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Abstract

Consider N players, respectively owning x1, x2, . . . , xN monetary units, who play a
sequence of games, winning from and losing to each other integer amounts according
to fixed rules. The sequence stops as soon as (at least) one player is ruined. We are
interested in the ruin process of these N players, i.e. in the probability that a given player
is ruined first, and also in the expected ruin time. This problem is called the N -player ruin
problem. In this paper, the problem is set up as a multivariate absorbing Markov chain
with an absorbing state corresponding to the ruin of each player. This is then discussed
in the context of phase-type distributions where each phase is represented by a vector of
size N and the distribution has as many absorbing points as there are ruin events. We
use this modified phase-type distribution to obtain an explicit solution to the N -player
problem. We define a partition of the set of transient states into different levels, and on
it give an extension of the folding algorithm (see Ye and Li (1994)). This provides an
efficient computational procedure for calculating some of the key measures.
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1. Introduction

Suppose that N players are going to play a sequence of games, during each of which they
will either win or lose an integer amount of money. We are interested in the probability that a
given player is ruined first. If the games are played according to fixed rules, then this probability
will only depend – through the structure of each game – on the initial distribution of capital, say
{x1, . . . , xN }. Define � as the total capital (i.e. � = x1 + · · · + xN ). We are studying games
in which, at each stage, the total available capital remains constant and equal to �. Therefore,
we choose to represent the flow of capitals as a N -dimensional random walk {Jt } ∈ Z

N in the
lattice

{(X1, . . . , XN) ∈ Z
N : X1 + · · · + XN = �}. (1.1)

Each state of the random walk represents a possible distribution of wealth among the N players.
The ruin of a player occurs only when the random walk reaches a state in which one (or more)
of the coordinates satisfies Xi ≤ 0.

Remark 1.1. Note that we have not specified that the only possible flows are those between
capitals which lead to ruin without debt. Since we use no martingale argument at the core of
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756 Y. C. SWAN AND F. T. BRUSS

the present paper, the stronger requirement that Xi = 0 at ruin time is not needed, as it is in,
e.g. Engel (1993), Stirzaker (1994), and Bruss et al. (2003).

1.1. Classification of states

By the interior points of the lattice (1.1) we will refer to the collection of points all of whose
coordinates are positive, i.e. the subset of (1.1) given by

{X1 + · · · + XN = � : Xi > 0, i = 1, . . . , N}. (1.2)

Clearly, all these points are transient for the process Jt . We also notice that there are as many
points in the set (1.2) as there are vectors of R

N whose components are strictly positive integers
summing to �. This is the same as the number of ways of distributing � indistinguishable
balls between N urns, each urn containing at least one ball; i.e. there are

p =
(

� + N − 1 − N

� − N

)
=

(
� − 1

N − 1

)

transient states for Jt .
By the edge of the lattice (1.1) we will refer to the collection of points corresponding to the

ruin of at least one player, i.e. the subsimplex of (1.1) made up of all the points which have at
least one nonpositive coordinate. All these points are clearly absorbing for Jt , since we suppose
that once a player is ruined the game is finished.

Clearly, all the points at which the same combination of coordinates is nonpositive define
the same ruin events for the N -player game. Therefore, there are as many inequivalent disjoint
edge points as there are different ruin events. Since there are as many ruin events as there are
ways of choosing subgroups of sizes 1 to N − 1 among the N initial players, we see that, in the
context of the N -player ruin problem, there are in fact only 2N − 2 inequivalent edge points.
To each of the possible 2N − 2 sets of indices J = {i1, . . . , ik} we associate the absorbing state

OJ = {X1 + · · · + XN = � : Xj ≤ 0 for all j ∈ J and Xl > 0 for all l /∈ J },

and together these states form a partition of the set of edge points.

Example 1.1. Let us consider the case in which N = 3 and � = 7. The lattice defined by (1.1)
can be laid out as a triangle in the plane with 36 points, 15 of which are interior points. We
partition the 21 edge points into six absorbing states labeled O1 to O6, as in Figure 1. Each
of these states defines a different ruin event (the points O2, O4, and O6 correspond to the ruin
of a single player and O1, O3, and O5 correspond to the three possible combinations of two
players being ruined at the same time).

The way in which the points are ordered is arbitrary, but the choice of an order will obviously
determine the shape of the transition matrix of the process.

Remark 1.2. In the rest of the text, we suppose that the

p =
(

� − 1

N − 1

)

transient states as well as the n = 2N − 2 absorbing states are ordered in an unambiguous way.
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O1

O5

O6

O3
O4

O2

Figure 1: The lattice defined by (1.1) for N = 3 and � = 7.

