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Abstract. We show that if F is a free Lie algebra of rank at least 2 and if G is a
non-trivial ®nite group of automorphisms of F then the ®xed point subalgebra FG

is not ®nitely generated. Some similar results are proved for relatively free Lie
algebras.

1991 Mathematics Subject Classi®cation. 17B01, 17B40.

1. Introduction. Well known results in commutative and non-commutative
invariant theory concern the action of a ®nite group on a free algebra (such as a
polynomial algebra or a free associative algebra) and give conditions under which
the ®xed point subalgebra is ®nitely generatedÐsee [6] for a survey. The corre-
sponding question for free Lie algebras was partly answered in [2] and [5]. The main
purpose of the present paper is to complete this answer. In [2], the ®rst author
showed that if F is a ®nitely generated free Lie algebra over a ®eld K, where the rank
of F is at least 2, and if G is a non-trivial ®nite group of graded Lie algebra auto-
morphisms of F, then the ®xed point subalgebra FG is not ®nitely generated. A
similar result was later (and independently) proved by Drensky ([5]) for an arbitrary
non-trivial ®nite subgroup G of Aut�F�, but under the additional assumption that
jGj is not divisible by the characteristic of K. The ®rst main result of the present
paper is a common extension of these two results (which also applies to free Lie
algebras which are not ®nitely generated).

Theorem A. Let F be a free Lie algebra of rank greater than 1 over a ®eld K and
let G be a non-trivial ®nite subgroup of Aut�F�. Then FG is not ®nitely generated.

Drensky ([5]) also obtained an analogous result for free metabelian Lie algebras
but again under the assumption that jGj is not divisible by the characteristic of K.
Our second main result removes this restriction.

Theorem B. Let M be a free metabelian Lie algebra of rank greater than 1 over a
®eld K and let G be a non-trivial ®nite subgroup of Aut�M�. Then MG is not ®nitely
generated.

Our third main result is a closely-related one for arbitrary ®nitely generated
relatively free Lie algebras, under some additional mild restrictions on K and G.
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Theorem C. Let R be a ®nitely generated relatively free Lie algebra over an in®-
nite ®eld K and let G be a non-trivial ®nite subgroup of Aut�R� which acts faithfully on
the derived factor algebra R=R0, where R0 � �R;R�. Then RG is ®nitely generated if
and only if R is nilpotent.

It is hoped that the methods used in the proofs of these results will be of inde-
pendent interest. In particular, we give a simple but useful necessary condition for a
subalgebra of a free Lie algebra to be ®nitely generated (see Lemma 2.3).

Section 2 of this paper contains some de®nitions, notation and preliminary
results, and we continue in Section 3 with a key result about polynomial algebras.
Theorems B and C will be proved in Section 4, and Theorem A will be proved in
Section 5.

2. Preliminaries. Let K be a ®eld and let G be a group. For any (right) KG-
module U we write

UG � fu 2 U : ug � u for all g 2 Gg:

If E is a K-algebra (associative or non-associative) and if G is a subgroup of the
group of algebra automorphisms Aut�E� then we write the action of G on the right.
Thus E may be regarded as a KG-module and EG is a subalgebra of E, the ®xed
point subalgebra of E.

For any subset S of a K-space (vector space over K) we write hSi for the K-
subspace spanned by S.

For background material on Lie algebras we refer to [1] and [9]. For any Lie
algebra L we use commutator notation �u; v� to denote the product of elements u and
v of L, while �u1; u2; . . . ; un� denotes the left-normed product of elements u1; . . . ; un
of L. The derived algebra �L;L� and the second derived algebra ��L;L�; �L;L�� of L
will usually be denoted by L0 and L00, respectively. For each positive integer m, m�L�
denotes the m-th term of the lower central series of L: thus 1�L� � L, 2�L� � L0

and m�L� � �mÿ1�L�;L� for all m52.
As usual we say that L is residually nilpotent if

T1
m�1 m�L� � f0g. We write

IA�L� for the normal subgroup of Aut�L� consisting of all automorphisms of
L which induce the identity automorphism on L=L0; these are the so-called
IA-automorphisms.

Lemma 2.1. Let L be a residually nilpotent Lie algebra over a ®eld K and let G
be a non-trivial ®nite subgroup of IA�L�. Then K has prime characteristic p and G is a
p-group.

Proof. Let g be a non-trivial element of G and let n be the order of g. Since g is
non-trivial there exists an element a of L such that ag 6� a. Write ag � a� b, where
b 6� 0. Thus, since g 2 IA�L�, we have b 2 2�L�. Since L is residually nilpotent, there
exists a positive integer m such that b 2 m�L� but b =2 m�1�L�. Since g 2 IA�L�, we
®nd that bgÿ b 2 m�1�L�.

An easy calculation shows that a � agn � a� nb� c where c 2 m�1�L�. Thus
nb 2 m�1�L�. Since b =2 m�1�L� we ®nd that K has non-zero characteristic p and n is
divisible by p. Arguing by induction on n, we can assume that gp has p-power order.
Hence g has p-power order, and so G is a p-group.
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Lemma 2.2. Let G be a non-trivial group of automorphisms of a residually nilpo-
tent Lie algebra L. Then LG � L0 6� L.

Proof. It is su�cient to prove the result in the case where G is cyclic. Suppose
then that g is a generator of G. Since g 6� 1 there exists a 2 L such that agÿ a 6� 0,
and since L is residually nilpotent there exists a positive integer m such that
agÿ a =2 m�1�L�. Hence, by taking such a pair �a;m� where m is minimal, we can
assume that agÿ a =2 m�1�L� but ugÿ u 2 m�L� for all u 2 L. Note then that
ugÿ u 2 m�1�L� for all u 2 L0.

