
JFP 32, e6, 34 pages, 2022. c© The Author(s), 2022. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
doi:10.1017/S0956796822000016

Back to futures

K L A A S P R U I K S M A
Computer Science Department Carnegie Mellon University, Pittsburgh, PA 15213, USA

(e-mail: kpruiksm@andrew.cmu.edu)

F R A N K P F E N N I N G
Computer Science Department Carnegie Mellon University, Pittsburgh, PA 15213, USA

(e-mail: fp@cs.cmu.edu)

Abstract

Common approaches to concurrent programming begin with languages whose semantics are natu-
rally sequential and add new constructs that provide limited access to concurrency, as exemplified by
futures. This approach has been quite successful, but often does not provide a satisfactory theoretical
backing for the concurrency constructs, and it can be difficult to give a good semantics that allows a
programmer to use more than one of these constructs at a time. We take a different approach, starting
with a concurrent language based on a Curry–Howard interpretation of adjoint logic, to which we
add three atomic primitives that allow us to encode sequential composition and various forms of syn-
chronization. The resulting language is highly expressive, allowing us to encode futures, fork/join
parallelism, and monadic concurrency in the same framework. Notably, since our language is based
on adjoint logic, we are able to give a formal account of linear futures, which have been used in
complexity analysis by Blelloch and Reid-Miller. The uniformity of this approach means that we
can similarly work with many of the other concurrency primitives in a linear fashion, and that we
can mix several of these forms of concurrency in the same program to serve different purposes.

1 Introduction

Concurrency has been a very useful tool in increasing performance of computations and in
enabling distributed computation, and consequently, there are a wide variety of different
approaches to programming languages for concurrency. A common pattern is to begin
with a sequential language and add some form of concurrency primitive, ranging from
threading libraries such as pthreads to monads to encapsulate concurrent computation, as
in SILL (Toninho et al., 2013; Toninho, 2015; Griffith, 2016), to futures (Halstead, 1985).
Many of these approaches have seen great practical success, and yet from a theoretical
perspective, they are often unsatisfying, with the concurrent portion of the language being
attached to the sequential base language in a somewhat ad hoc manner, rather than having
a coherent theoretical backing for the language as a whole.

In order to give a more uniform approach to concurrency, we take the opposite approach
and begin with a language, Seax, whose semantics are naturally concurrent. With a minor
addition to Seax, we are able to force synchronization, allowing us to encode sequentiality.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796822000016
https://orcid.org/0000-0002-6032-087X
mailto:kpruiksm@andrew.cmu.edu
mailto:fp@cs.cmu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000016&domain=pdf
https://doi.org/10.1017/S0956796822000016

2 K. Pruiksma and F. Pfenning

In the resulting language, we can model many different concurrency primitives, including
futures, fork/join, and concurrency monads. Moreover, as all of these constructs are
encoded in the same language, we can freely work with any mixture and retain the same
underlying semantics and theoretical underpinnings.

Two lines of prior research meet in the development of Seax. The first involves
a new presentation of intuitionistic logic, called the semi-axiomatic sequent calcu-
lus (SAX) (DeYoung et al., 2020), which combines features from Hilbert’s axiomatic
form (Hilbert & Bernays, 1934) and Gentzen’s sequent calculus (Gentzen, 1935). Cut
reduction in the semi-axiomatic sequent calculus can be put into correspondence with asyn-
chronous communication, either via message passing (Pruiksma & Pfenning, 2019) or via
shared memory (DeYoung et al., 2020). We build on the latter, extending it in three major
ways to get Seax. First, we extend from intuitionistic logic to a semi-axiomatic presenta-
tion of adjoint logic (Reed, 2009; Licata & Shulman, 2016; Licata et al., 2017; Pruiksma
& Pfenning, 2019), the second major line of research leading to Seax. This gives us a
richer set of connectives as well as the ability to work with linear and other substructural
types. Second, we add equirecursive types and recursively defined processes, allowing for
a broader range of programs, at the expense of termination, as usual. Third, we add three
new atomic write constructs that write a value and its tag in one step. This minor addition
enables us to encode both some forms of synchronization and sequential composition of
processes, despite the naturally concurrent semantics of Seax.