2. A solution to the N -player problem

2.1. Notation

Let n = 2N − 2. We respectively denote by r1, . . . , rn the (column) vectors of one-step
probabilities of absorption in O1, . . . , On, i.e. r

ζ
i = P[Jt ∈ Oζ | Jt−1 = i], ζ = 1, . . . , n.

We denote by T the transition matrix corresponding to the transient states and use I for
the n × n identity matrix. The transition matrix of the random walk corresponding to the ruin
problem can then be written as

P =
(

T r1 · · · rn

0 I

)
. (2.1)

As stated before, the outcome of the game depends on the initial distribution of wealth, i.e.
on the initial distribution of the random walk. We therefore introduce the (row) vector τ , which
has zero entries everywhere except the entry corresponding to the position of the initial state,
which is set to 1.

Proposition 2.1. 1. Since P is stochastic, we have the relationship r1 + · · · + rn + T 1 = 1,

where 1 = (1, . . . , 1)�, ‘ �’ denoting transpose.

2. From the structure of P we immediately obtain, for k ≥ 1,

P k =
(

T k (I + · · · + T k−1)r1 · · · (I + · · · + T k−1)rn

0 I

)
.

2.2. PHm random variables

The methods and terminology we are going to apply are borrowed from matrix analysis
theory. These methods have been gradually developed from the foundations laid by Marcel
Neuts, who coined the terminology of ‘matrix-geometric distributions’ and ‘phase-type pro-
cesses’ (see, for example, Neuts (1975), (1978), (1981)). More specifically, we use different
results, of Latouche and Ramaswami (1999), in which those authors describe applications and
algorithms derived from and for matrix analysis theory.

Take P to be any stochastic matrix of the form (2.1) and τ , as above, to be the initial
distribution of a random walk on a grid with m transient states and n absorbing states. Following
Latouche and Ramaswami (1999), we define the concept of PHm distributions.
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Definition 2.1. The distribution of the time, X, until absorption of a random walk with tran-
sition matrix P and initial distribution τ is called a PHm distribution with representation
(τ , r1, . . . , rn, T ). We will write X ∼ PHm(τ , r1, . . . , rn, T ) to indicate this.

Given a PHm random variable X, we can define a random walk (which we will consistently
denote by Jt ) on a grid with m transient states and n absorbing states such that X represents
the time until absorption of Jt .

However, it must be noted that there can be more than one such random walk and, therefore,
more than one choice of (τ , r1, . . . , rn, T ). This is the reason why we refer to (τ , r1,

. . . , rn, T ) as a representation of X. This ambiguity will not cause any problems, since in
practice the random walk is a-priori defined by the structure of the ruin problem.

2.2.1. The distribution. In the next two propositions we study the law of a PHm random variable.
These results are a generalization of known results on PH random variables which can be found
in Latouche (1989) and Latouche and Ramaswami (1999, p. 49), and are therefore stated without
proof.

Proposition 2.2. Let X follow a PHm(τ , r1, . . . , rn, T ) distribution starting in a state α, 1 ≤
α ≤ m (which is not a border point). The distribution of X conditional on this initial state is
then given by

(i) Pα[X = 0] = 0;
(ii) Pα[X = k] = τT k−11 − τT k1;

(iii) FX(k) := Pα[X ≤ k] = τ (I − T k)1.

Now, it can be shown (see, for example, Householder (1964, p. 54)) that the series
∑

n≥0 Mn

converges if and only if the spectral radius, ρ(M), of M is strictly less than 1, in which case∑
n≥0 Mn = (I − M)−1. Moreover, for any strict submatrix N of a nondegenerate matrix M ,

we have ρ(N) < ρ(M). Since all stochastic matrices are nondegenerate (i.e. have no line of
zeros) and have spectral radius 1, this means that we can use the identity

∑
n≥0 Mn = (I−M)−1

for all strict submatrices M of stochastic matrices.
Using this and Proposition 2.2, we obtain the second proposition.

Proposition 2.3. The expected duration of the three-player game is given by

E[X] = τ (I − T )−11,

whereτ is the initial distribution. Furthermore, the probability that the random walk is absorbed
in state Oζ , ζ = 1, . . . , n, starting from any point α interior to the grid is given by

Pα[ruin in ζ ] = τ (I − T )−1rζ . (2.2)

Solving the ruin problem means finding the probabilities of ruin in any absorbing state Ol

starting from any point α in the grid. It therefore means solving (2.2), where the transition
matrix is determined by the structure of the game.