We claim that a =2LG � L0. Suppose to the contrary that a � b� c where b 2 LG

and c 2 L0. Then

ag � bg� cg � b� c� d

where d 2 m�1�L�. Thus agÿ a � d 2 m�1�L�. This is the required contradiction.

For a ®eld K and a non-empty set X we write P for the free commutative asso-
ciative K-algebra freely generated by X (in other words, P is the polynomial algebra
K�X�). Also, we write A for the free associative K-algebra freely generated by X.
Furthermore, F denotes the free Lie algebra over K freely generated by X and M
denotes the free metabelian Lie algebra over K freely generated by X. As usual, we
may regard A as a Lie algebra under the operation de®ned by �u; v� � uvÿ vu for all
u; v 2 A and then F is identi®ed with the Lie subalgebra of A (freely) generated by X.
Furthermore, M is isomorphic to the factor algebra F=F 00. Our convention is that P
and A have an identity element and that subalgebras of P and A are taken to contain
this element. Monomials of P, A, F and M are de®ned in the usual way as non-zero
(iterated) products of elements of X (in the case of F and M, such a product is a Lie
product which is not necessarily left-normed). The degree of a monomial is the
length of this product. In the cases of P and A, the identity element is the only
monomial of degree 0, whereas F and M have no monomials of degree 0.

If E is any of P, A, F or M then for each non-negative integer n we write En for
the K-subspace spanned by the monomials of degree n. Thus E is a K-space direct
sum

E � E0 � E1 � E2 � . . . :

This decomposition is a grading of E in the sense that, for all i; j50, every product
of an element of Ei and an element of Ej belongs to Ei�j. The degree of an arbitrary
element u of E, denoted by deg�u�, is the smallest value of n such that
u 2 E0 � E1 � . . .� En. Note that P0 and A0 are spanned by the identity elements of
P and A, respectively, while F0 � f0g and M0 � f0g. For each positive integer m, we
have m�F� � Fm � Fm�1 � . . . and m�M� �Mm �Mm�1 � . . . . Thus, in connection
with Lemmas 2.1 and 2.2, we note that both F and M are residually nilpotent.

Let x 2 X. Then, for each n50, we can write

En � E0;n � . . .� En;n;

where, for i � 1; . . . ; n, Ei;n is the K-subspace spanned by all monomials of degree n
which have x-degree i (that is, monomials of degree n with exactly i factors equal to
x). Note that, for all n52, we have Fn;n � f0g and Mn;n � f0g.
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Let E�x� denote the subspace of E spanned by E0 and all monomials which have
at least one factor from Xnfxg. Thus

E�x� � E0 � E0;1 � �E0;2 � E1;2� � . . .� �E0;n � . . .� Enÿ1;n� � . . . :

Note that F�x� � hXnfxgi � F 0 and M�x� � hXnfxgi �M0.
Let q be any real number satisfying 04q41. We write E�x; q� for the subspace

of E spanned by all subspaces Ei;n with n50 and i4qn. In this notation, E � E�x; 1�
and

E�x� �
[

04q<1

E�x; q�: �2:1�

Lemma 2.3. Let E be P, A, F or M.
(i) For each q with 04q41, E�x; q� is a subalgebra of E, and E�x� is a subalgebra

of E.
(ii) Let S be a ®nitely generated subalgebra of E such that S � E�x�. Then

S � E�x; q� for some q with 04q < 1.

Proof. (i) Let 04q41. Suppose that u 2 Ei;n and v 2 Ei0;n0 where i4qn and
i04qn0. Then clearly the product of u and v belongs to Ei�i0;n�n0 . But
i� i04qn� qn0 � q�n� n0�. Both parts of (i) now follow.

(ii) This follows easily from (i) and (2.1).

Let E be P, A, F or M, as above, and let K1 be an extension ®eld of K. Then
K1 
 E (tensor product taken over K) may be identi®ed with the corresponding free
algebra over K1 and we may regard E as embedded in K1 
 E. Each algebra auto-
morphism of E extends, uniquely, to an algebra automorphism of K1 
 E.

Lemma 2.4. Let E be P, A, F or M and let K1 be an extension ®eld of K. Let G be
a group of automorphisms of E and view G as a group of automorphisms of K1 
 E.
Then �K1 
 E�G � K1 
 EG.

Proof. Clearly K1 
 EG � �K1 
 E�G. Let � be a K-basis of K1. Then
K1 
 E �L�2� �
 E, where, for each �, the map E! �
 E given by a 7!�
 a
(for a 2 E) is a K-space isomorphism. Suppose that

P
�
 a� 2 �K1 
 E�G, where

a� 2 E for each �. Then we obtain a�g � a� for each element g of G and each �; thus
�K1 
 E�G � K1 
 EG.

The following result is elementary and well-known, at least in the ®nite-
dimensional case.

Lemma 2.5. Let U be a non-zero KG-module, where K is a ®eld of prime char-
acteristic p and G is a ®nite p-group. Then UG 6� f0g.

Proof. Let I be a right ideal of KG which is minimal subject to UI 6� f0g and let J
be a right ideal of KG which is maximal in I. Thus UJ � f0g. By the conditions on K
and G, every irreducible KG-module is trivial. Thus I�gÿ 1� � J for all g 2 G. Hence
UI�gÿ 1� � f0g for all g 2 G, and so UI � UG.
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In Section 5 we shall require the following simple result.

