bindings

The second phase of our translation eliminates parallel tuples and bindings and

replaces them with futures, touches, and cancelations of unneeded futures. The

translation is from the model source language in Figure 12 without comprehensions,

which have been eliminated in the first phase, to the model target language in

Figure 14. Note that this language supports the future operations discussed above as

syntactic forms: specifically, future, touch and cancel in Figure 14 correspond

to Future.new, Future.touch, and Future.cancel in Figure 11. We present the

rules in Figure 15. The translation introduces futures at each parallel tuple and plet,

binding them to fresh variables. At the end of this phase, only pcase expressions

remain among the implicitly threaded constructs.

Translation rules are written T[[e]]ρ ε, where e is a source language expression,

ρ is a finite map from source language variables to pairs of future variables and

patterns, and ε is a set of future variables that should not be canceled, because

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 563

e ::= x variables

| fn x⇒ e functions

| if e1 then e2 else e3 variables

| (e1, e2) tuples (pairs)

| let p = e1 in e2 binding

| pcase e1 & e2 of m1 | · · · | mk parallel case

| future e future creation

| touch e future touch

| cancel x in e future cancelation

| · · ·
m ::= p ⇒ e

Fig. 14. Target language for translation.

ρ : Var → Var × Pat

ε : {Var}
Fu(ρ, e) = {y | ∃x ∈ FV(e) such that ρ(x) = (y, p)}

(FV(e) defined in Figure 16)

T[[x]]ρ ε =

{
let p = touch y in x if ρ(x) = (y, p)

x if x �∈ dom(ρ)

T[[fn x⇒ e]]ρ ε = fn x⇒ T[[e]]ρ ε

T[[(|e1, e2|)]]ρ ε = let y = future (T[[e2]]ρ ε
′) in b

where y is fresh

b = (T[[e1]]ρ ε
′, touch y)

ε′ = ε ∪ Fu(ρ, e1) ∪ Fu(ρ, e2)

T[[plet p = e1 in e2]]ρ ε = let y = future T[[e1]]ρ ε in T[[e2]]ρ
′ ε′

where y is fresh

ρ′ = ρ±{x �→ (y, p) | x ∈ Vars(p)}
ε′ = ε ∪ Fu(ρ, e1)

T[[pcase e1 & e2 of m1 | · · · | mk]]ρ ε = pcase T[[e1]]ρ ε & T[[e2]]ρ ε

of T[[m1]]ρ1 ε
′ | · · · | T[[mk]]ρk ε

′

where ε′ = ε ∪ Fu(ρ, e1) ∪ Fu(ρ, e2)

T[[π1 & π2 ⇒ e]]ρ ε = π1 & π2 ⇒ C[[T[[e]]ρ′ ε]]X

where C = dom(ρ) \ FV(π1 & π2 ⇒ e)

ρ′ = ρ \ C

X = {y | ∃x ∈ C ∧ ρ(x) = (y, p)} \ ε

C[[e]]X = cancel x in C[[e]](X \ {x}) where x ∈ X

C[[e]]∅ = e

Fig. 15. Translation of parallel tuples and bindings.

they have either escaped or been touched. Maintaining the map (ρ) and the set (ε)

constitutes an analysis that identifies futures that may be canceled in a particular

expression, information that is used in inserting cancelations at the appropriate

points. This is what makes the parallel binding form speculative.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

564 M. Fluet et al.

FV(x) = {x}
FV(fn x⇒ e) = FV(e) \ {x}

FV(if e1 then e2 else e3) = FV(e1) ∪ FV(e2) ∪ FV(e3)

FV((|e1, e2|)) = FV(e1) ∪ FV(e2)

FV(plet p = e1 in e2) = FV(e1) ∪ (FV(e2) \ Vars(p))

FV(pcase e1 & e2 of m1 | · · · | mk) = FV(e1) ∪ FV(e2) ∪ FV(m1) ∪ · · · ∪ FV(mk)

FV(π1 & π2 ⇒ e) = FV(e) \ (Vars(π1) ∪ Vars(π2))

Fig. 16. Free variables.

We use the notation ρ\X to remove the variables in X from the domain of ρ, i.e.,

ρ \ X = {y �→ ρ(y) | y ∈ (dom(ρ) \ X)}

We define the futures of a source language expression with respect to a given

environment by

Fu(ρ, e) = {y | ∃x ∈ FV(e) such that ρ(x) = (y, p)}

where FV(e) are the free variables of e (see Figure 16).

The mapping ρ records which variables require touches and, if so, which futures to

touch. The translation of variables (the first rule) consults ρ to determine if it needs

to touch a future to get its value; if so, it inserts the appropriate pattern-matching

code in a let binding at the variable site.

The rule translating parallel tuples (pairs) creates a future for the second subex-

pression only, which is sufficient for computing the two subexpressions in parallel.