3. Ruin by folding

The algorithm we shall present and explain in this section is based on the folding algorithm
developed by Ye and Li (1994) for the study of quasi-birth-and-death processes. We need the
following preliminaries.
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Figure 2: The lattice defined by (1.1) for N = 3 and � = 7 can be divided into 2 levels as shown.

3.1. Preparation

Definition 3.1. We partition the lattice {X1 +· · ·+XN = �} into levels Lj , j ≥ 1, each level
being defined as the set of points at least one of whose coordinates (per point) is equal to j with
all the other coordinates being greater than j , i.e.

Lj = {X1 + · · · + XN = � : Xi ≥ j for all i and Xj0 = j for some j0}.
Example 3.1. From Example 1.1 we know that, for N = 3 and � = 7, we have a random walk
on a set with 15 transient interior points and six absorbing edge points. We can rearrange these
points into two levels, which are represented in Figure 2 by concentric equilateral triangles.
The exterior level (which is made up of the n = 2N − 2 absorbing points) is not counted as a
true level.

The next proposition serves to count the number of levels and the number of states on each
level.

Proposition 3.1. Let � = Nk + l, 0 ≤ l ≤ N − 1.

1. The grid is divided into k levels (without counting the ruin level).

2. Each level Lj , j < k, has

bj =
(

� − Nj + N − 1

� − Nj

)
−

(
� − Nj − 1

� − N(j + 1)

)
(3.1)

points. On Lk the number of points is given by

bk =
(

l + N − 1

l

)
.

Proof. We first prove statement 1. To do so, let us fix some integer j and consider level Lj .
We want to find a necessary and sufficient condition for the level to be nonempty. Since Xi ≥ j

for all i and at least one player has capital X = j , we see that the condition {X1+· · ·+XN = �}
will be satisfied if and only if there exist N − 1 nonnegative integers x̃i , i = 1, . . . , N − 1,
such that x̃1 + · · · + x̃N−1 = � − Nj. These x̃i will exist if and only if � − Nj ≥ 0. Writing �

uniquely as Nk + l (Euclidean division of � by N ) in the last inequality, we obtain N(j −k) ≤ l

as a necessary and sufficient condition for the nonemptiness of level Lj . Since 0 ≤ l ≤ N − 1,
this is satisfied if and only if 0 ≤ j ≤ k. When j is equal to 0, we are at level 0; therefore,
there are only k different nonempty nonruin levels.
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To prove the second part of the proposition, we assume that 1 ≤ j ≤ k − 1. Clearly, the
number of points on level Lj , namely #(Lj ), will be given by

#(Lj ) = #{x̃i ≥ j, i = 1, . . . , N} − #{x̃i ≥ j + 1, i = 1, . . . , N}.
Equation (3.1) is then obtained by using the same urn model arguments as those used in the
classification of states in Section 1.

This argument does not apply when we are looking for the number of points on the last
level, Lk . However, subtracting from the total number of points the sum of the numbers of
points on levels of lower order yields the result.

3.2. An imbedded quasi-birth-and-death process

For a fixed ruin problem it is clear that level transitions of the random walk will only be
possible from a level Lj to certain other levels Lj+k , independently of j . We are going to
exploit this property. However, to make matters (and notation) less cumbersome, we will
restrict ourselves to ruin games in which the random walk does not make transitions of more
than one level at a time. The argument we are going to give will be in principle adaptable
to different situations which arise in practice. This restriction does not impair the value of
the result, since it is satisfied by most ruin games studied in the literature (see, for instance,
Stirzaker (1994) and Bruss et al. (2003)).

3.2.1. The transition matrix of the game. Every point α in the grid is defined by two coordinates:
we write α = (j, l), where j, 1 ≤ j ≤ k, represents the level on which the point lies and
l, 1 ≤ l ≤ bj , represents the position of this point on the level. With the restriction just
imposed, it is clear that from Lj the random walk can only stay on Lj , go up one level, or go
down one level. Thus, for each level Lj , j ≥ 1, we define the submatrices A

(j)
0 , A

(j)
1 , and

A
(j)
2 entrywise as follows:

(A
(j)
0 )αβ = P[Jt+1 = β ∈ Lj+1 | Jt = α ∈ Lj ], corresponding to Lj → Lj+1,

(A
(j)
1 )αβ = P[Jt+1 = β ∈ Lj | Jt = α ∈ Lj ], corresponding to Lj → Lj ,

(A
(j)
2 )αβ = P[Jt+1 = β ∈ Lj−1 | Jt = α ∈ Lj ], corresponding to Lj → Lj−1.

