
Bull. Aust. Math. Soc. 80 (2009), 324–334
doi:10.1017/S0004972709000343

FRACTIONAL INTEGRAL OPERATORS IN
NONHOMOGENEOUS SPACES

H. GUNAWAN ˛, Y. SAWANO and I. SIHWANINGRUM

(Received 3 November 2008)

Abstract

We discuss here the boundedness of the fractional integral operator Iα and its generalized version
on generalized nonhomogeneous Morrey spaces. To prove the boundedness of Iα , we employ the
boundedness of the so-called maximal fractional integral operator I ∗a,κ . In addition, we prove an Olsen-
type inequality, which is analogous to that in the case of homogeneous type.
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1. Introduction

Let Rd be equipped with a (positive) Radon measureµ satisfying the growth condition:

µ(Q(x, `Q))≤ C · (`Q)
n, x ∈ supp µ, `Q > 0,

for some constants C and n, where 0< n ≤ d . Here Q(x, `Q) denotes the cube with
centre x ∈ Rd and side length `Q . Many authors call such µ a nondoubling measure,
since it does not necessarily satisfy the so-called doubling condition, a condition which
is usually required when one studies the properties of an operator in a measure space.
In this case, the space (Rd , µ) is known as a nonhomogeneous space. See, for instance,
the works of [11, 12, 18, 20].

In this paper, we study the fractional integral operator Iα = Iα(n, µ), given by
the formula

Iα f (x) :=
∫

Rd

f (y)

|x − y|n−α
dµ(y),

where 0< α < n, and its generalized version (which we define later). Note that if
n = d and µ is the usual Lebesgue measure on Rd , then Iα is the classical fractional
integral operator which is known to be bounded from L p to Lq for 1< p < d/α
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and 1/q = 1/p − α/d; this is due to Hardy and Littlewood [6, 7] and Sobolev [16].
Some extensions of this result may be found in, for instance, [1, 9], or in [17, 19], and
the references therein.

In the nonhomogeneous setting, the boundedness of Iα on the Lebesgue spaces
L p(µ) has been studied recently in [4, 15]. Our goal here is to prove the boundedness
of Iα , and its generalized version, on the generalized nonhomogeneous Morrey space
M p,φ(k, µ). In addition, we also prove an Olsen-type inequality involving Iα and a
multiplicator W (see [13]).

Before we go into details, let us fix some notation. By Q(µ) we mean the set of all
cubes with positive µ-measure. Given Q ∈Q(µ) and k > 1, let us set k Q as the cube
concentric to Q and having k-times as long side length as Q. Denoting by `Q the side
length of Q ∈Q(µ), we have `k Q = k`Q . Next, we write ‖ f : X‖ to denote the norm
of f in the space X . The generalized nonhomogeneous Morrey spaces M p,φ(k, µ) is
the set of all µ-locally integrable functions f on Rd for which

‖ f : M p,φ(k, µ)‖ := sup
Q

1
φ(µ(k Q))

(
1

µ(k Q)

∫
Q
| f (y)|p dµ(y)

)1/p

<∞.

Here 1< p <∞ and we always assume tacitly that the function φ : (0,∞)→ (0,∞)
is almost decreasing, that is, there exists C1 > 0 such that φ(s)≥ C1φ(t) for s < t ;
and also satisfies the doubling condition, that is, there exists C2 > 0 such that

1
C2
≤
φ(s)

φ(t)
≤ C2,

whenever 1≤ s/t ≤ 2. Meanwhile, k > 1 serves as an auxiliary parameter.
As in [14], we have the following fact.

FACT 1. For k1, k2 > 1, the spaces M p,φ(k1, µ) and M p,φ(k2, µ) coincide as a set
and their norms are mutually equivalent.

In view of this fact, we set M p,φ(µ) :=M p,φ(2, µ). One may observe that if
1≤ p1 ≤ p2 <∞, then M p2,φ(µ)⊆M p1,φ(µ) for we have ‖ f : M p1,φ‖ ≤ ‖ f :
M p2,φ‖ whenever f ∈M p2,φ .