A fresh variable y is created for this future, but it need not be added to the map

ρ for tracking later, since it is immediately touched in the expression b. It adds the

futures in e1 and e2 into ε, so they will not be canceled in either subexpression.

The rule translating parallel bindings also introduces a fresh variable y to name the

future. By contrast with the parallel tuple rule, the map ρ must be supplemented

with this new future variable and its corresponding pattern, so it may be considered

for cancelation in any pcase arm where it is definitely not needed.

The rule translating pcase manages the cancelation of unneeded futures on the

right-hand sides of its matches. The rules on matches (π1 & π2 ⇒ e) consult ρ for

futures that are candidates for cancelation, taking care to exclude the futures tracked

by ε in the definition of X. The actual cancelations are inserted by the C[[]] rules at

the bottom of the figure.

The rules omitted from Figure 15 are generally either straightforward recursive

applications to all subexpressions or natural modifications of the presented rules.

For function application, for example, translations are simply recursive translations

of the function subexpression and the argument expression. For if expressions, one

can either construct translation rules by mimicking the pcase rules or translate ifs

into pcases as a preliminary step and use the pcase rules. In summary, we have

given all the interesting details of the translation, and no undue difficulty should

arise in extending it to standard other forms.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 565

8.4 Translation of Parallel Case

At this stage in the translation, only parallel cases remain to be translated among

PML’s implicitly-threaded constructs. Our presentation switches here to ML syntax,

as it is more readily capable of expressing the generated code.

The key to the efficient implementation of the pcase expression is tracking the

state of the subcomputations. We use an approach that is inspired by Le Fessant

and Maranget’s technique for compiling join patterns (1998). The basic idea is to

use a finite-state machine to track the state of the subcomputations of the pcase.

When a subcomputation terminates, either with a value or an exception, it invokes

a state-transition function, which updates the state to reflect the completion of the

subcomputation. Once an accepting state is reached, the remaining subcomputations

can be canceled and the result of the pcase can be computed.

To give a precise description of the compilation technique, we need to define some

notation. We assume that we are translating a pcase of the form

pcase e1 & · · · & en
of π1,1 & · · · & π1,n => f1

| . . .

| πm,1 & · · · & πm,n => fm

where n is the number of subcomputations, m is the number of rules, the ek
and fj are expressions that have already been translated, and the πj,k are parallel

patterns. (Please note this n-subcomputation construct differs from the simplified

two-subcomputation model in Figures 12 and 14.) We use Πj to denote the left-

hand-side of the jth rule of the pcase (i.e., πj,1 & · · · & πj,n) and we use BV (Πj) to

denote the variables that are bound by the patterns πj,1, . . . , πj,n. The state machine

for this pcase will have 2n states.5 We identify these states by bit strings of length

n, where the kth bit is 1 if the subcomputation ek has terminated. If �B is a bit string,

then we use �B[k] to denote its kth bit. We use �Xk to denote the bit string with the

kth bit set and all other bits unset. The operator ∧ denotes bitwise anding of bit

strings. We use Si to denote the ith state (0 � i < 2n), with S0 being the start state,

and �Si to denote its bit string. We define the next states following the completion of

the kth subcomputation by

Nextk = {Si | �Si[k] = 1}

Lastly, if Π = π1 & · · · & πn and �B is an n-bit string with m bits set, then

Π|�B = (pk1
, . . . , pkm) where pk =

{
_ if πk = ?

SOME(πk) otherwise

where 1 � k1 < · · · < km � n and B[kl] = 1 for 1 � l � m. For example, if

Π = p1 & p2 & ? & p4

then

Π|1011 = (SOME(p1), _, SOME(p4))

5 Sometimes certain states are unreachable and can be removed.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

566 M. Fluet et al.

The first step of the compilation process involves identifying which cases (i.e.,

rows of the pcase) can be matched in which states. For each row j, we define an

n-bit string �Pj as follows:

�Pj[k] =

{
0 if πj,k is ?

1 otherwise

The jth rule of the pcase is applicable to the ith state if there is a value for each

of the non-? patterns. This property is captured in the following definition of the

applicable rules for Si:

Rules(Si) = {(j,Πj |�Si) | �Pj ∧�Si = �Pj}

For a state Si, the results that are available are defined by

Avail (Si) = {k | Si[k] = 1}

For the jth rule, we define the don’t care subcomputations to be

DC j = {k | �Pj[k] = 0}

These are the subcomputations that are not required to fire the rule.