Each of these matrices represents an admissible transition between levels (as described). Since
transitions to the absorbing states are only possible from the exterior level, L1, if we order the
levels in decreasing order then the transition matrix P becomes

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(k)
1 A

(k)
2 0 · · · 0 0 0

A
(k−1)
0 A

(k−1)
1 A

(k−1)
2 · · · 0 0 0

0 A
(k−2)
0 A

(k−2)
1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · A
(2)
1 A

(2)
2 0

0 0 0 · · · A
(1)
0 A

(1)
1 R

0 0 0 · · · 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)

where the matrix R is given (entrywise) by

Rαζ = P[Jt+1 ∈ Oζ | Jt = α ∈ L1], ζ = 1, . . . , n.
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Remark 3.1. The transient submatrix of (3.2) has the form of the transition matrix of an
inhomogeneous quasi-birth-and-death process. The notation A

(j)
0 , A

(j)
1 , A

(j)
2 has been chosen

to be consistent with the notation used in the standard text books on this subject. See Latouche
and Ramaswami (1999, p. 130) for more details.

Example 3.2. Let us consider a three-player game in which the admissible transitions are
given by

(a, b, c) →

⎧⎪⎨
⎪⎩

(a − 1, b + 1, c),

(a, b − 1, c + 1),

(a + 1, b, c − 1),

each occurring with the same probability. We take � = 10. The random walk of the game then
runs on a set with three levels of, respectively, 3, 12, and 21 points and a ruin level of 6 points.
We fix the counting of the points on each level to start (in our standard, triangular lattice) from
the highest point of the equilateral triangle and proceed clockwise. As an illustration we write
the level transition matrices starting from L3 and L2:

A3
1 =

⎡
⎣0 0 1

3
1
3 0 0
0 1

3 0

⎤
⎦ , A3

2 =
⎡
⎣0 0 1

3 0 0 0 0 0 0 0 0 1
3

0 0 0 1
3 0 0 1

3 0 0 0 0 0
0 0 0 0 0 0 0 1

3 0 0 1
3 0

⎤
⎦ ,

A2
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
3 0 0
0 1

3 0
0 0 0
0 0 0
0 1

3 0
0 0 1

3
0 0 0
0 0 0
0 0 1

3
1
3 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 1
3

1
3 0 0 0 0 0 0 0 0 0 0 0
0 1

3 0 0 0 0 0 0 0 0 0 0
0 0 1

3 0 0 1
3 0 0 0 0 0 0

0 0 0 1
3 0 0 0 0 0 0 0 0

0 0 0 0 1
3 0 0 0 0 0 0 0

0 0 0 0 0 1
3 0 0 0 0 0 0

0 0 0 0 0 0 1
3 0 0 1

3 0 0
0 0 0 0 0 0 0 1

3 0 0 0 0
0 0 0 0 0 0 0 0 1

3 0 0 0
0 0 0 0 0 0 0 0 0 1

3 0 0
0 1

3 0 0 0 0 0 0 0 0 1
3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3
0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

3 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 1

3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For obvious space reasons we do not write down the last three submatrices (i.e. A
(1)
i , i =

0, 1, 2). They have the same structure as those displayed.
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For j = 1, . . . , k and l = 1, . . . , n, we define the ruin vectors r
(j)
l , whose entries are given

by (r
(j)
l )i = P[final ruin in Ol starting from (j, i)], i = 1, . . . , bj . Solving the ruin problem

means finding the values of the ruin vectors.

Proposition 3.2. For l = 1, . . . , n,

r
(1)
l = (I − A

(1)
1 )−1(R•l + A

(1)
0 r

(2)
l ),

r
(j)
l = (I − A

(j)
1 )−1(A

(j)
2 r

(j−1)
l + A

(j)
0 r

(j+1)
l ), j = 1, . . . , k − 1,

r
(k)
l = (I − A

(k)
1 )−1(A

(k)
2 r

(k−1)
l ),

(3.3)

where R•l = (R1l , . . . , Rb1l )
�, a column vector whose components are entries of the matrix R.