This resulting language is highly expressive. Using these features, we are able to model
functional programming with a semantics in destination-passing style that makes memory
explicit (Wadler, 1984; Larus, 1989; Cervesato et al., 2002; Simmons, 2012), allowing
us to write programs in more familiar functional syntax which can then be expanded into
Seax. We can also encode various forms of concurrency primitives, such as fork/join par-
allelism (Conway, 1963) implemented by parallel pairs, futures (Halstead, 1985), and a
concurrency monad in the style of SILL (Toninho et al., 2013; Toninho, 2015; Griffith,
2016) (which combines sequential functional with concurrent session-typed program-
ming). As an almost immediate consequence of our reconstruction of futures, we obtain a
clean and principled subsystem of linear futures, already anticipated and used in parallel
complexity analysis by Blelloch and Reid-Miller (Blelloch & Reid-Miller, 1999) without
being rigorously developed.

Our use of adjoint logic as a base for Seax is not essential to most of the program-
ming constructs we describe — only the concurrency monad makes use of the adjoint
nature of the language in a fundamental way. However, it allows for a few useful fea-
tures of Seax. The uniform nature of adjoint logic means that we can move easily from
our initial discussion of futures to their linear form or to a language with both linear and
non-linear futures (and, for that matter, the other constructs can also be made linear or
affine or strict). Moreover, we can take advantage of the adjoint nature of Seax to combine
multiple language features while maintaining some degree of isolation between them. We
could, for instance, have a language where one portion is purely sequential, another adds
concurrency via fork/join, and yet another adds concurrency via futures. While it is already
possible to add various features to a base language in an ad hoc way (as is often done in
real programming languages), the fact that these features can be encoded in Seax means

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 3

that the semantics are uniform — there is no need to add extra rules to handle the new con-
structs. Moreover, because we are able to separate the different features syntactically into
different layers or modes, an implementation of this language could optimize differently
at each mode. A purely sequential language needs only one thread of computation and can
avoid dealing with locking on memory entirely, for instance.

The overall benefits of the adjoint approach, then, are twofold — first, since Seax is
expressive enough to encode varied language features, we can combine these different
features or constructs in a uniform fashion, and second, since we can keep different por-
tions of the language (containing different features) separated, we gain all the benefits of
a more restrictive language, at least locally. In each individual portion of the language, we
can reason (and therefore also optimize) based on the restrictions on that part of the lan-
guage, although as the restrictions on different parts of the language may vary, so too will
the extra information we gain from those restrictions. Because of this, rather than looking
at languages as a whole, we will focus on how individual language features can be encoded
in Seax. Such features can then be combined into a single language in order to use more
than one at a time.

The principal contributions of this paper are as follows:

1. the language Seax, which has a concurrent write-once shared-memory semantics
for programs based on a computational interpretation of adjoint logic;

2. a model of sequential computation using an extension of this semantics with limited
atomic writes;

3. a reconstruction of fork/join parallelism;
4. a reconstruction of futures, including a rigorous definition of linear futures;
5. a reconstruction of a concurrency monad which combines functional programming

with session-typed concurrency as an instance of the adjoint framework;
6. the uniform nature of these reconstructions, which allows us to work with any of

these concurrency primitives and more all within the same language;
7. the ability to keep different portions of the language separated into different lay-

ers or modes, enabling us to restrict part of the language for implementation or
reasoning, while retaining the full-featured nature of the rest of the language.

We begin by introducing the type system and syntax for Seax, along with some
background on adjoint logic (Section 3), followed by its semantics, which are naturally
concurrent (Section 4). At this point, we are able to look at some examples of programs
in Seax. Next, we make the critical addition of sequentiality (Section 5), examining both
what changes we need to make to Seax to encode sequentiality and how we go about that
encoding. Using our encoding of sequentiality, we can build a reconstruction of a standard
functional language’s lambda terms (Section 6), which both serves as a simple example
of a reconstruction and illustrates that we need not restrict ourselves to the relatively low-
level syntax of Seax when writing programs. Following this, we examine and reconstruct
several concurrency primitives, beginning with futures (Section 7), before moving on to
parallel pairs (an implementation of fork/join, in Section 8) and a concurrency monad that
borrows heavily from SILL (Section 9). We conclude with a brief discussion of our results
and future work.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

4 K. Pruiksma and F. Pfenning

2 Adjoint logic

Adjoint Logic (Reed, 2009; Licata & Shulman, 2016; Licata et al., 2017; Pruiksma &
Pfenning, 2019, 2020) is a schema for defining logics with a range of features, particularly
various modal and substructural logics. We present here an overview of adjoint logic.