Once we have partitioned the patterns according to the applicable rules for each

state, we can generate the code that implements the state machine. We first check to

see if Rules(S0) is not empty, then the pcase has a rule that is applicable before any

subcomputation is started and we can just generate code to invoke the action of the

first rule of Rules(S0). The more typical (and interesting) case is when Rules(S0) = ∅
and we must generate the code that implements the state machine. The resulting

code has the structure shown in Figure 17, where the lines of interest have been

labeled on the left-hand side. Each framed code fragment represents an indexed

sequence of declarations, expressions, etc. (e.g., the line labeled (3) represents the

n declarations of the variables r1, . . . , rn). Each of the labeled lines is defined as

follows:

1. The translation of pcase makes use of a pcaseWrapper function, which

abstracts the control-flow mechanisms that are used to manage returning from

pcase. The majority of the translation of pcase is wrapped in an anonymous

function, which is passed to the pcaseWrapper function. The return argument

is a function that wraps the normal return continuation, while the exnReturn

argument is a function that wraps the exception-handler continuation.

2. The current state of the state machine is stored in an m-variable. We rely on

the synchronous behavior of this variable to guarantee the atomicity of the

state-machine transitions.

3. We allocate a reference cell (ri) to hold the result of each subcomputation;

these cells are initialized to NONE.
4. We allocate a cancelable object (ci) for each subcomputation, which is used to

cancel the subcomputation when its result is no longer required.

5. Each subcomputation has an associated transition function (trans i) that is

called when the subcomputation yields a result (see 9). The transition function

takes the current state from the state m-variable (thus ensuring atomicity)

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 567

(1)pcaseWrapper (
fn (return, exnReturn) => let

(2) val state = MVar.new S0

fun resume st = (MVar.put(state, st); dispatch())

(3) val rk = ref NONE
n

k=1

(4) val ck = Cancel.new ()
n

k=1

(5) fun transk v = let
val st = MVar.take state
in

rk := SOME v;

case st ∨ �Xk of Si => stateSi()
Si∈Nextk

end

n

k=1

(6) and stateSi() = (

case (!rk
k∈Avail (Si)

)

of Π|Si => act j (a
a∈BV (Π)

)
(j,Π)∈Rules(Si)

| _ => resume Si)

2n−1

i=1

(7) and act j(a
a∈BV (Πj)

) = (

Cancel.cancel ck;
k∈DC (Πj)

return(fj handle ex => reraise ex))

m

j=1

(8) and reraise x = (

Cancel.cancel ck;
n

k=1
exnReturn x)

and actExn ex = (MVar.take st; reraise ex) in

(9) Cancel.spawn (ci,
fn () => transk(ek handle ex => actExn ex));

n

k=1
(10) dispatch ()

end)

Fig. 17. The template for translating parallel case (when Rules(S0) = ∅).

and records the subcomputation’s result in the ri reference. It then calls the

state function corresponding to the next state.

6. Each state (other than S0) has a corresponding state function that tests the

applicable rules of the state against the available results. If no applicable

rule matches the available results, then the new state is put into the state

m-variable and the calling thread is terminated as a result of calling dispatch.

The function dispatch consists of scheduling code that picks the next thread

to execute on the calling processor.

7. The right-hand-side expression of each rule in the pcase is lifted into an

action function that takes the variables bound by the patterns of the left-hand-

side of the rule as parameters. This function includes cancelation code for

any subcomputations that might still be running (i.e., any subcomputations

that are matched by ? on the left-hand-side). By putting the right-hand-side

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

568 M. Fluet et al.

expressions in action functions, we avoid code duplication when two states

share the same applicable rule.

8. We define two functions, reraise and exnAct, to help with the propagation

of exceptions. The exnAct function is is defined for when a subcomputation

raises an exception; it first takes the state variable to guarantee that only

one exception/result is returned from the pcase and then calls the reraise

function to cancel the remaining subcomputations and return the exception.

The reraise function is also used when an exception is raised by one of the

rule right-hand sides. In that case, the state has already been taken.

9. Code to spawn the subcomputations. For each pcase argument expression,

we spawn a cancelable subcomputation that passes the result of the expression

to the corresponding transition function. If the expression raises an exception,

it is passed to the actExn function.

10. After spawning the subcomputations, the processor that was running the

pcase setup code is available for other work, so we call the dispatch

function to schedule some other thread.

To illustrate how this translation works in practice, recall the implementation

of trProd from Figure 6, which has a pcase consisting of two subcomputations

and three rules. Applying the translation method described above to trProd results

in the code shown in Figure 18. There are two transition functions (trans1 and

trans2) corresponding to the two subcomputations (cf., item 5 above), three state

functions (state01, state10, and state11) (cf., item 6 above), and three action

functions (act1, act2, and act3) (cf., item 7 above).

8.5 Scheduling

This section gives an overview of the issues of scheduling Manticore’s implicitly

threaded constructs. In implicit threading, the scheduling policy determines the

order in which implicit threads are evaluated and the mapping from implicit threads

to processors. Here, we focus on dynamic scheduling policies where the schedule is

determined as the program executes. This is opposed to static scheduling policies

where the schedule is determined before the program executes. Dynamic scheduling

policies are necessary for programs such as trProd wherein the implicit-thread graph

varies with the input data set.