Lemma 2.6. Let K be a ®eld of prime characteristic p and let �1; . . . ; �pÿ1 be
elements of K which are not all zero. Then there exists k 2 f1; . . . ; pÿ 1g such that
�k
1 � �k

2 � . . .� �k
pÿ1 6� 0.

Proof. We can write �k
1 � �k

2 � . . .� �k
pÿ1 as s1�

k
1 � . . .� sm�

k
m, with

14m4pÿ 1, where �1; . . . ; �m are the distinct non-zero elements of f�1; . . . ; �pÿ1g
and where 14si4pÿ 1 for i � 1; . . . ;m. The van der Monde matrix

�1 �2 . . . �m
�21 �22 . . . �2m
..
. ..

. ..
.

�m1 �m2 . . . �mm

0BBB@
1CCCA

is non-singular: hence its columns are linearly independent. Thus

s1��1; . . . ; �m1 � � . . .� sm��m; . . . ; �mm� 6� �0; . . . ; 0�:

Hence s1�
k
1 � . . .� sm�

k
m 6� 0 for some k 2 f1; . . . ;mg.

3. Polynomial algebras. The purpose of this section is to derive a result about
polynomial algebras which will be used in Section 4 in our study of free metabelian
Lie algebras.

Let K be a ®eld. As in Section 2, let X be a non-empty set and let P be the
polynomial algebra K�X�. Let V denote the subspace of P spanned by X. If h is any
element of the general linear group GL�V� then the action of h may be extended
(uniquely) to P so that h acts as an algebra automorphism of P. Each subspace Pn,
for n50, is invariant under the action of h. The automorphisms of P of this type will
be called the graded automorphisms of P. If H is a group of graded automorphisms
then we may, of course, regard P as a KH-module.

Lemma 3.1. Let P � K�X� where jXj > 1. Let H be a ®nite group of graded auto-
morphisms of P. Let x 2 X, let q be a real number such that 04q < 1, and let r be a
positive integer. Then there exists a positive integer s, with s5r, and an element a of Ps

such that
P

h2H ah =2P�x; q�.

Proof. If K1 is an extension ®eld of K and if
P

h2H ah 2 P�x; q� for all a 2 Ps then
it follows that

P
h2H ah 2 �K1 
 P��x; q� for all a 2 K1 
 Ps. Thus we may assume

that K is in®nite. Clearly we may also assume that jHj > 1.
As before we write V � hXi � P1. Let H � fh0; h1; . . . ; hnÿ1g where h0 � 1 and

n � jHj. For i � 1; . . . ; nÿ 1 let Vi � fv 2 V : vhi � vg. Then each of V1; . . . ;Vnÿ1
and hXnfxgi is a proper subspace of V. But it is well-known and easy to see that a
non-zero vector space over an in®nite ®eld is not equal to the (set-theoretic) union of
any ®nite collection of proper subspaces. Hence there exists v 2 V such that

v =2V1 [ . . . [ Vnÿ1 [ hXnfxgi:
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It follows that the elements vh0; . . . ; vhnÿ1 are distinct.
The matrix

1 1 . . . 1
vh0 vh1 . . . vhnÿ1
..
. ..

. ..
.

�vh0�nÿ1 �vh1�nÿ1 . . . �vhnÿ1�nÿ1

0BB@
1CCA

with entries from the integral domain P is a non-singular (van der Monde) matrix
over Q, the ®eld of quotients of P. Thus the vectors

�1; vh0; . . . ; �vh0�nÿ1�; . . . ; �1; vhnÿ1; . . . ; �vhnÿ1�nÿ1�

are linearly independent over Q, and so linearly independent over K. By considering
the components P0; . . . ;Pnÿ1, we see that the elements

1� �vh0� � . . .� �vh0�nÿ1; . . . ; 1� �vhnÿ1� � . . .� �vhnÿ1�nÿ1

are linearly independent over K. (The argument we have used is basically the same
as the proof of Proposition 3.1 of [4].)

For each non-negative integer m, write v�m� � vm � vm�1 � . . .� vm�nÿ1. We
shall show that there exists m with m5r such that

Pnÿ1
i�0 v�m�hi =2P�x; q�. It follows

that
Pnÿ1

i�0 vm�jhi =2P�x; q� for some j 2 f0; . . . ; nÿ 1g. This will give the required
result.

Note that

Xnÿ1
i�0

v�m�hi �
Xnÿ1
i�0
��vhi�m � �vhi�m�1 � . . .� �vhi�m�nÿ1� �3:1�

�
Xnÿ1
i�0
�1� �vhi� � . . .� �vhi�nÿ1��vhi�m: �3:2�

For i � 0; . . . ; nÿ 1, write vhi � �ix� wi where �i 2 K and wi 2 hXnfxgi. Since
v =2 hXnfxgi we have �0 6� 0.