To prove the boundedness of Iα from M p,φ(µ) to Mq,ψ (µ), we need to employ
the (modified) maximal operator Mk (k > 1), which is defined by

Mk f (x) := sup
Q3x

1
µ(k Q)

∫
Q

f (y) dµ(y),

for all µ-locally integrable functions f on Rd .

THEOREM 1.1 (Sawano [14]). For p > 1, Mk is a bounded operator on M p,φ(µ).
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2. The boundedness of Iα
To study the boundedness of Iα on the generalized Morrey spaces, we define the

maximal fractional integral operator I ∗a,κ , given by

I ∗a,κ f (x) :=
∫

Rd
K ∗a,κ(x, y) f (y) dµ(y),

where the kernel K ∗a,κ is given by

K ∗a,κ(x, y) := sup
Q3x,y

µ(κQ)a−1.

Here 0< a < 1 and κ > 1; both of them serve as parameters. Since we are not
concerned with keeping track of the precise value of various constants, we denote by
C various constants independent of functions f . Using the following fact, it suffices
for us to study the boundedness of I ∗α/n,κ .

FACT 2 (Sawano et al. [15]). We have Iα f ≤ C I ∗α/n,κ f for all positive µ-measurable
functions f .

Our result is the following theorem, which is in some sense stronger than the result
obtained in [14].

THEOREM 2.1. Let a = α/n ∈ (0, 1). If the function φ is surjective and satisfies the
inequality φ(t)≤ C tb with−1/p ≤ b <−a < 0, then I ∗a,κ is bounded from M p,φ(µ)

to Mq,φ p/q (µ), where p > 1 and q = bp/(a + b).

A helpful remark may be in order. In the above theorem, the hypothesis b ≥−1/p
is needed for ‖ f : M p,φ(µ)‖ to make sense. Meanwhile, the hypothesis b <−a
together with p/q = (a + b)/b < 1 implies that p < q . When µ is the usual Lebesgue
measure on Rd and φ(t)= t (λ−n)/(np) with 0≤ λ < n − αp and 1< p < n/α, the
above results recover the boundedness of Iα from the classical Morrey space L p,λ

to Lq,λ where 1/q = 1/p − α/(n − λ) (see [1]). For related results in the generalized
‘homogeneous’ Morrey spaces, see [3, 5].

PROOF OF THEOREM 2.1. Without loss of generality, we assume that f ≥ 0, not
identically zero, and a usual truncation procedure allows us to assume even that
M√κ f (x) is finite everywhere. For x ∈ supp µ and τ > 0, we write

A j :=

{
y ∈ Rd

\ {x} : 2 j−1τ < inf
Q3x,y

µ(κQ)≤ 2 jτ

}
,

for every j ∈ Z. As in [15], there exists a collection of cubes Q1
j , . . . , QNκ

j containing
x , with the covering constant Nκ being independent of x, τ , and j , such that

A j ⊆
√
κQ1

j ∪ · · · ∪
√
κQNκ

j

and
µ(κQl

j )≤ 2 j+1τ, 1≤ l ≤ Nκ ,

for every j ∈ Z. As a special case we accept Q1
j = Rd , although Rd is not compact.
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In the following, for the sake of simplicity, we assume that the Ql
j are all compact.

(If this is not the case, a minor modification suffices.)
Now, for each y ∈ A j , we have K ∗a,κ(x, y) < C(2 jτ)a−1, and so

I ∗a,κ f (x) ≤ C
∑
j∈Z
(2 jτ)a−1

∫
A j

f (y) dµ(y)

≤ C
∑
j∈Z

Nκ∑
l=1

(2 jτ)a−1
∫
√
κQl

j

f (y) dµ(y)

≤ C

[ 0∑
j=−∞

Nκ∑
l=1

· · · +

∞∑
j=1

Nκ∑
l=1

· · ·

]
=: C[I + II].

For the first summation, we use the definition of M√κ f to have

I ≤ C
0∑

j=−∞

Nκ∑
l=1

(2 jτ)a
(

1

µ(κQl
j )

∫
√
κQl

j

f (y) dµ(y)

)
≤ C τ a M√κ f (x).