In adjoint logic, propositions are stratified into distinct layers, each identified by a
mode. For each mode m there is a set σ (m)⊆ {W , C} of structural properties satisfied by
antecedents of mode m in a sequent. Here, W stands for weakening and C for contraction.
For simplicity, we always assume exchange is possible. By separating m and σ (m), we
allow for instances of adjoint logic to have multiple modes with the same structural prop-
erties. This means that adjoint logic can model lax logic (Fairtlough & Mendler, 1997),
for instance, with one mode corresponding to truth and another to lax truth, both of which
allow weakening and contraction. With more of an eye toward programming, we might
use several modes with the same structural properties in order to model monadic program-
ming where both the inside and outside of the monad allow weakening and contraction, for
instance.

In order to describe how the modes relate to one another, each instance of adjoint logic
specifies a preorder m≥ k between modes, expressing that the proof of a proposition Ak of
mode k may depend on assumptions Bm. In order for cut elimination to hold, this ordering
must be compatible with the structural properties: if m≥ k, then σ (m)⊇ σ (k). Sequents
then have the form � � Ak where, critically, each antecedent Bm in � satisfies m≥ k. We
express this concisely as � ≥ k.

Most of the connectives of adjoint logic are standard, using the notation of (intuition-
istic) linear logic (Girard & Lafont, 1987), although their meaning varies depending on
mode. For instance, implication �m behaves as linear implication if σ (m)= {}, but as
standard structural implication if σ (m)= {W , C}. However, in order to allow interaction
between different modes, we introduce two new connectives, known as shifts. The propo-
sition ↑m

k Ak (up from k to m), which requires m≥ k in order to be well-formed, represents
an embedding of the proposition Ak into mode m. Dually, ↓r

mAr (down from r to m, which
requires r≥m), embeds a proposition Ar into mode m. These shifts are the basis of the
name adjoint logic, as for fixed k and m, the shifts ↑m

k and ↓m
k form an adjunction, with

↑m
k 	 ↓m

k .1

We can then give the following grammar for the propositions of (our presentation of)
adjoint logic:

Am, Bm ::= Am �m Bm | Am ⊗m Bm | 1m | ⊕j∈J Aj
m |�j∈J Aj

m | ↑m
k Ak | ↓r

mAr

Here, �m is implication, ⊗m is conjunction (more specifically, multiplicative conjunction
if σ (m)= {}), and 1m is the multiplicative unit. The connectives ⊕j∈J and �j∈J are addi-
tive disjunction and conjunction, respectively (often called internal and external choice in
the session types literature), presented here in n-ary form because it is more natural for
programming than the usual binary form.

The rules for adjoint logic can be found in Figure 1, presented in a semi-axiomatic
form DeYoung et al. (2020), so some of the rules (indicated with a superscript 0) are

1 See, for instance, Licata et al. (2017) for a more categorically focused discussion of a slightly different form
of adjoint logic, or Benton (1994) for a discussion of a specific case of this adjunction. Both of these give
categorical semantics for the logics they present, something which is outside the scope of this paper.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 5

Fig. 1: Logical rules (α ∈ {0, 1} with α = 1 permitted only if C ∈ σ (m)).

axioms. In this formulation, contraction and weakening remain implicit.2 Handling con-
traction leads us to two versions of each of the ⊕, 1,⊗ left rules, depending on whether
the principal formula of the rule can be used again or not. The subscript α on each of these
rules may be either 0 or 1 and indicates whether the principal formula of the rule is pre-
served in the context. The α= 0 version of each rule is the standard linear form, while the
α = 1 version, which requires that the mode m of the principal formula satisfies C ∈ σ (m),
keeps a copy of the principal formula. Note that if C ∈ σ (m), we are still allowed to use
the α = 0 version of the rule. Moreover, we write �C , �W for contexts of variables all of
which allow contraction or weakening, respectively. This allows us to freely drop weak-
enable variables when we reach initial rules, or to duplicate contractable variables to both
parent and child when spawning a new process in the cut rule.