We deal separately with the cases where K has non-zero characteristic and where
it has characteristic 0. Suppose ®rst that K has prime characteristic p. Take m to be a
power of p such that m5r, m5n and m > q�m� nÿ 1�. Suppose, in order to get a
contradiction, that

P
i v�m�hi 2 P�x; q�. Since m is a power of p, we have

�vhi�m � �mi xm � wm
i for each i. Hence, by (3.2),

X
i

v�m�hi �
X
i

�mi �1� �vhi� � . . .� �vhi�nÿ1�xm �
X
i

�1� �vhi� � . . .� �vhi�nÿ1�wm
i :

The monomials occurring in
P

i�1� �vhi� � . . .� �vhi�nÿ1�wm
i have x-degree which

does not exceed nÿ 1. But, since m5n, the monomials occurring inP
i �

m
i �1� �vhi� � . . .� �vhi�nÿ1�xm have x-degree which exceeds nÿ 1. Hence these

monomials must also occur in
P

i v�m�hi. Since
P

i v�m�hi 2 P�x; q�, we obtain
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X
i

�mi �1� �vhi� � . . .� �vhi�nÿ1�xm 2 P�x; q�:

But every monomial occurring in �1� �vhi� � . . .� �vhi�nÿ1�xm has degree at most
m� nÿ 1 and x-degree at least m. Since m > q�m� nÿ 1� we deduce thatX

i

�mi �1� �vhi� � . . .� �vhi�nÿ1�xm � 0:

Thus X
i

�mi �1� �vhi� � . . .� �vhi�nÿ1� � 0:

Since �0 6� 0, this contradicts the linear independence of the elements
1� �vhi� � . . .� �vhi�nÿ1.

Now suppose that K has characteristic 0. Take m so that m5r and
m > q�m� nÿ 1�. Suppose, to get a contradiction, that

P
i v�m�hi 2 P�x; q�. SinceP

i v�m�hi has degree at most m� nÿ 1, where m > q�m� nÿ 1�, it follows that
every monomial occurring in

P
i v�m�hi has x-degree which is at most mÿ 1. ThusP

i v�m�hi becomes 0 when di�erentiated m times with respect to x. Hence, by (3.1),X
i

�
�m!=0!��mi ���m� 1�!=1!��mi �vhi� � . . .

. . .� ��m� nÿ 1�!=�nÿ 1�!��mi �vhi�nÿ1
�
� 0:

By comparison of the degrees we see thatX
i

��m� j�!=j!��mi �vhi� j � 0;

for j � 0; . . . ; nÿ 1. Hence
P

i �
m
i �vhi� j � 0 for each j and soX

i

�mi �1� �vhi� � . . .� �vhi�nÿ1� � 0:

We now have a contradiction as in the previous case.

4. Free metabelian Lie algebras. Let K be a ®eld. As in Section 2, let X be a non-
empty set, let P be the polynomial algebra K�X�, and let M be the free metabelian Lie
algebra over K freely generated by X. Let V denote the subspace spanned by X: note
that we use the same notation for this in both P and M. We regard V
 P (tensor
product taken over K) as a right P-module in the obvious way. Clearly it is a free P-
module with fx
 1 : x 2 Xg as a free generating set.

It is well-known and easy to verify that the derived algebra M0 of M may be
viewed as a right P-module in which the image of an element u of M0 under the
action of a monomial x1 � � � xn of P (where x1; . . . ; xn 2 X) is the left-normed Lie
product �u; x1; . . . ; xn�. (One way to see this is to use the fact that M0 is naturally a
module for the Lie algebra M=M0 and P may be regarded as the universal envelop-
ing algebra of M=M0.) For u 2M0 and v 2 P we write �u; v� to denote the image of u
under the module action of v.
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Lemma 4.1. (i) There is a P-module embedding " : M0 ! V
 P in which

�v1; v2; . . . ; vr�" � v1 
 v2v3 � � � vr ÿ v2 
 v1v3 � � � vr �4:1�

for all r52 and all v1; v2; . . . ; vr 2 V.
(ii) If u is a non-zero element of M0 and v is a non-zero element of P then

�u; v� 6� 0.

Proof. (i) We ®rst note that there is a K-space embedding " : M0 ! V
 P
satisfying (4.1): the analogous result over the integers holds by Theorem 3.1 of [7],
and the result over K can be proved similarly or deduced from the integral result by
tensoring with K. For all v1; v2; . . . ; vr; v 2 V, with r52, we have

��v1; v2; . . . ; vr�"�v � v1 
 v2v3 � � � vrvÿ v2 
 v1v3 � � � vrv
� �v1; v2; . . . ; vr; v�"
� ��v1; v2; . . . ; vr�; v�":

It follows that " is a P-module homomorphism.
(ii) Suppose u 2M0 and v 2 P where u 6� 0 and v 6� 0. By (i), �u; v�" � �u"�v and

u" 6� 0. Since V
 P is a free P-module and P is an integral domain, V
 P is
torsion-free as a P-module. Thus �u"�v 6� 0, and so �u; v� 6� 0.

Let Q be the ®eld of quotients of P. Since V
 P is a free right P-module it may
be embedded in V
Q, which is a vector space over Q (with Q acting on the right)
with basis fx
 1 : x 2 Xg.

Suppose that G is a subgroup of Aut�M� and write N � G \ IA�M�. Thus N is a
normal subgroup of G: it is the kernel of the action of G on M=M0. Write G � G=N
and, for each g 2 G, write g for the element gN of G=N. Since N acts trivially on
M=M0, we may regard M=M0 as a KG-module, and G acts faithfully on this module.
There is a K-space isomorphism from M=M0 to V such that x�M0 is mapped to x
for all x 2 X. Using this isomorphism we may regard G as a subgroup of GL�V� and
so G may be regarded as a group of graded automorphisms of P (see Section 3). In
particular, P is a KG-module.

Lemma 4.2. With G and G as above, let u 2M0 and v 2 P. Then, for all g 2 G,

�u; v�g � �ug; vg�:

Proof. This is straightforward.