Implicit threading encourages the programmer to divide the program into small

implicit threads because the computations arising from such programs give the

scheduler the most flexibility in its goal to distribute subcomputations evenly across

processors. Because there is a scheduling cost associated with spawning each implicit

thread, the total scheduling costs of such programs can be high. Indeed, if scheduling

costs are too high, then the benefit of parallelism is lost altogether. There are many

approaches to address this problem, but, broadly speaking, a given approach falls

into one of two categories, either work sharing or work stealing. In work sharing,

each processor plays an active role in distributing implicit threads among processors.

Whenever implicit threads are spawned by a processor, the scheduler migrates some

of them to other processors with the aim of spreading work to idle processors. Work

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 569

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) = pcaseWrapper (

fn (return, exnReturn) => let
val state = MVar.new 0
fun resume st = (MVar.put(state, st); dispatch())
val r1 = ref NONE
val r2 = ref NONE
val c1 = Cancel.new ()
val c2 = Cancel.new ()
fun trans1 v = let

val st = MVar.take state
in

r1 := SOME v;
case Int.andb(st, 2)
of 0 => state10()
| 1 => state11()

end
and trans2 v = let

val st = MVar.take state
in

r2 := SOME v;
case Int.andb(st, 1)
of 0 => state01()
| 2 => state11()

end
and state01 () = (case !r2

of SOME 0 => act2()
| _ => resume 1)

and state10 () = (case !r1
of SOME 0 => act1()
| _ => resume 2)

and state11 () = (case (!r1, !r2)
of (SOME 0, _) => act1()
| (_, SOME 0) => act2()
| (SOME pL, SOME pR) => act3(pL, pR))

and act1 () = (Cancel.cancel c2; return 0)
and act2 () = (Cancel.cancel c1; return 0)
and act3 (pL, pR) = return(pL * pR)
and actExn ex = (

Cancel.cancel c1; Cancel.cancel c2;
exnReturn ex)

in
Cancel.spawn (c1,
fn () => trans1 (treeProd tL) handle ex => actExn ex);

Cancel.spawn (c2,
fn () => trans2 (treeProd tR) handle ex => actExn ex);

dispatch ()
end)

Fig. 18. The translation of trProd from Figure 6.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

570 M. Fluet et al.

stealing takes the dual approach, making idle processors responsible for migrating

implicit threads away from busy processors.

Thread migration has a high scheduling cost because each migration involves

communication between processors. Consequently, the total number of migrations

is a key metric for comparing scheduling policies. Work stealing has the advantage

of minimizing the number of migrations. In work stealing, migrations occur only

when a processor goes idle, whereas in work sharing, a migration occurs each time

a thread is spawned. There is a large body of work analyzing the performance of

work stealing (Mohr et al. 1990; Feeley 1993; Arora et al. 1998; Frigo et al. 1998;

Blumofe & Leiserson 1999; Acar et al. 2000; Spoonhower et al. 2008) that shows,

in particular, that the total number of migrations is low in theory and practice.

We address the design of efficient work stealing for Manticore in another pa-

per (Fluet et al. 2008b). One issue that we consider is how to reduce scheduling costs

of spawning individual threads. Our work shows how to adapt clone compilation, a

technique pioneered in the implementation of the Cilk-5 language (Frigo et al. 1998),

to Manticore to reduce scheduling costs associated with parallel tuples and parallel

value bindings. We also investigate lazy promotion, an approach that integrates work

stealing with Manticore’s parallel memory management system (Rainey 2010).

We also consider how, in the case of data-parallel computations, we can avoid

the cost of spawning many small implicit threads by grouping them dynamically

into fewer large implicit threads. Recent studies demonstrate that techniques which

determine these groupings statically are not effective in general because in some

cases, they inevitably overestimate or underestimate the group sizes, consequently

leaving some processors idle or degrading performance (Bergstrom et al. 2010;

Tzannes et al. 2010). Our lazy tree splitting is an approach based on work stealing

that determines groupings dynamically (Bergstrom et al. 2010). In lazy tree splitting,

we process a given data-parallel computation (e.g., mapP f xs) by the following

recursive process. Before each subcomputation ci (e.g., f x where x is an element

of xs), we check for idle processors. If we detect zero idle processors, we process

ci and proceed to the next subcomputation (or stop if there are no remaining

subcomputations). Otherwise, we split the unprocessed subcomputations in half,

spawn an implicit thread that will recursively process the second half, and resume

where we left off. In the common case where we do not split, the scheduling cost

consists of just one local memory access and a conditional branch.

In another paper, we investigate the mechanism for asynchronously canceling the

evaluation futures (Fluet et al. 2008b). All of the work summarized in this section

is contained in Rainey’s dissertation (Rainey 2010).