3 Seax: Types and syntax

The type system and language we present here, which we will use throughout this paper,
begin with a Curry–Howard interpretation of adjoint logic, which we then leave behind by
adding recursion, allowing a richer collection of programs.

2 See Pruiksma et al. (2018) for a formulation of adjoint logic with explicit structural rules, which are less
amenable to programming.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

6 K. Pruiksma and F. Pfenning

Fig. 2: Types and process expressions.

The types of Seax are the propositions of adjoint logic, augmented with general equire-
cursive types formed via mutually recursive type definitions in a global signature — most
of the basic types are familiar as session types (Honda, 1993; Honda et al., 1998; Gay
& Vasconcelos, 2010) (or as propositions of intuitionistic linear logic Girard & Lafont
(1987)), tagged with subscripts for modes. The grammar of types (as well as processes)
can be found in Figure 2. Note that while our grammar includes mode subscripts on types,
type constructors, and variables we will often omit them when they are clear from context.

The typing judgment for processes has the form

x1 : A1
m1

, . . . , xn : An
mn
� P :: (x : Ak)

where P is a process expression and we require that each mi ≥ k. Given such a judgment,
we say that P provides or writes x, and uses or reads x1, . . . , xn. We may often write a
superscript on the variables to indicate whether they are being used for writing or reading.
For instance, we would write xW in P to denote that P writes to x, and xR

1 to denote that
P reads from x1. While this information is not necessary for the semantics (and can in
fact be inferred statically, and so is omitted from the formal semantics), it is convenient
when writing down example processes for clarity, and so we will use it both in examples
and in the typing rules, where it helps to clarify a key intuition of this system, which
is that right rules write and left rules read. Not all reads and writes will be visible like
this, however — we may call a process or invoke a stored continuation, and the resulting
process may read or write (but since it is not obligated to, we do not mark these reads/writes

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 7

(a)

(b)

Fig. 3: Typing rules (α ∈ {0, 1} with α = 1 permitted only if C ∈ σ (m)).

at the callsite). The rules for this judgment can be found in Figure 3, and are just the logical
rules from Figure 1, augmented with process terms and variables to label each assumption.
We also include in this figure the rules for calling named processes, which make use of a
fixed signature � for type and process definitions, as well as another judgment, which we
explain later in this section.

As usual, we require each of the xi and x to be distinct and allow silent renaming of
bound variables3 in process expressions.

Note that there is no explicit rule for (possibly recursively defined) type variables t, since
they can be silently replaced by their definitions. Equality between types and type-checking

3 Variables are bound in two ways. The cut construct xm← P ; Q binds xm in both P and Q, and continuations K
may bind variables. For instance, (〈wm, ym〉⇒Q) binds wm and ym in Q, while (〈〉⇒Q) binds no variables in
Q. Each continuation K thus resembles a closure in a functional language, specifying both what variables are
bound and the process term that they are bound in.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

8 K. Pruiksma and F. Pfenning

can both easily be seen to be decidable using a combination of standard techniques for
substructural-type systems (Cervesato et al., 2000) and subtyping for equirecursive session
types, (Gay & Hole, 2005) which relies on a coinductive interpretation of the types, but
not on their linearity, and so can be adapted to the adjoint setting. Some experience with
a closely related algorithm (Das & Pfenning, 2020) for type equality and type checking
suggests that this is practical.

We now go on to briefly examine the terms and loosely describe their meanings from the
perspective of a shared-memory semantics. We will make this more precise in Sections 4
and 5, where we develop the dynamics of such a shared-memory semantics.

Both the grammar and the typing rules show that we have five primary constructs for
processes, which then break down further into specific cases.

The first two process constructs are type-agnostic. The cut rule, with term x← P ; Q,
allocates a new memory cell x, spawns a new process P which may write to x, and continues
as Q which may read from x. The new cell x thus serves as the point of communication
between the new process P and the continuing Q. The id rule, with term xm← ym, copies
the contents of cell ym into cell xm. If C /∈ σ (m), we can think of this instead as moving the
contents of cell ym into cell xm and freeing ym.

The next two constructs, x.V and case x K, come in pairs that perform communication,
one pair for each type. A process of one of these forms will either write to or read from x,
depending on whether the variable is in the succedent (write) or antecedent (read).