With G, N and G as above, MN is a KG-submodule of M. But since N acts tri-
vially on this module we may regard it as a KG-module. Thus, for g 2 G and
u 2MN, we have ug � ug. The same considerations apply to the submodule
MN \M0, and we note that MN \M0 � �M0�N. It is easily veri®ed that �M0�N is a P-
submodule of M0 (in fact, �M0�N is an ideal of M).

Lemma 4.3. Let M be a free metabelian Lie algebra of rank greater than 1 over a
®eld K and let G be a ®nite subgroup of Aut�M�. Then MG \M0 6� f0g.
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Proof. We take a free generating set X of M and use the notation developed
in connection with Lemmas 4.1 and 4.2. By Lemma 2.4 we may assume that K is
in®nite.

We ®rst prove that MN \M0 6� f0g. If N � f1g this is clear. But if N 6� f1g then,
by Lemma 2.1, K has prime characteristic p and N is a p-group. In this case
MN \M0 � �M0�N 6� f0g by Lemma 2.5.

Let g0; g1; . . . ; gnÿ1 be elements of G such that G � fg0; . . . ; gnÿ1g where g0 � 1
and n � jGj. Clearly we may assume that G 6� N; thus n > 1. Since G acts faithfully
on V, it follows, as in the proof of Lemma 3.1, that there exists a non-zero element v
of V such that the elements vg0; . . . ; vgnÿ1 are distinct.

Recall that �M0�N may be regarded as a KG-module and that �M0�N 6� f0g. Let u
be a non-zero element of �M0�N. Thus each of ug0; . . . ; ugnÿ1 is an element of �M0�N.
Since vg0; . . . ; vgnÿ1 are distinct elements of P, it is easy to verify (by considering the
elements �vgi��vgj�ÿ1 in the multiplicative group of the ®eld of quotients Q) that there
exist in®nitely many positive integers t such that �vg0�t; . . . ; �vgnÿ1�t are distinct. We
choose t so that deg�ugi�4t� 1 for i � 0; . . . ; nÿ 1, and we write w � vt. Thus
wg0; . . . ;wgnÿ1 are distinct elements of Pt.

Let Z be the matrix

1 wg0 . . . �wg0�nÿ1
1 wg1 . . . �wg1�nÿ1
..
. ..

. ..
.

1 wgnÿ1 . . . �wgnÿ1�nÿ1

0BBB@
1CCCA:

Thus Z is a van der Monde matrix over the ®eld Q, and it is invertible over Q.
We claim that the element �u; 1� w� . . .� wnÿ1� of �M0�N generates a regular

KG-module. To prove this, suppose that

Xnÿ1
i�0

�i��u; 1� w� . . .� wnÿ1�gi� � 0; �4:2�

where �0; . . . ; �nÿ1 2 K. We shall prove that �i � 0 for i � 0; . . . ; nÿ 1.
By (4.2) and Lemma 4.2, we haveX

i

�i�ugi; 1� �wgi� � . . .� �wgi�nÿ1� � 0: �4:3�

For i � 0; . . . ; nÿ 1, write ei � �i�ugi�" 2 V
 P. By Lemma 4.1, " is a homo-
morphism of P-modules. Thus, applying " to (4.3), we obtainX

i

ei�1� �wgi� � . . .� �wgi�nÿ1� � 0: �4:4�

But ei 2 V
 �P1 � . . .� Pt� for each i, by the choice of t and the de®nition of ".
Thus

ei�wgi�j 2 V
 �Pjt�1 � . . .� P�j�1�t�
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for j � 0; . . . ; nÿ 1. Hence, by (4.4),
P

i ei�wgi�j � 0 for j � 0; . . . ; nÿ 1. In matrix
notation,

�e0; . . . ; enÿ1�Z � �0; . . . ; 0�:

We may regard each ei as an element of the Q-space V
Q. Thus, since Z is inver-
tible over Q, we obtain ei � 0 for all i. But, since " is an embedding, �ugi�" 6� 0 for all
i. Thus �i � 0 for all i.

Therefore, as claimed, �u; 1� w� . . .� wnÿ1� generates a regular KG-module. It
follows that the element

�u; 1� w� . . .� wnÿ1��g0 � g1 � . . .� gnÿ1�

is a non-zero element of �M0�N which is ®xed by G. Thus we have a non-zero element
of �M0�G.

Lemma 4.4. Let M be the free metabelian Lie algebra over a ®eld K on a free
generating set X with jXj > 1. Let G be a ®nite subgroup of Aut�M� and write
N � G \ IA�M� and G � G=N. Let x 2 X and let q be a real number with 04q < 1.
Then there exists c 2MN \M0 such thatX

h2G
ch =2M�x; q�:

Proof. Write G � fg0; . . . ; gnÿ1g where g0 � 1 and n � jGj. By Lemma 4.3 there
exists a non-zero element u of �M0�G. Let t be the degree of u. Choose q 0 so that
q < q 0 < 1 and choose a positive integer r so that �q 0 ÿ q�r > qt. Let P � K�X� and
make P into a KG-module as explained before the statement of Lemma 4.2. By
Lemma 3.1, there exists s5r and a 2 Ps such that

P
i agi =2P�x; q 0�. Let c � �u; a�.