9 Related work

Manticore’s support for fine-grained parallelism is influenced by previous work

on nested data-parallel languages, such as Nesl (Blelloch et al. 1994; Blelloch

1996; Blelloch & Greiner 1996) and Nepal/DPH (Chakravarty & Keller 2000;

Chakravarty et al. 2001; Leshchinskiy et al. 2006). Like PML, these languages have

functional sequential cores and parallel arrays and comprehensions. To this mix,

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 571

PML adds explicit parallelism, which neither Nesl or DPH supports; neither does

Nesl or DPH have any analogs to our other mechanisms—parallel tuples, bindings,

and cases. The Nesl and DPH research has been directed largely at the topic of

flattening, an internal compiler transformation which can yield great benefits in the

processing of parallel arrays. Our PML compiler does not yet implement flattening,

although we expect to devote great attention to the topic as our work moves forward.

Multilisp (Halstead 1984, 1985) is a version of Scheme extended with a pcall

construct and parallel futures. Like the parallel-tuple construct, pcall offers fork-

join parallelism. Multilisp’s parallel futures bear a resemblance to the futures we use

in Section 8, except that, in Multilisp, a future is touched implicitly whenever that

future is passed to a strict operation, whereas our futures must be touched explicitly.

Osborne extended Multilisp with support for speculative computation via “parallel

or” and “parallel and” operators (Osborne 1990). Osborne’s “parallel or” and

“parallel and” are not logical operators, as their names might suggest, but control

constructs operating on collections of simultaneously evaluating computations.

“Parallel or” returns the first nonnil value to finish evaluating, or nil if none

exists; “parallel and” returns true if all its computations are nonnil or nil otherwise.

Each of these constructs can be encoded by PML’s pcase in a straightforward way

(for any particular number of elements).

GpH is a dialect of Haskell in which parallelism is expressed through evaluation

strategies (Trinder et al. 1998). An evaluation strategy is an expression that deter-

mines various properties of the runtime behavior of computations. For example,

one such evaluation strategy specifies that three given expressions are allowed

to evaluate in parallel, and another evaluation strategy specifies that a recursive

function stops spawning parallel threads below a certain recursion depth. Because

evaluation strategies are first-class values, it is possible to define functions that

are parameterized over evaluation strategies. This ability enables programs where

the details of what is to be computed are separate from how the computation is

to be performed. PML does not provide evaluation strategies directly, but there is

a similar approach called first-class monadic schedules (FCMS) (Mirani & Hudak

1995, 2004) that can be readily encoded on top of pvals. FCMS offers some

additional powerful features, such as the ability to define processor topologies and

to determine on which processor each thread executes.

The languages Id (Nikhil 1991), pH (Nikhil & Arvind 2001), and Sisal (Gaudiot

et al. 1997) represent another approach to implicit parallelism in a functional setting

that does not require user annotations. The explicit concurrency mechanisms in PML

are taken from CML (Reppy 1999). While CML was not designed with parallelism

in mind (in fact, its original implementation is inherently not parallel), we believe

that it will provide good support for coarse-grained parallelism. Erlang is a similar

language that has a mutation-free sequential core with message passing (Armstrong

et al. 1996) that has parallel implementations (Hedqvist 1998) but no support for

fine-grained parallel computation.

The Cilk programming language (Blumofe et al. 1995) is an extension of C with

additional constructs for expressing parallelism. Cilk is an imperative language, and,

as such, its semantics is different from that of PMLin some obvious ways. Some

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

572 M. Fluet et al.

procedures in Cilk are modified with the cilk keyword; those are Cilk procedures.

Cilk procedures call other Cilk procedures with the use of spawn. A spawned

procedure starts running in parallel, and its parent procedure continues execution.

In this way, spawned Cilk procedures are similar to PML expressions bound

with pval. Cilk also includes a sophisticated abort mechanism for cancelation of

spawned siblings; we have suggested some encodings of similar parallel patterns in

Section 7.

SplitC (Krishnamurthy et al. 1993) is an extension of C that is intended for

programming distributed memory multiprocessor machines. Like Cilk (but unlike

PML), SplitC offers imperative features such as in-place updates in memory and

pointers. But unlike Cilk and PML, SplitC offers a distributed memory model in

which each processor has a local memory and the programmer may control on

which processor a given piece of memory is stored. A language similar to SplitC

could be used as a compilation target for PML, though we have implemented a

different one and reported on it elsewhere (Fluet et al. 2008b).

Accelerator (Tarditi et al. 2006) is an imperative data-parallel language that allows

programmers to utilize GPUs for general-purpose computation. The operations

available in Accelerator are similar to those provided by DPH’s or PML’s parallel

arrays and comprehensions, except destructive update is a central mechanism. In

keeping with the hardware for which it is targeted, Accelerator is directed toward

regular, massively parallel operations on homogeneous collections of data, in marked

contrast to the example presented in Section 7.

Programming parallel hardware effectively is difficult, but there have been some

important recent achievements. Google’s MapReduce programming model (Dean &

Ghemawat 2004) has been a success in processing large data sets in parallel. Sawzall,

another Google project, is a system for analysis of large data sets distributed over

disks or machines (Pike et al. 2005). (It is built on top of the aforementioned

MapReduce system.) Brook for GPUs (Buck et al. 2004) is a C-like language that

allows the programmer to use a GPU as a stream coprocessor.