Proof. We have

(r
(j)
l )i = P[final ruin in Ol starting from (j, i)]

=
bj∑
t=1

(A
(j)
1 )it (r

(j)
l )t +

bj+1∑
t=1

(A
(j)
0 )it (r

(j+1)
l )t +

bj−1∑
t=1

(A
(j)
2 )it (r

(j−1)
l )t ,

i.e.

r
(j)
l = A

(j)
1 r

(j)
l + A

(j)
0 r

(j+1)
l + A

(j)
2 r

(j−1)
l

= (A
(j)
1 )2r

(j)
l + (I + A

(j)
1 )(A

(j)
0 r

(j+1)
l + A

(j)
2 r

(j−1)
l )

= lim
K→∞

[
(A

(j)
1 )Kr

(j)
l +

K∑
t=0

(A
(j)
1 )t (A

(j)
0 r

(j+1)
l + A

(j)
2 r

(j−1)
l )

]
.

From arguments given previously, we know that limK→∞(A
(j)
1 )K = 0 and that

∑∞
t=0(A

(j)
1 )t =

(I − A
(j)
1 )−1.

The two other equations are proved using similar arguments.

Equations like (3.3) and those appearing later in the paper admit an explicit interpretation. To
facilitate the understanding of this interpretation, we give a detailed explanation of the second
expression in (3.3), i.e.

r
(j)
l = (I − A

(j)
1 )−1(A

(j)
2 r

(j−1)
l + A

(j)
0 r

(j+1)
l ),

for some fixed, intermediate j ∈ {2, . . . , k − 1}, as follows.
We condition on the first level visited after leaving Lj . Once the random walk leaves Lj

it has two options: either it goes up to Lj+1 (which happens with ‘probability’ A
(j)
0 ) and

is absorbed in Ol from there (which happens with ‘probability’ r
(j+1)
l ), explaining the term

A
(j)
0 r

(j+1)
l ; or it goes down to Lj−1 (which happens with ‘probability’ A

(j)
2 ) and is absorbed

in Ol from there (which happens with ‘probability’ r
(j−1)
l ), explaining the term A

(j)
2 r

(j−1)
l .

Before leaving Lj and being ruined, there is a probability that the random walk first returns a
number of times to Lj . This happens with ‘probability’

∑
i≥1(A

(j)
1 )i , explaining the presence

of the term (I − A
(j)
1 )−1.

Hence, we may summarize the meaning of these equations by saying that absorption prob-
abilities are mutually expressed in terms of ‘neighboring’ absorption probabilities.
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3.3. Ruin probability by folding

Suppose that we are solving the N -player ruin problem in a system with k levels. Let us
consider the restriction of Jt to the set of even-numbered levels, L2, L4, . . . , L2	k/2
, where 	·

is the integer-part function. This yields a new random walk, by which transitions from level
L2i to level L2j are made at the first hitting time of L2j from L2i of the initial random walk
Jt . From the viewpoint of Jt , we consider the transitions from state α to state β if and only if
α and β are two states on the same level or if β is the first state on an even-numbered level that
the random walk visits after leaving α. This new random walk runs on a grid with 	k/2
 levels.

Now, solving the ruin equations (2.2) for this smaller system, i.e. with smaller matrices, will
yield the ruin vectors for even levels. From Proposition 3.2 we see that we can then apply (3.3)
to determine the ruin vectors for the whole system.

This restriction of the initial random walk to a new set with half the number of levels is what
we call the folding of the process. The new random walk is the folded random walk.

The transition matrix of the folded random walk is given by the following proposition (which
is proved using arguments similar to those used to prove Proposition 3.2).

Proposition 3.3. Take s = 	k/2
. If s ≥ 3 then define

A
�(j)
0 = A

(2j)
0 (I − A

(2j+1)
1 )−1A

(2j+1)
0 ,

A
�(j)
1 = A

(2j)
1 + A

(2j)
2 (I − A

(2j−1)
1 )−1A

(2j−1)
0 + A

(2j)
0 (I − A

(2j+1)
1 )−1A

(2j+1)
2 ,

A
�(j)
2 = A

(2j)
2 (I − A

(2j−1)
1 )−1A

(2j−1)
2 ,

(3.4)

for j = 2, . . . , s − 1 if k is even and for j = 2, . . . , s if k is odd. Also, if k is even, define

A
�(s)
2 = A

(k)
2 (I − A

(k−1)
1 )−1A

(k−1)
2 ,

A
�(s)
1 = A

(k)
1 + A

(k−1)
2 (I − A

(k−1)
1 )−1A

(k−1)
0 .