Thus c 2 �M0�N. Also,
P

i cgi � �u;
P

i agi� by Lemma 4.2. We claim that
�u;
P

i agi� =2M�x; q�.
Write u � u2 � . . .� ut where uj 2Mj for j � 2; . . . ; t. Since u has degree t,

ut 6� 0. Suppose, in order to get a contradiction, that �u;
P

i agi� 2M�x; q�. Since
agi 2 Ps for all i, it follows that �ut;

P
i agi� 2M�x; q�. Note also that

�ut;
P

i agi� 2Ms�t.
Write ut �

Pt
j�0 uj;t where uj;t 2Mj;t for j � 0; . . . ; t. Similarly, writeP

i agi �
Ps

j�0 dj;s where dj;s 2 Pj;s for j � 0; . . . ; s and write �ut;
P

i agi� �
Ps�t

j�0 ej;s�t
where ej;s�t 2Mj;s�t for j � 0; . . . ; s� t. Choose k maximal subject to uk;t 6� 0 and
choose l maximal subject to dl;s 6� 0. Then ek�l;s�t 6� 0 by Lemma 4.1(ii). But, by the
choice of a, we have l > q 0s. Also, �q 0 ÿ q�s > qt. Hence k� l5l > q�s� t�. Thus
�ut;

P
i agi� =2M�x; q�, which is a contradiction.

Proof of Theorem B. Suppose, in order to get a contradiction, that MG is ®nitely
generated. By Lemma 2.2, MG �M0 6�M. Let X0 be a free generating set for M.
Thus M � hX0i �M0. Take a basis X for hX0i so that, for some x 2 X, we have
MG � hXnfxgi �M0. It is easy to verify that X is a free generating set for M and, in
the notation of Section 2, MG �M�x�. Thus, by Lemma 2.3(ii), there exists q with
04q < 1 such that MG �M�x; q�. By Lemma 4.4, there exists c 2 �M0�N such thatP

h2G ch =2M�x; q�. But
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X
h2G

ch 2MG �M�x; q�:

This is the required contradiction.

Theorem C will be derived as a corollary of the following result.

Theorem 4.5. Let R be a Lie algebra over a ®eld K such that R=R00 is a free
metabelian Lie algebra of rank greater than 1. Let G be a non-trivial ®nite subgroup of
Aut�R� such that G acts faithfully on R=R0. Then RG is not ®nitely generated.

Proof. Write M � R=R00. Thus M is a free metabelian Lie algebra of rank
greater than 1 and M=M0 may be identi®ed with R=R0. Since G acts faithfully on
R=R0 it acts faithfully on M=M0 and so it acts faithfully on M. Thus we may regard
G as a group of automorphisms of M.

Suppose, in order to get a contradiction, that RG is ®nitely generated, and write
S � �RG � R00�=R00. Thus S is a ®nitely generated subalgebra of M. Also,

�S�M0�=M0 � �M=M0�G 6�M=M0:

Thus, as in the proof of Theorem B, we may choose a free generating set X of M and
an element x of X such that S �M�x�. By Lemma 2.3(ii), there exists q with
04q < 1 such that S �M�x; q�. Note that N � G \ IA�M� � f1g. Thus, by Lemma
4.4, there exists c 2M0 such that

P
g2G cg =2M�x; q�.

Let w be any element of R such that w� R00 � c. Since
P

g2G wg 2 RG, we haveX
g2G

wg� R00 2 S �M�x; q�:

But X
g2G

wg� R00 �
X
g2G

cg =2M�x; q�:

This is the required contradiction.

Proof of Theorem C. Under the hypotheses of Theorem C, suppose that R is
relatively free in V, where V is a variety of Lie algebras over K. If R is nilpotent then
R is ®nite-dimensional and so RG is ®nitely generated.

Now assume that R is not nilpotent. Thus R has rank greater than 1. We shall
show that RG is not ®nitely generated. By Theorem 4.5 it is enough to show that V
contains the variety of all metabelian Lie algebras over K. Suppose, in order to get a
contradiction, that this does not hold. Then, by a well-known argument (see the proof
of Corollary 5.4 of [3], for example), V satis®es an Engel identity. Hence R satis®es
an Engel identity. But R is ®nitely generated. Therefore, by the results of Kostrikin
([8]) and Zel'manov ([10]), R is nilpotent. This is the required contradiction.

5. Free Lie algebras. Let K be a ®eld. As in Section 2, let X be a non-empty set,
let A be the free associative K-algebra on X, and let F be the free Lie K-algebra on X.
As before we take F � A. Elements of X will sometimes be called letters.
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If a, b, c and d are monomials of A (any of which may be the identity element)
such that d � abc then we say that a is an initial segment of d, b is a segment of d,
and c is a ®nal segment of d. For any monomial a of A we write ~a for the monomial
of A obtained by writing the letters of a in reverse order: that is, if a � x1x2 � � �xn
where xi 2 X for i � 1; . . . ; n, then ~a � xn � � � x2x1. Note that the monomials of A
form a K-basis of A. Thus each element u of A may be uniquely expressed as a linear
combination of monomials of A with coe�cients in K. Every monomial a of A has a
coe�cient (possibly 0) in this expression: we call it the coe�cient of a in u. We shall
be particularly concerned with the special case where u 2 F.

Lemma 5.1. Let f 2 F, let a be a monomial of A, and let � be the coe�cient of a in
f. Then the coe�cient of ~a in f is �ÿ1�deg�a��1�.

Proof. See Lemma 1.7 of [9].

If K has prime characteristic p, then for all e; f 2 A and any non-negative integer
� we have

�e; f p� � � �e; f; . . . ; f�;

where there are p� copies of f in the second commutator (see (1.6.1) of [9], for
example). Thus if e; f 2 F then �e; f p� � 2 F. Much of the work towards the proof of
Theorem A is done in the proof of the following technical result.