For the second summation, we make use of Hölder’s inequality to obtain

II ≤
∞∑
j=1

Nκ∑
l=1

(2 jτ)a−1(µ(κQl
j ))

1−(1/p)
(∫
√
κQl

j

f (y)p dµ(y)

)1/p

≤

∞∑
j=1

Nκ∑
l=1

(2 jτ)a
(

1

µ(κQl
j )

∫
√
κQl

j

f (y)p dµ(y)

)1/p

≤

∞∑
j=1

Nκ∑
l=1

(2 jτ)aφ(µ(κQl
j ))‖ f : M p,φ(µ)‖

≤ C ‖ f : M p,φ(µ)‖

∞∑
j=1

(2 jτ)a(µ(κQl
j ))

b

≤ C ‖ f : M p,φ(µ)‖

∞∑
j=1

(2 jτ)a+b

≤ C τ a+b
‖ f : M p,φ(µ)‖

since b <−a.
Combining the two estimates and choosing τ = (M√κ f (x)/‖ f :M p,φ(µ)‖)

1/b,
we obtain

I ∗a,κ f (x) ≤ C
(
M√κ f (x)

)(a/b)+1
‖ f : M p,φ(µ)‖

−(a/b)

≤ C
(
M√κ f (x)

)p/q
‖ f : M p,φ(µ)‖

1−(p/q).
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Since M√κ is bounded on M p,φ(µ), we obtain

‖I ∗a,κ f : Mq,φ p/q (µ)‖ ≤ C ‖ f : M p,φ(µ)‖,

that is, I ∗a,κ is bounded from M p,φ(µ) to Mq,φ p/q (µ), as desired. 2

COROLLARY 2.2. If φ, p and q are as in Theorem 2.1, then Iα is bounded from
M p,φ(µ) to Mq,φ p/q (µ).

REMARK 2.3. As a consequence of our result, we have that if T is a kernel operator
with kernel K satisfying

K (x, y)≤ C |x − y|α−n,

then T is bounded from M p,φ(µ) to Mq,φ p/q (µ), where φ, p and q are as in
Theorem 2.1. With this result, one may also obtain estimates for fractional powers
of operators that generate semigroups with the Gaussian bounds for the associated
heat kernels (see [2] about heat kernels).

2.1. An Olsen-type inequality Following Corollary 2.2, we have the Olsen-type
inequality below. (For its origin, see the work of Olsen [13]. For an analogous result in
the ‘homogeneous’ case, see [5]. The ‘Olsen inequality’ is useful in understanding the
behaviour of the solution to a perturbed Schrödinger equation with a small perturbed
potential W ; see [8].)

COROLLARY 2.4. If φ, p and q are as in Theorem 2.1, then W · Iα is bounded on
M p,φ(µ) provided that W ∈Ms,φ p/s (µ), where 1/s = 1/p − 1/q. Precisely, we have

‖W · Iα f : M p,φ(µ)‖ ≤ C ‖W : Ms,φ p/s (µ)‖ · ‖ f : M p,φ(µ)‖,

where 1/s = 1/p − 1/q.

The following theorem provides an Olsen-type inequality for a multiplication
operator involving the fractional integral operator I ∗a,κ .

THEOREM 2.5. Suppose that t1/pφ(t) is almost increasing and satisfies the inequality∫
∞

r
ta−1φ(t) dt ≤ C raφ(r) (2.1)

for all r > 0 with some a < 1/p and C > 0 independent of r . Then

‖W · I ∗a,κ f : M p,φ(µ)‖ ≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖.

PROOF 1. Let Q ∈Q(µ) be fixed. We shall establish

I ≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖ (2.2)
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with K sufficiently large. We decompose f according to K Q, where

I :=
1

φ(µ(2K Q))

(
1

µ(2K Q)

∫
Q
|W · I ∗a,κ f (y)|p dµ(y)

)1/p

.

Set f1 = f · χK Q and f2 = f − f1. Along this decomposition, (2.2) can be split into

II≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖ (2.3)

III≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖, (2.4)

where

II :=
1

φ(µ(2K Q))

(
1

µ(2K Q)

∫
Q
|W · I ∗a,κ f1(y)|

p dµ(y)

)1/p

III :=
1

φ(µ(2K Q))

(
1

µ(2K Q)

∫
Q
|W · I ∗a,κ f2(y)|

p dµ(y)

)1/p

.