10 Conclusion

PML is a heterogeneous parallel functional language. In this paper, we have

described its implicitly threaded constructs, which support fine-grained task and

data-parallel computations. These include standard implicitly threaded mechanisms

such as parallel tuples and nested-parallel arrays, as well as novel ones such as parallel

bindings and nondeterministic parallel cases. We have illustrated our language with

a number of examples and given a formal description of their implementation in

the Manticore system. We have been working on a prototype implementation of the

Manticore system since January 2007. Using it, we have successfully exercised our

constructs on a variety of canonical test applications, including standard sorting and

complex hull algorithms, Barnes-Hut n-body simulations, and ray tracing, and our

results, detailed elsewhere (Bergstrom et al. 2010), have been very promising. Our

implementation is largely feature complete and is available to the interested reader

on request.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 573

Acknowledgments

We would like to thank the anonymous referees and editor for their helpful comments

and suggestions. This work is supported in part by National Science Foundation

Grants CCF-0811389, CCF-0811419, and CCF-1010568. The views and conclusions

contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of these

organizations or the US Government.

References

Acar, U. A., Blelloch, G. E. & Blumofe, R. D. (2000) The data locality of work stealing. In

Proceedings of the 12th ACM Annual Symposium on Parallel Algorithms and Architectures.

ACM, pp. 1–12.

Armstrong, J., Virding, R., Wikström, C. & Williams, M. (1996) Concurrent Programming in

ERLANG, 2nd ed. Hertfordshire, UK: Prentice Hall International.

Arora, N. S., Blumofe, R. D. & Plaxton, C. G. (1998) Thread Scheduling for Multiprogrammed

Multiprocessors.

Barth, P., Nikhil, R. S. & Arvind. (1991) M-structures: Extending a parallel, non-strict,

functional language with state. In Functional Programming Languages and Computer

Architecture (fpca ’91) New York, NY. Lecture Notes in Computer Science, vol. 523.

Springer-Verlag, pp. 538–568.

Barton, R., Adkins, D., Prokop, H., Frigo, M., Joerg, C., Renard, M., Dailey, D. & Leiserson,

C. (1998) Cilk Pousse. Viewed on March 20, 2008 at 2:45 PM.

Bergstrom, L., Fluet, M., Rainey, M., Reppy, J. & Shaw, A. (2010) Lazy tree splitting.

In Proceedings of the 15th ACM SIGPLAN International Conference on Functional

Programming, New York, NY. ACM, pp. 93–104.

Blelloch, G. E. (1996) Programming parallel algorithms, Commun. ACM, 39 (3): 85–97.

Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J. & Zagha, M. (1994)

Implementation of a portable nested data-parallel language, J. Parallel Distrib. Comput., 21

(1): 4–14.

Blelloch, G. E. & Greiner, J. (1996) A provable time and space efficient implementation of

NESL. In Proceedings of the 1996 ACM SIGPLAN International Conference on Functional

Programming, New York, NY. ACM, pp. 213–225.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H. & Zhou, Y.

(1995) Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th ACM

SIGPLAN Symposium on Principles & Practice of Parallel Programming, New York, NY.

ACM, pp. 207–216.

Blumofe, R. D. & Leiserson, C. E. (1999) Scheduling multithreaded computations by work

stealing, J. ACM, 46 (5): 720–748.

Boehm, H.-J., Atkinson, R. & Plass, M. (1995) Ropes: An alternative to strings, Software

Pract. Ex., 25 (12): 1315–1330.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M. & Hanrahan, P. (2004)

Brook for GPUs: Stream computing on graphics hardware, Proc. ACM SIGGRAPH 2004,

23 (3): 777–786.

Chakravarty, M. M. T. & Keller, G. (2000) More types for nested data parallel

programming. In Proceedings of the Fifth ACM SIGPLAN International Conference on

Functional Programming, New York, NY. ACM, pp. 94–105.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

574 M. Fluet et al.

Chakravarty, M. M. T., Keller, G., Leshchinskiy, R. & Pfannenstiel, W. (2001) Nepal—Nested

data parallelism in Haskell. In Proceedings of the 7th International Euro-Par Conference

on Parallel Computing, New York, NY. Lecture Notes in Computer Science, vol. 2150.

Springer-Verlag, pp. 524–534.

Chakravarty, M. M. T., Leshchinskiy, R., Peyton Jones, S., Keller, G. & Marlow, S. (2007)

Data parallel Haskell: A status report. In Proceedings of the ACM SIGPLAN Workshop on

Declarative Aspects of Multicore Programming, New York, NY. ACM, pp. 10–18.