Finally, define

A
�(1)
1 = A

(2)
1 + A

(2)
0 (I − A

(3)
1 )−1A

(3)
2 + A

(2)
2 (I − A

(1)
1 )−1A

(1)
0 ,

A
�(1)
0 = A

(2)
0 (I − A

(3)
1 )−1A

(3)
2 ,

R� = A
(2)
0 (I − A

(1)
1 )−1R.

With this notation, the transition matrix of the process restricted to even levels is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
�(s)
2 A

�(s)
0 0 · · · 0 0 0

A
�(s−1)
0 A

�(s−1)
1 A

�(s−1)
2 · · · 0 0 0

0 A
�(s−2)
0 A

�(s−2)
1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · A
�(2)
1 A

�(2)
2 0

0 0 0 · · · A
�(2)
0 A

�(2)
1 R�

0 0 0 · · · 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 3.3. If N = 3 and � = 9 then we have three levels (see Figure 3(a)). After folding,
we are left with a system with one level (see Figure 3(b)).
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Folding

(a) Three levels (b) One level

Figure 3: Folding of the lattice defined by (1.1) for N = 3 and � = 9.

If, after the initial folding, the ruin problem runs on a set which still has more than two
levels, we can repeat the folding and obtain a random walk on a smaller set. The folding can
be repeated over and over until the set on which the random walk runs has only one or two
levels left. The ruin equations (2.2) can be solved on this set, and with these results we can
recursively apply (3.3) to obtain the ruin vectors for the whole system.

3.3.1. Recursive algorithm. From the last proposition, it is clear how we can devise a recursive
algorithm with which to compute the ruin probabilities. Let � = Nk + l (Euclidean division
of � by N ) and let s = 	k/2
. The steps of the algorithm are as follows.

(i) Recursively apply Proposition 3.3 until s ≤ 2.

(ii) Apply (2.2) to compute the ruin probabilities associated with the last system.

(iii) Recursively apply (3.3) to compute the ruin vectors for each level of the game.

3.3.2. Comparison. It is well known that the inversion of a p×p matrix takes O(p3) operations
and that the multiplication of a p × q matrix with a q × r matrix takes O(pqr) operations.
Therefore, direct inversion of the ruin problem using (2.2) takes O(p3) operations with

p3 =
(

� − 1

N − 1

)3

.

The next proposition gives a rough upper bound for the number of operations involved in the
folding algorithm.

Proposition 3.4. The number of operations involved in the folding algorithm is bounded
above by

�

(� − 1)3 N5p3.

Remark 3.2. For fixed N and � > N , this simple upper bound already shows considerable
savings in the number of operations, of O(�2).

Proof of Proposition 3.4. We use the same notation as in Proposition 3.1. After each folding,
the new random walk runs on a set with 	k/2
 levels. Therefore, after at most 	log2 k
 foldings,
there will be strictly less than three levels left. We denote by N(l) the number of operations
involved in the lth folding. We will only take into account multiplications and inversions
appearing in (3.4). For each j ∈ {1, . . . , k} there are 12 such operations. Counting the number
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of operations in the same way as above and using the fact that the bj are decreasing in j , it is
then straightforward to see that

N(j) ≤ 12
k

2j
b3

2j−1 .

This implies that the total number of operations involved in the folding of the process is of order

k

	log2 k
∑
j=1

1

2j
b3

2j−1 ≤ kb3
1

	log2 k
∑
j=1

1

2j
≤ kb3

1.

We can show that

b1 ≤ N

(
� − 2

� − N

)
= N

N − 1

� − 1
p;

therefore, a rough upper bound for the number of operations involved in the folding of the
process is given by

k

(
N

N − 1

� − 1
p

)3

.

Application of (2.2) to obtain the ruin vectors on the folded set will not change the order of the
number of operations. Also, the recursive application of (3.3) to obtain the ruin vectors of the
whole system will take the same number of operations as will the folding and, therefore, does
not change the order of the number of operations either. Since k ≤ �/N , we therefore see that
the number of operations demanded by the folding algorithm admits the upper bound

�

(� − 1)3 N5p3.

4. Conclusion

We recall that, for fair games and specifically for N = 3, asymptotic methods provide
an interesting alternative to the approach presented here (see Ferguson (1995), Alabert et al.
(2004), and Swan and Bruss (2004)). The applications of the present paper must be seen as
being confined to ‘real-world’ problems. If the number of players, N , is not too large, then the
saving in operations required to find the solution is, as we have seen, considerable. If N were to
become large, the relative worth of this approach would become negligible and an asymptotic
approach would gain independent interest.
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