As for (2.3) we use Hölder’s inequality to obtain

II ≤
1

φ(µ(2K Q))

(
1

µ(2K Q)

∫
Rd
|W · I ∗a,κ f1(y)|

p dµ(y)

)1/p

≤
C

φ(µ(2K Q))

(
1

µ(2K Q)

)1/p

‖W : L1/a(µ)‖ · ‖ f1 : L p(µ)‖

≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖.

Let us denote by cQ the centre of Q. To obtain (2.4), we observe that

K ∗a,κ(x, y)≤ sup
cQ ,y∈R∈Q(µ)

µ(
√
κ R)−1+a

for all x ∈ Q and y ∈ Rd
\ K Q, provided K is sufficiently large. Therefore, it suffices

to show
IV≤ C ‖W : L1/a(µ)‖ · ‖ f : M p,φ(µ)‖,

where

IV :=
1

φ(µ(2K Q))

(
1

µ(2K Q)

∫
Q
|W · Ĩ L

a f2|
p dµ

)1/p

Ĩ L
a g(x) :=

∫
Rd

k̃L
a (x, y) f (y) dµ(y)

k̃L
a (x, y) := sup

Q⊂R∈Q(µ)
`R≤L , y∈R

µ(
√
κ R)−1+a .
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Let us set

A j :=

{
y ∈ supp µ : 2 j−1 < inf

Q⊂R∈Q(µ)
`R≤L , y∈R

µ(
√
κ R)≤ 2 j

}
.

Then from the definition of k̃L
a for each j ∈ Z, a geometric observation yields a finite

collection of cubes Q1
j , . . . , QNκ

j ∈Q(µ) such that

A j ⊂

Nκ⋃
l=1

4
√
κQl

j

and that

2 j−1
≤ µ(
√
κQl

j )≤ 2 j for each l = 1, . . . , Nκ .

Here the number Nκ is again a covering constant which may depend only on κ and d .
Again it can happen that the cube Q1

j equals Rd . In this case we only need to make a
minor modification of the proof below.

With the help of this covering we obtain

Ĩ L
a f2(x) ≤ C

∑
j∈Z

A j 6=∅

Nκ∑
l=1

2−(1−a) j
∫

4√κQl
j

f (y) dµ(y)

≤ C
∑
j∈Z

A j 6=∅

2ajφ(2 j )‖ f : M1,φ(µ)‖.

Note that if A j 6= ∅, then we have µ(Q)≤ 2 j . As a consequence, we have by virtue
of (2.1)

∑
j∈Z

A j 6=∅

2ajφ(2 j ) ≤ C
∑
j∈Z

A j 6=∅

∫ 2 j+1

2 j
ta−1φ(t) dt

≤ C
∫
∞

µ(Q)
ta−1φ(t) dt

≤ C µ(Q)aφ(µ(Q)).

From this inequality and the fact that ‖ f : M1,φ(µ)‖ ≤ ‖ f : M p,φ(µ)‖, we
now have

Ĩ L
a f2(x)≤ C µ(Q)aφ(µ(Q))‖ f : M p,φ(µ)‖.
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for all x ∈ Q and, hence,

IV ≤ C
µ(Q)aφ(µ(Q))

(∫
Q |W (y)|p dµ(y)

)1/p

µ(2K Q)1/pφ(µ(2K Q))
‖ f : M p,φ(µ)‖

≤ C
µ(Q)1/pφ(µ(Q))

(∫
Q |W (y)|1/a dµ(y)

)a

µ(2K Q)1/pφ(µ(2K Q))
‖ f : M p,φ(µ)‖

≤ C

(∫
Rd
|W (y)|1/a dµ(y)

)a

‖ f : M p,φ(µ)‖,

since t1/pφ(t) is almost increasing. This is the desired result. 2

3. A generalized version

The generalized fractional integral operator Tρ , defined for a given function ρ :
(0,∞)→ (0,∞) by

Tρ f (x)=
∫

Rd

ρ(|x − y|)

|x − y|d
f (y) dy,

was first studied by [9, 10], in the homogeneous setting. For ρ(t)= tα, 0< α < d , the
operator Tρ is equal to Iα , the classical fractional integral operator.