A write is straightforward and stores either the value V or the continuation K into the
cell x, while a read pulls a continuation K ′ or a value V ′ from the cell, and combines either
K ′ and V (in the case of x.V) or K and V ′ (case x K). The symmetry of this, in which
continuations and values are both eligible to be written to memory and read from memory,
comes from the duality between ⊕ and �, between ⊗ and �, and between ↓ and ↑. We
see this in the typing rules, where, for instance, ⊕R0 and �L0 have the same process term,
swapping only the roles of each variable between read and write. However, the values do
have different meaning depending on whether they are being used to read or to write. In the
case of xW.〈y, z〉, for instance, we are writing a pair of addresses 〈y, z〉 to address x (though
this does not guarantee that the cells at addresses y or z have been filled in). A future reader
K of x will see addresses y and z, and is entitled to read from them. By contrast, wR.〈u, v〉
reads a continuation K out of the cell at address w and passes it the pair of addresses 〈u, v〉.
Unlike in the previous case, the continuation K is entitled to read from u, but to write
to v.4 We can think of u as the argument being passed in to K, and v as the destination
where K should store its result, as in the destination-passing style (Wadler, 1984; Larus,
1989; Cervesato et al., 2002; Simmons, 2012) of semantics for functional languages.

As cells may contain either values V or continuations K, it will be useful to have a way
to refer to this class of expression:

Cell data D ::= V |K
The final construct allows for calling named processes, which we use for recursion.

As is customary in session types, we use equirecursive types, collected in a signature � in

4 This asymmetry comes from the fact that our language is based on intuitionistic logic. If we were working
with a classical form of adjoint logic, we might expect the dual of ⊗ to be the linear logic’s �, which would
likewise pass a pair 〈u, v〉 to K, but would entitle K to write to both u and v.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 9

which we also collect recursive process definitions and their types. For each type definition
t= A, the type A must be contractive so that we can treat types equirecursively with a
straightforward coinductive definition and an efficient algorithm for type equality (Gay &
Hole, 2005).

A named process p is declared as B1
m1

, . . . , Bn
mn
� p :: Ak which means it requires argu-

ments of types Bi
mi

(in that order) and provides a result of type Ak . For ease of readability,
we may sometimes write in variable names as well, but they are actually only needed for
the corresponding definitions x← p y1, . . . , yn = P.

We can then formally define signatures as follows, allowing definitions of types,
declarations of processes, and definitions of processes:

Signatures � ::= · |�, t= A |�, Bm � p :: Ak |�, x← p y= P

For valid signatures, we require that each declaration Bm � p :: Ak has a corresponding
definition x← p y= P with y : Bm � P :: (x : Ak). This means that all type and process
definitions can be mutually recursive.

In the remainder of this paper, we assume that we have a fixed valid signature �, so we
annotate neither the typing judgment nor the computation rules with an explicit signature,
other than in the call rule, where we extract a process definition from �.

Operationally, a call z← p w expands to its definition with a substitution [w/y, z/x]P,
replacing variables by addresses. In order to type a call, therefore, we need to ensure that
this substitution is valid. The substitution of z for x is always valid, and so we check the
remainder of the substitution with the rules call_varα and call_empty, defining a judgment
� �w : Bm which verifies that � can provide the arguments w : Bm to the process.

4 Concurrent semantics

We will now present a concurrent shared-memory semantics for Seax, using multiset
rewriting rules (Cervesato & Scedrov, 2009). The state of a running program is a mul-
tiset of semantic objects, which we refer to as a process configuration. We have three
distinct types of semantic objects, each of which tracks the address it provides, in order to
link it with users of that address:

1. thread(cm, P): thread executing P with destination cm

2. cell(cm, _): cell cm that has been allocated, but not yet written
3. !mcell(cm, D): cell cm containing data D

Here, we prefix a semantic object with !m to indicate that it is persistent when C ∈ σ (m),
and ephemeral otherwise. Note that empty cells are always ephemeral, so that we can mod-
ify them by writing to them, while filled cells may be persistent, as each cell has exactly
one writer, which will terminate on writing. We maintain the invariant that in a configura-
tion either thread(cm, P) appears together with cell(cm, _), or we have just !mcell(cm, D), as
well as that if two semantic objects provide the same address cm, then they are exactly a
thread(cm, P), cell(cm, _) pair. While this invariant can be made slightly cleaner by remov-
ing the cell(cm, _) objects, this leads to an interpretation where cells are allocated lazily just
before they are written. While this has some advantages, it is unclear how to inform the

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

10 K. Pruiksma and F. Pfenning

thread which will eventually read from the new cell where said cell can be found, and so,
in the interest of having a realistically implementable semantics, we just allocate an empty
cell on spawning a new thread, allowing the parent thread to see the location of that cell.

