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The mechanics of a system of packed spheres has relevance to several
physical disciplines. A particular case has been a recent trend among engi-
neers to use a close-packed sphere model to aid research into the strength
of cohesionless granular masses, such as sand.

The basis for the examination of the strength of sphere packings is
contained in work by Rennie [3], who established a geometrical nomen-
clature and failure criterion for an array of close-packed spheres. These
were applied in the derivation of solutions, with and without friction,
under a restricted system of external stress.

It is, however, most usual practice in experimental soil mechanics to use
an apparatus and loading system which gives ox > a2 = o3 > 0 (taking
compressive stress positive), a situation which is excluded from Rennie's
original analysis. It has therefore been necessary to extend the solution
to include what is, in fact, the most significant stress condition.

1. Previous work

The arrangement that constitutes the densest lattice packing of uniform
rigid spheres is one in which each sphere is in tangent contact with twelve
neighbours (Boerdijk [1]). This condition specifies the disposition of these
twelve spheres in relation to the one they enclose.

With reference to the co-ordinate frame of Fig. 1, Rennie showed that
the centres of those spheres that are in contact with one centred on the origin
are given by

(1) x = Pad

where P is the matrix

a is a column of three integers, and d is the sphere diameter. The distance of
any sphere from the origin is then
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dVn'P'Pa

which is minimal for each of the contiguous spheres, given by the row a'
equal to

(1,0,0), (0,1,0), (0,0,1), (1 , -1 .0) , (1 ,0 , -1) , (0 ,1,-1)

and their negatives.

Figure 1

Under a small strain S the square of the separation distance will increase
by an amount which, to a first order in S, is

2n'P'SPnd\

From the geometrical condition of rigid spheres that the separation distance
cannot decrease during shear, Rennie showed that S is restricted by the
inequalities (2)

Sii ^ 0 _

su+2\/2s12-2s13+2s22-2v/2s28+Sg8 ^ 0

+S33 ^ 0

sn—2V2sn—2SU+2S.J.J+2V2S.3+SS3 ^ 0

su-2V^s l a+2su+2sa a -2V2s2 3+s3 3 ^ 0

which together define a convex cone C in the strain space of the components
of S. The symmetry of the sphere model enabled Rennie to prove that the
six inequalities (2) are linearly independent and that they may be permuted
within themselves by standard transformations.

For the frictionless case, suppose that the model is subjected to a
stress F. It was proposed by Rennie that the model would collapse if, for
some rotation F* of F, and for some geometrically possible strain S* in C,

(3) SpurF*S*>0

which requires that the strain shall be in a sense consistent with the applied
stress (positive virtual work).
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It was shown thereafter that the problem may be simplified in that it is
only necessary to consider S* in a one-dimensional edge of C, obtained by
setting all but one of the inequalities (2) equal to zero. In this regard,
Rennie considered the inequalities as the co-ordinates xx • • • a?8 in strain
space, and could then write the virtual work equation (3) as

(4) J,aiXi>0

with the condition that all xt 2; 0. This was considered to be equivalent to
some a, > 0 or 2 <*<£< > 0 for some one co-ordinate positive and all others
zero.

By symmetry, it was irrelevant which edge of C was considered, and it
was convenient to take s u > 0 with all others zero, yielding strains of the
type

( 2 0
0 — 1 0
0 0 0y

The strain indicates relative sliding between contiguous hexagonal layers.
Finally, taking S* = St, it was shown that the condition of stability

for smooth spheres is that the three principal stresses should all be negative
(compressive) and that the greatest of them should not exceed twice the
smallest. In this case the principal axes of stress and strain are coincident.

By inferring from the condition of continuity that collapse will again
occur toward Sf, Rennie extended his solution to include a small coefficient
of friction, (i, between the grains. In this case, it was assumed that the inter-
mediate principal axes of stress and strain were both coincident with the
Z-axis, leaving the remaining principal stress axes to be determined.

Considering the normal and shear forces acting on a typical sphere in a
lattice subjected to St, the volume integral of the stress tensor through the
sphere is

j>ht being the contact traction at point xk(. This leads to a stress tensor which
is a negative multiple of

(6)

V3
0

0

0

l+t)

and as y> (which is, to a first order, the angle between the principal axes of
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stress and strain) varies, the ratio of the two eigenvalues other than l+t
reaches a minimum of

3 Vl+4/i2/3—1 -4/ iVf

Equation (7), however, will be subject to the assumed condition that
1+t is the intermediate of the three principal stresses, where t, a contact
force, cannot be negative. Since the quantity

is independent of [i and y>, the lower limit of a2, defined by t = 0, is

(8) («2)<-o = ^ j p -
It may be noted that it is not necessary to assume coincidence of the

intermediate principal axes of stress and strain, but a greatly simplified
analysis, results therefrom. Solutions of the type in equation (6) are therefore
in the nature of upper bounds, as understood in the theory of plasticity.

2. Failure under compound strain

It was shown that the original solution is valid over a restricted range
of the intermediate principal stress (although within this range, it is indepen-
dent of the intermediate principal stress). It now remains to complete the
solution, through an examination of the range

In this case, it is necessary to admit the possibility of two non-zero terms in
the virtual work equation (4). It is therefore, not sufficient to consider only
one non-zero term, as was done in the original solution.