Dailey, D. & Leiserson, C. E. (2002) Using Cilk to write multiprocessor chess programs,

J. Int. Comput. Chess Assoc., 24 (4): 236–237.

Danaher, J. S., Lee, I.-T. A. & Leiserson, C. E. (2006) Programming with Exceptions in JCilk,

Sci. Comput. Program., 63 (2): 147–171.

Dean, J. & Ghemawat, S. (December 2004) MapReduce: Simplified data processing on

large clusters. In Proceedings of the Sixth Symposium on Operating Systems Design and

Implementation (OSDI ’04), Berkely, CA. USENIX, pp. 137–150.

Feeley, M. (1993) An Efficient and General Implementation of Futures on Large Scale Shared-

Memory Multiprocessors. PhD thesis, Brandeis University, Waltham, MA, USA.

Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A. & Xiao, Y. (2007a) Status report: The

Manticore project. In Proceedings of the 2007 ACM SIGPLAN Workshop on ML, New York,

NY. ACM, pp. 15–24.

Fluet, M., Rainey, M. & Reppy, J. (2008a) A scheduling framework for general-purpose

parallel languages. In Proceedings of the 13th ACM SIGPLAN International Conference on

Functional Programming, New York, NY. ACM, pp. 241–252.

Fluet, M., Rainey, M., Reppy, J. & Shaw, A. (2008b) Implicitly-threaded parallelism

in Manticore. In Proceedings of the 13th ACM SIGPLAN International Conference on

Functional Programming, New York, NY. ACM, pp. 119–130.

Fluet, M., Rainey, M., Reppy, J., Shaw, A. & Xiao, Y. (2007b) Manticore: A heterogeneous

parallel language. In Proceedings of the ACM SIGPLAN Workshop on Declarative Aspects

of Multicore Programming, New York, NY. ACM, pp. 37–44.

Frigo, M., Leiserson, C. E. & Randall, K. H. (June 1998) The implementation of the Cilk-

5 multithreaded language. In Proceedings of the SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’98), New York, NY. ACM, pp. 212–223.

Gansner, E. R. & Reppy, J. H. (eds). (2004) The Standard ML Basis Library. Cambridge,

England: Cambridge University Press.

Gaudiot, J.-L., DeBoni, T., Feo, J., Bohm, W., Najjar, W. & Miller, P. (1997) The Sisal

model of functional programming and its implementation. In Proceedings of the 2nd

AIZU International Symposium on Parallel Algorithms/Architecture Synthesis (pAs ’97), Los

Alamitos, CA. IEEE Computer Society, pp. 112–123.

GHC. (November 1998) The Glasgow Haskell Compiler [online]. Available at: http://www.
haskell.org/ghc Accessed 10 December 2010.

Halstead R. H., Jr. (1984) Implementation of multilisp: Lisp on a multiprocessor. In Conference

Record of the 1984 ACM Symposium on Lisp and Functional Programming. New York, NY.

ACM, pp. 9–17.

Halstead R. H., Jr. (1985) Multilisp: A language for concurrent and symbolic computation,

ACM Trans. Program. Lang. Syst., 7: 501–538.

Hammond, K. (1991) Parallel SML: A Functional Language and its Implementation in Dactl.

Cambridge, MA: MIT Press.

Harris, T., Marlow, S., Peyton Jones, S. & Herlihy, M. (2005) Composable memory

transactions. In Proceedings of the 2005 ACM SIGPLAN Symposium on Principles &

Practice of Parallel Programming, New York, NY. ACM, pp. 48–60.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

Implicitly threaded parallelism in Manticore 575

Hauser, C., Jacobi, C., Theimer, M., Welch, B. & Weiser, M. (December 1993). Using threads in

interactive systems: A case study. In Proceedings of the 14th ACM Symposium on Operating

System Principles. ACM, pp. 94–105.

Hedqvist, P. (June 1998) A Parallel and Multithreaded ERLANG Implementation. MPhil thesis,

Computer Science Department, Uppsala University, Uppsala, Sweden.

Jones, M. P. & Hudak, P. (August 1993) Implicit and Explicit Parallel Programming in Haskell.

Tech. Rep. YALEU/DCS/RR-982, Yale University.

Krishnamurthy, A., Culler, D. E., Dusseau, A., Goldstein, S. C., Lumetta, S., von Eicken, T. &

Yelick, K. (1993) Parallel programming in split-C. In Supercomputing ’93: Proceedings of

the 1993 ACM/IEEE Conference on Supercomputing, New York, NY. ACM, pp. 262–273.

Le Fessant, F. & Maranget, L. (1998) Compiling join-patterns. In Proceedings of the Third

International Workshop on High-Level Concurrent Languages (HLCL ’98). Electronic Notes

in Theoretical Computer Science, vol. 16, no. 3. Elsevier Science, pp. 205–224.

Leroy, X. & Pessaux, F. (2000) Type-based analysis of uncaught exceptions, ACM Trans.

Program. Lang. Syst., 22 (2): 340–377.