We can then define configurations with the following grammar (and the additional
constraint of our invariant):

Configurations C ::= · | thread(cm, P), cell(cm, _) | !mcell(cm, D) |C1, C2

We think of the join C1, C2 of two configurations as a commutative and associative
operation so that this grammar defines a multiset rather than a list or tree.

A multiset rewriting rule takes the collection of objects on the left-hand side of the rule,
consumes them (if they are ephemeral), and then adds in the objects on the right-hand
side of the rule. Rules may be applied to any subconfiguration, leaving the remainder of
the configuration unchanged. This yields a naturally nondeterministic semantics, but we
will see that the semantics are nonetheless confluent (Theroem 3). Additionally, while our
configurations are not ordered, we will adopt the convention that the writer of an address
appears to the left of any readers of that address.

Our semantic rules are based on a few key ideas:

1. Variables represent addresses in shared memory.
2. Cut/spawn is the only way to allocate a new cell.
3. Identity/forward will move or copy data between cells.
4. A process thread(c, P) will (eventually) write to the cell at address c and then

terminate.
5. A process thread(d, Q) that is trying to read from c �= d will wait until the cell with

address c is available (i.e. its contents is no longer _), perform the read, and then
continue.

The counterintuitive part of this interpretation (when using a message-passing seman-
tics as a point of reference) is that a process providing c : A � B does not read a value from
shared memory. Instead, it writes a continuation to memory and terminates. Conversely,
a client of such a channel does not write a value to shared memory. Instead, it continues
by jumping to the continuation. This ability to write continuations to memory is a major
feature distinguishing this from a message-passing semantics where potentially large clo-
sures would have to be captured, serialized, and deserialized, the cost of which is difficult
to control (Miller et al., 2016).

The final piece that we need to present the semantics is a key operation, namely that of
passing a value V to a continuation K to get a new process P. This operation is defined as
follows:

i(d) ◦ (�(y)⇒ P�)�∈L = [d/y]Pi (⊕, �)
〈e, c〉 ◦ (〈w, y〉⇒ P) = [e/w, c/y]P (⊗, �)
〈 〉 ◦ (〈 〉⇒ P) = P (1)
shift(d) ◦ (shift(y)⇒ P) = [d/y]P (↓, ↑)

When any of these reductions is applied, either the value or the continuation has been read
from a cell while the other is a part of the executing process. With this notation, we can
give a concise set of rules for the concurrent dynamics. We present these rules in Figure 4.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 11

Fig. 4: Concurrent dynamic rules
(All addresses with distinct names [e.g. cm and dm] are different).

These rules match well with our intuitions from before. In the cut rule, we allocate a
new empty cell a, spawn a new thread to execute P, and continue executing Q, just as
we described informally in Section 3. Similarly, in the id rule, we either move or copy
(depending on whether C ∈ σ (m)) the contents of cell c into cell d and terminate. The rules
that write values to cells are exactly the right rules for positive types (⊕,⊗, 1, ↓), while the
right rules for negative types (�, �, ↑) write continuations to cells instead. Dually, to read
from a cell of positive type, we must have a continuation to pass the stored value to, while
to read from a cell of negative type, we need a value to pass to the stored continuation.

4.1 Results

We have standard results for this system — a form of progress, of preservation, and a
confluence result. To discuss progress and preservation, we must first extend our notion
of typing for process terms to configurations. Configurations are typed with the judgment
� �C :: � which means that configuration C may read from the addresses in � and write
to the addresses in �. We can then give the following set of rules for typing configurations,
which make use of the typing judgment � � P :: (c : Am) for process terms in the base cases.
Recall that we use �C to denote a context in which all propositions are contractible, and
which can therefore be freely duplicated.