Lemma 5.2. Let K be a ®eld of prime characteristic p, let X be a set such that
jXj > 1, let A be the free associative K-algebra on X, and let F be the free Lie K-
algebra on X, where we take F � A. Let x 2 X, let q be a real number with 04q < 1,
let e be a non-zero element of F 0, and let f1; . . . ; fpÿ1 be elements of F 0 which are not all
zero. Then there exists a non-negative integer � such that

�e; xp� � �x� f1�p� � . . .� �x� fpÿ1�p� � =2F�x; q�:

Proof. For any monomial v of A we shall write lx�v� for the largest non-negative
integer s such that xs is an initial segment of v and rx�v� for the largest s such that xs

is a ®nal segment of v.
For i � 1; . . . ; pÿ 1, let 
i be the set of monomials of A which have non-zero

coe�cient in fi, and write 
 � 
1 [ . . . [
pÿ1. Choose a 2 
 so that for all v 2 

either lx�v� < lx�a� or lx�v� � lx�a� and deg�v�4deg�a�. By Lemma 5.1, ~a 2 
. Also, ~a
has the property that for all v 2 
 either rx�v� < rx� ~a� or rx�v� � rx� ~a� and
deg�v�4deg� ~a�. Without loss of generality we may assume that a 2 
1. (Thus, also,
~a 2 
1.)

For i � 1; . . . ; pÿ 1, let �i be the coe�cient of a in fi. Thus �1 6� 0 and, by
Lemma 5.1, ~a has coe�cient �ÿ1�deg�a��1�i in fi. For i � 1; . . . ; pÿ 1, write
�i � �ÿ1�deg�a��1�2i . Thus �i is the product of the coe�cients of a and ~a in fi. By
Lemma 2.6 there exists k 2 f1; . . . ; pÿ 1g such that �k

1 � . . .� �k
pÿ1 6� 0.

Let ÿ be the set of monomials of A which have non-zero coe�cient in e. Let c be
a monomial of A of smallest possible degree such that cxn 2 ÿ for some n50. For
this monomial c, choose n as large as possible such that cxn 2 ÿ and write b � cxn.
Furthermore, let � be the coe�cient of b in e: thus � 6� 0.
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Note that, since e; f1; . . . ; fpÿ1 2 F 0, every element of ÿ [
 has degree at least 2,
and no element of ÿ [
 is a power of x.

Choose a positive integer l so that deg�v�4l for all v 2 ÿ [
. Let t be a power
of p chosen so that when m is de®ned as m � tÿ k�l� 2� we have m5l and
kl�m > q�3kl� l�m�. Let

u � �e; xt � �x� f1�t � . . .� �x� fpÿ1�t�:

We shall show that u =2A�x; q�. This will establish the required result because
F�x; q� � A�x; q�.

Write d � b�xla ~a�kxm. Thus d is a monomial of A. We shall prove that d appears
in u with non-zero coe�cient and that d does not belong to A�x; q�.

Let i 2 f1; . . . ; pÿ 1g. Since

�e; �x� fi�t� � e�x� fi�t ÿ �x� fi�te;

we can write �e; �x� fi�t� as a linear combination of terms of the form v0v1 � � � vt and
terms of the form v1 � � � vtv0 where v0 2 ÿ and v1; . . . ; vt 2 fxg [
i. No term of the
form v1 � � � vtv0 can be equal to d because d has a ®nal segment xm, but m5deg�v0�
and v0 is not a power of x.

We shall prove that if v0v1 � � � vt � d then there is an equality of �t� 1�-tuples

�v0; v1; . . . ; vt� � �b; x; . . . ; x;a; ~a; x; . . . ; x; a; ~a; . . .

. . . ; x; . . . ; x; a; ~a; x; . . . ; x�; �5:1�

where the �t� 1�-tuple on the right is the one given by the factorisation b�xla ~a�kxm
of d. Suppose then that v0v1 � � � vt � d, where v0 2 ÿ and v1; . . . ; vt 2 fxg [
i.

Since l5deg�v0�, v0 is an initial segment of bxl. But v0 cannot have the form bxs

with s51 because of the choice of b. Hence v0 is an initial segment of b. Recall that
b � cxn. By the choice of c, v0 is not an initial segment of c unless v0 � c. Thus v0 has
the form v0 � cxn

0
where 04n04n, and so b � v0x

nÿn0 . Hence

v1 � � � vt � xnÿn
0 �xla ~a�kxm:

Write

xnÿn
0 �xla ~a�kxm � w1 � � �wr

where w1; . . . ;wr 2 fx; a ~ag, exactly as x and a ~a appear in xnÿn
0 �xla ~a�kxm. It is easily

veri®ed that r � nÿ n0 � tÿ k. Also,

v1 � � � vt � w1 � � �wr:

For j � 1; . . . ; t, take �� j � and �� j � in f1; . . . ; rg so that when vj is regarded as a
segment of w1 � � �wr it has its ®rst letter within w��j� and its last letter within w�� j �.