It may be recalled from (2) that any co-ordinate x > 0 indicates the
formation of one pair of gaps at diametrically opposite points on each sphere.
Clearly, it is not necessary to consider more than three x{ > 0, which would
indicate an explosive type of failure, but the situations where two or three
x{ > 0 require further attention.

Consider any two normals through contacts on the central sphere as

x = Pa
y = Pm

Ignoring 180° reflections, the scalar product
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\n'P'Pm\ (m ̂  n)

takes only the values •§• and 0, indicating that, on selecting any given contact,
a second can be chosen in two ways. Similarly, for the case of three xt > 0,
only one choice is possible if explosive failures are discounted. However,
the conditions of symmetry for single contacts, enumerated by Rennie, will
again apply, it being relevant which contact is initially chosen.

Thus, where multiple gap formation is envisaged, the nature of strain
will be determined by the number of gaps and by their relative dispositions
and magnitudes. It is, nevertheless, possible to synthesise such strains by
superimposing simple sliding strains of the type S* and strains derived in
this way will be termed compound.

3. Case 1 - Broken contacts on perpendicular diagonals

This situation may be obtained by solving

s u > 0

sS8>0

of the inequalities (2). The solution for S will evidently be once indeterminate
with respect to Sf and may be written in the form (s arbitrary)

or alternatively

(9)

where it will be considered that a-\-b = 1. A solution of strength must then
be sought in terms of the variable a.

Figure 2

1 I am grateful to Professor Rennie for pointing out this equivalence.
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Several assumptions are necessary. As the compound strain lies between
the limit of Sr, for which the normal contact forces are related by

p = s^q = r (sliding at Q and R)

(Rennie, 1959) and a permutation of S* for which

p = s <; q = r (sliding at P and S)

it may be assumed that p = s and q = r for all a. Similarly, it is assumed
that all contact friction forces are equal in magnitude and are equal to fi
times the smaller of p and q.

In the particular range 1 ^ a 2g f, where the z-direction may be
considered to be that of the intermediate principal strain, the further assump-
tion is made that the intermediate principal axes of stress and strain will be
coincident.

Consider that p = s 'Szq = r and that sliding is impending at the Q
and R contacts. The direction cosines of the friction forces are then derived
from the product Sx and are

- « a+b l

at P(-i,

(co-ordinates in terms of d)
a+b

at

at

at

a+b

»a+b h

Thus the shear components at the P contacts will make a contribution to
the stress tensor of

a a a
~% V2 ~ ¥

pqd a+b a+b a+b
2V2
b

2

2 ^ 2
b

V2

2-y/2

b
2
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Similar contributions result at the other contacts, such that the total contri-
bution of shear forces to the stress tensor is

(10)

As in the original analysis, the contribution of normal forces to the
stress tensor is

/ i v o
(11) -d j v> 2 0

\0 0

but noting that the force t is zero for all a ̂  1.2 The angle is again defined
by q = 1— v/\/2-

Considering now the greatest and least eigenvalues of the total stress
tensor ((10)+(11)). the sum is no longer independent of /i and tp. (Calcula-
tions hereafter are exact in ft, for the sake of clarity, although it ought to be
borne in mind that the assumptions are only reliable to a first order in fi).

(12) <*i+a» = 3-1

(We adopt the convention of compressive stress positive.)
If £ is the ratio

$ wjy/ and F =
then

which is maximum when dijdf) = 0. A trivial root

P) = 0

is determined by inspection and is equivalent to 01+03 = 0. The only
remaining root is given by

{ ' • P

The value of p according to (13) will be termed critical, since it specifies the
worst orientation of model in relation to the applied stress. The critical

• In fact, b and t may be related in the form bt = 0.
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strength will then be

(14) ^ =

at a specific value of the ratio a2/a3 to be determined.

[8]
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Figure 4
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From (10) and (11), and dividing by (12)

\

Equations (13), (14), and (15) have been solved by digital computer
and the solution is depicted in Fig. 3 and again in Fig. 4 in stress space,
together with Rennie's original linear solution. It should be noted that the
solution is only valid to a first order in fi, as pointed out by Rennie, but
the computations are exact for purposes of clarity.

It might also be noted that the solution e2 = £3 is reached at a very
small distance from the axis (Fig. 3), and thereafter the intermediate princi-
pal axes of stress and strain no longer coincide. Although contrary to the
original assumption, however, this does not conflict with any essential
physical requirement.

For the particular case <r2 = a3 (for which a «a b), the condition of
stability is that

(16) ^ ^ 2+4^+Ofc*)

whereas the equivalent expression for the case solved by Rennie is

(17) - ^ 2+2^6+Ofa*).

4. Other failure modes

There remain two other failure modes to be examined (section 2).
The first of these (two broken contacts, normals intersecting at 60°) has
been studied elsewhere (Parkin [2]), but leads to higher strengths and does
not rate further mention. Only the case of three broken contacts remain to
be solved and must be the subject of further investigation. However, since
the support conditions are less stable and since there is a higher potential
energy requirement for failure, it may be anticipated that the solution will
be less critical than the one advanced above.
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