Leshchinskiy, R., Chakravarty, M. M. T. & Keller, G. (2006) Higher order flattening. In

International Conference on Computational Science (ICCS ’06), Alexandrov, V., van Albada,

D., Sloot, P. & Dongarra, J. (eds), LNCS, no. 3992. New York, NY. Springer-Verlag,

pp. 920–928.

Mandel, L. & Maranget, L. (December 2008). The JoCaml Language Release 3.11

Documentation and User’s Manual [online]. Available at: http://jocaml.inria.fr/
manual/index.html Accessed 10 December 2010.

McCarthy, J. (1963) A basis for a mathematical theory of computation. In Computer

Programming and Formal Systems, Braffort, P. & Hirschberg, D. (eds), North-Holland,

Amsterdam, pp. 33–70.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997) The Definition of Standard ML

(revised). Cambridge, MA: MIT Press.

Mirani, R. & Hudak, P. (1995) First-class schedules and virtual maps. In Fpca ’95: Proceedings

of the Seventh International Conference on Functional Programming Languages and Computer

Architecture, New York, NY. ACM, pp. 78–85.

Mirani, R. & Hudak, P. (2004) First-class monadic schedules, ACM Trans. Program. Lang.

Syst., 26 (4): 609–651.

Mohr, E., Kranz, D. A. & Halstead R. H., Jr. (1990) Lazy task creation: A technique for

increasing the granularity of parallel programs. In Conference Record of the 1990 ACM

Conference on Lisp and Functional Programming. New York, NY. ACM, pp. 185–197.

Nikhil, R. S. (July 1991). ID Language Reference Manual. Cambridge, MA: Laboratory for

Computer Science, MIT.

Nikhil, R. S. & Arvind. (2001) Implicit Parallel Programming in pH. San Francisco, CA:

Morgan Kaufmann.

Osborne, R. B. (1990) Speculative computation in multilisp. In Conference record of the 1990

ACM Conference on Lisp and Functional Programming. New York, NY. ACM, pp. 198–208.

Peyton Jones, S., Gordon, A. & Finne, S. (1996) Concurrent Haskell. In Conference Record

of the 23rd Annual ACM Symposium on Principles of Programming Languages (popl ’96).

New York, NY. ACM, pp. 295–308.

Peyton Jones, S., Reid, A., Henderson, F., Hoare, T. & Marlow, S. (1999) A semantics for

imprecise exceptions. In Proceedings of the SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’99), New York, NY. ACM, pp. 25–36.

Pike, R., Dorward, S., Griesemer, R. & Quinlan, S. (2005) Interpreting the data: Parallel

analysis with sawzall, Sci. Program. J., 13 (4): 227–298.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

576 M. Fluet et al.

Rainey, M. (August 2010) Effective Scheduling Techniques for High-Level Parallel Programming

Languages [online]. PhD thesis, University of Chicago. Available at: http://manticore.
cs.uchicago.edu Accessed 10 December 2010.

Reppy, J., Russo, C. & Xiao, Y. (2009) Parallel Concurrent ML. In Proceedings of the 14th

ACM SIGPLAN International Conference on Functional Programming, New York, NY. ACM,

pp. 257–268.

Reppy, J. H. (1991) CML: A higher-order concurrent language. In Proceedings of the

SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’91),

New York, NY. ACM, pp. 293–305.

Reppy, J. H. (1999) Concurrent Programming in ML. Cambridge, England: Cambridge

University Press.

Shaw, A. (July 2007). Data Parallelism in Manticore [online]. MPhil thesis, University of

Chicago. Available at: http://manticore.cs.uchicago.edu Accessed 10 December 2010.

Spoonhower, D., Blelloch, G. E., Gibbons, P. B. & Harper, R. (2008) Beyond nested

parallelism: Tight bounds on work-stealing overheads for parallel futures. In Proceedings of

the 20th ACM Annual Symposium on Parallel Algorithms and Architectures, New York, NY.

ACM.

Tarditi, D., Puri, S. & Oglesby, J. (2006) Accelerator: Using data parallelism to program

GPUs for general-purpose uses, Sigops Pper. Syst. Rev., 40 (5): 325–335.

Trinder, P. W., Hammond, K., Loidl, H.-W. & Peyton Jones, S. L. (1998) Algorithm + strategy

= parallelism, J. Funct. Program., 8 (1): 23–60.

Tzannes, A., Caragea, G. C., Barua, R. & Vishkin, U. (2010) Lazy binary-splitting: A run-time

adaptive work-stealing scheduler. In Proceedings of the 2010 ACM SIGPLAN Symposium

on Principles & Practice of Parallel Programming, New York, NY. ACM, pp. 179–190.

Yi, K. (1998) An abstract interpretation for estimating uncaught exceptions in Standard ML

programs, Sci. Comput. Program., 31 (1): 147–173.

https://doi.org/10.1017/S0956796810000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000201