We claim that if vj 2 
i then w�� j � � a ~a. For suppose otherwise that w�� j � � x
for some j with vj 2 
i. Then vj is an initial segment of w�� j � � � �wr, which is a
monomial with an initial segment of the form xsa with s51. Hence lx�vj� > lx�a�,
contrary to the choice of a. Similarly, if vj 2 
i then w�� j � � a ~a because no element
of 
i can be a ®nal segment of any monomial with a ®nal segment of the form ~axs

with s51, because of the maximality of rx� ~a�.
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Therefore, for j 2 f1; . . . ; tg, if vj 2 
i then w�� j � � a ~a and w�� j � � a ~a. Since
l5deg�vj� we must have �� j � � �� j � in this case. But, clearly, if vj � x then we also
have �� j � � �� j �. It follows that there are integers ��0�; ��1�; . . . ; ��r� with

0 � ��0� < ��1� < . . . < ��r� � t

such that

w1 � v1 � � � v��1�; w2 � v��1��1 � � � v��2�; . . . ; wr � v��rÿ1��1 � � � vt:
If wj � a ~a then we cannot have �� j � ÿ �� jÿ 1� � 1 because this gives a ~a � v�� j �

which implies lx�v�� j �� � lx�a� and deg�v�� j �� > deg�a�, contrary to the choice of a.
Thus, if wj � a ~a we have �� j � ÿ �� jÿ 1�52. Of course, if wj � x we have
�� j � ÿ �� jÿ 1� � 1. There are k values of j for which wj � a ~a and there are
nÿ n0 � tÿ 2k values of j for which wj � x. Since t �Pj��� j � ÿ �� jÿ 1��, we obtain

t52k� �nÿ n0 � tÿ 2k�:

Thus nÿ n0 � 0 and whenever wj � a ~a we must have �� j � ÿ �� jÿ 1� � 2, that is
wj � v�� j �ÿ1v�� j �.

In order to examine this last equation suppose that a ~a � vv0 where
v; v0 2 fxg [
i. If deg�v� < deg�a� then v0 2 
i, rx�v0� � rx� ~a� and deg�v0� > deg� ~a�,
which is impossible. Thus deg�v�5deg�a�. Hence v 2 
i and lx�v� � lx�a�; thus
deg�v� � deg�a�. It follows that v � a and v0 � ~a. Therefore, whenever
wj � v�� j �ÿ1v�� j � we have v�� j �ÿ1 � a and v�� j � � ~a.

It follows that

�v1; v2; . . . ; vt� � �x; . . . ; x; a; ~a; . . . ; x; . . . ; x�;

where the t-tuple on the right is the one given by the factors of xnÿn
0 �xla ~a�kxm. But

nÿ n0 � 0 and so b � v0. Thus we obtain (5.1).
Therefore, when �e; �x� fi�t� is written as a linear combination of terms

v0v1 � � � vt and v1 � � � vtv0, as previously described, the only term which is equal to the
monomial d is the one speci®ed by (5.1) (and this can only occur if i has the property
that a 2 
i). This term has coe�cient ��k

i . It follows that the coe�cient of d in u is
���k

1 � . . .� �k
pÿ1�. Thus d has non-zero coe�cient in u.

The x-degree of d is at least kl�m, whereas

deg�d�4l� k�l� 2l� �m � 3kl� l�m:

Since kl�m > q�3kl� l�m� we see that d =2A�x; q�. Hence u =2A�x; q�, as required.

Lemma 5.3. Let F be a free Lie algebra of rank greater than 1 over a ®eld K of
prime characteristic p. Let G be a group of IA-automorphisms of F such that G is
cyclic of order p. Then FG is not ®nitely generated.

Proof. Let g be an element of G which generates G. In order to get a contra-
diction, assume that FG is ®nitely generated. By Lemma 2.2, FG � F 0 6� F. Thus (as
in the proof of Theorem B) we may choose a free generating set X of F and an ele-
ment x of X such that FG � hXnfxgi � F 0. By Lemma 2.3, there exists q with
04q < 1 such that FG � F�x; q�.
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Write xg � x� f1, xg2 � x� f2; . . . ; xgpÿ1 � x� fpÿ1, where f1; . . . ; fpÿ1 2 F 0.
Note that f1 6� 0. By Lemma 2.5 there exists a non-zero element e of �F 0�G. Let � be
as given by Lemma 5.2 and write w � �e; xp� �. Thus w 2 F. Clearly

w�1� g� . . .� gpÿ1� 2 FG � F�x; q�:
But

w�1� g� . . .� gpÿ1� � �e; xp� � �x� f1�p� � . . .� �x� fpÿ1�p� �:

Thus, by Lemma 5.2, w�1� g� . . .� gpÿ1� =2F�x; q�. This is the required contra-
diction.

Proof of Theorem A. We ®rst deal with the case where G is simple. Let
N � G \ IA�F�. Thus N � f1g or N � G. If N � f1g then the result follows from
Theorem 4.5. On the other hand, if N � G then, by Lemma 2.1, K has prime char-
acteristic p and G is a p-group; so it follows that G is cyclic of order p and the result
is given by Lemma 5.3.

For the general case we argue by induction on jGj and assume that G is not
simple. Thus G has a non-trivial normal subgroup B such that G=B is simple. By the
inductive hypothesis, FB is not ®nitely generated. Clearly FB is G-invariant. If G acts
trivially on FB then FG � FB and the result follows. Thus we may assume that G acts
non-trivially on FB. Since G=B is simple it follows that G=B acts faithfully on FB. By
the theorem of Shirshov and Witt (see [9] for example), FB is a free Lie algebra over
K. Since FB is not ®nitely generated, it is free of rank greater than 1. Hence, by the
inductive hypothesis, �FB�G=B is not ®nitely generated. In other words, FG is not
®nitely generated.
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