Now, we discuss an analogue of Tρ in the nonhomogeneous setting. Write

D(x, y) := inf
x,y∈Q∈Q(µ)

µ(κQ)

and

lρ(x, y) :=
ρ(D(x, y))

D(x, y)
.

Given a positive function f , we define Tρ by

Tρ f (x) :=
∫

Rd
lρ(x, y) f (y) dµ(y).

Note that for ρ(t)= tα , the operator Tρ takes the form of I ∗a,κ .

THEOREM 3.1. Let 1< p < q <∞. Assume that φ is surjective and ρ satisfies the
doubling condition. Suppose further that there exists C > 0 such that

φ(r)
∫ r

0

ρ(t)

t
dt +

∫
∞

r

φ(t)ρ(t)

t
dt ≤ C φ(r)p/q

for every r > 0. Then, there exists C > 0 such that

‖Tρ f : Mq,φ p/q (µ)‖ ≤ C ‖ f : M p,φ(µ)‖

for all positive f ∈M p,φ(µ).
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PROOF 2. The kernel being positive, we can truncate the kernel with respect to the
side length of cubes. Let L > 0 and define

l L
ρ (x, y) := sup

x,y∈Q∈Q(µ)
`Q≤L

ρ(µ(κQ))

µ(κQ)
.

Given a positive function f , define

T L
ρ f (x) :=

∫
Rd

l L
ρ (x, y) f (y) dµ(y).

It suffices to prove the assertion for T L
ρ instead of Tρ with constants independent of L .

Fix x ∈ supp µ and τ > 0. For j ∈ Z we define

A j :=

{
y ∈ Rd

: 2 j−1τ < inf
x,y∈Q∈Q(µ)

`Q≤L

µ(κQ)≤ 2 jτ

}
.

Then

T L
ρ f (x)≤ C

∑
j∈Z

ρ(2 jτ)

2 jτ

∫
A j

f (y) dµ(y).

As before, there exists Nκ with the following properties

A j ⊂
√
κQ1

j ∪ · · · ∪
√
κQNκ

j .

Therefore,

T L
ρ f (x) ≤ C

∑
j∈Z

Nκ∑
l=1

ρ(2 jτ)

2 jτ

∫
√
κQl

j

f (y) dµ(y)

≤ C
∑

j∈Z\N

Nκ∑
l=1

ρ(2 jτ) · M√κ f (x)

+ C
∑
j∈N

Nκ∑
l=1

ρ(2 jτ)

(2 jτ)1/p

(∫
√
κQl

j

f (y)p dµ(y)

)1/p

≤ C
∫ τ

0

ρ(t)

t
dt · M√κ f (x)+ C

∫
∞

τ

ρ(t)φ(t)

t
dt · ‖ f : M p,φ(µ)‖

≤ C φ(τ)
p
q −1 M√κ f (x)+ φ(τ)p/q

‖ f : M p,φ(µ)‖.

Assuming φ surjective and that 1< p < q <∞, we can optimize the above inequality.
As a consequence

T L
ρ f (x)≤ C (M√κ f (x))p/q

· ‖ f : M p,φ(µ)‖
1−p/q .

Now that the maximal operator M√κ is bounded on M p,φ(µ), we have the
desired result. 2
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COROLLARY 3.2. Suppose that φ is surjective. If ρ satisfies the doubling condition
and

φ(r)
∫ r

0

ρ(t)

t
dt +

∫
∞

r

φ(t)ρ(t)

t
dt ≤ C φ(r)p/q

for 1< p < q <∞, then

‖W · Tρ f : M p,φ(µ)‖ ≤ C ‖W : Ms,φ p/s (µ)‖ · ‖ f : M p,φ(µ)‖

provided that W ∈Ms,φ p/s where 1/s = 1/p − 1/q.
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