�C , � � P :: (c : Am)

�C , �, �� thread(c, P), cell(c, _) :: (�C , �, c : Am)

�C , � � c.V :: (c : Am)

�C , �, �� !mcell(c, V) :: (�C , �, c : Am)

�C , � � case c K :: (c : Am)

�C , �, �� !mcell(c, K) :: (�C , �, c : Am)

�� (·) :: �

� �C1 :: �1 �1 �C2 :: �2

� �C1, C2 :: �2

Note that our invariants on configurations mean that there is no need to separately type the
objects thread(c, P) and cell(c, _), as they can only occur together. Additionally, while our
configurations are multisets, and therefore not inherently ordered, observe that the typing
derivation for a configuration induces an order on the configuration, something which is
quite useful in proving progress.5

5 This technique is used in DeYoung et al. (2020) to prove progress for a similar language.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

12 K. Pruiksma and F. Pfenning

Our preservation theorem differs slightly from the standard, in that it allows the collec-
tion of typed channels � offered by a configuration C to grow after a step, as steps may
introduce new persistent memory cells. Note that the � cannot shrink, despite the fact that
affine or linear cells may be deallocated after read. This is because a linear cell that is read
from never appeared in � in the first place — the process that reads it also consumes it in
the typing derivation. Likewise, an affine cell that is read from will not appear in �, while
an affine cell with no reader appears in � (but of course, since it has no reader, it will not
be deallocated).

Theorem 1 (Type Preservation). If � �C :: � and C �→C ′ then � �C ′ :: �′ for some
�′ ⊇�.

Proof. By cases on the transition relation for configurations, applying repeated inver-
sions to the typing judgment on C to obtain the necessary information to assemble
a typing derivation for C ′. This requires some straightforward lemmas expressing that
non-interfering processes and cells can be exchanged in a typing derivation. �

Progress is entirely standard, with configurations comprised entirely of filled cells taking
the role that values play in a functional language.

Theorem 2 (Progress). If · �C :: � then either

(i) C �→C ′ for some C ′, or
(ii) for every channel cm : Am ∈� there is an object !mcell(cm, D) ∈C .

Proof. We first re-associate all applications of the typing rule for joining configurations
to the left. Then we perform an induction over the structure of the resulting derivation,
distinguishing cases for the rightmost cell or thread and potentially applying the induction
hypothesis on the configuration to its left. This structure, together with inversion on the
typing of the cell or thread yields the theorem. �

In addition to these essential properties, we also have a confluence result, for which we
need to define a weak notion of equivalence on configurations. We say C1 ∼C2 if there is a
renaming ρ of addresses such that ρC1 =C2. We can then establish the following version
of the diamond property:

Theorem 3 (Diamond Property). Assume ��C :: �. If C �→C1 and C �→C2 such that
C1 �∼C2. Then there exist C ′1 and C ′2 such that C1 �→C ′1 and C2 �→C ′2 with C ′1 ∼C ′2.

Proof. The proof is straightforward by cases. There are no critical pairs involving
ephemeral (that is, non-persistent) objects in the left-hand sides of transition rules. �

4.2 Examples

We present here a few examples of concurrent programs, illustrating various aspects of our
language.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 13

4.2.1 Example: Binary Numbers.

As a first simple example we consider binary numbers, defined as a type bin at mode m. The
structural properties of mode m are arbitrary for our examples. For concreteness, assume
that m is linear, that is, σ (m)= { }.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}
Unless multiple modes are involved, we will henceforth omit the mode m. As an example,
the number 6= (110)2 would be represented by a sequence of labels e, b1, b1, b0, chained
together in a linked list. The first cell in the list would contain the bit b0. It has some
address c0, and also contains an address c1 pointing to the next cell in the list. Writing out
the whole sequence as a configuration we have

cell(c4, 〈 〉), cell(c3, e(c4)), cell(c2, b1(c3)), cell(c1, b1(c2)), cell(c0, b0(c1))

4.2.2 Example: Computing with Binary Numbers.

We implement a recursive process succ that reads the bits of a binary number n starting at
address y and writes the bits for the binary number n+ 1 starting at x. This process may
block until the input cell (referenced as y) has been written to; the output cells are allocated
one by one as needed. Since we assumed the mode m is linear, the cells read by the succ
process from will be deallocated.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}
(y : bin)� succ :: (x : bin)
x← succ y=

case yR (b0(y1)⇒ x1← (xW
1 ← yR

1) ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x
| b1(y1)⇒ x1← (x1← succ y1) ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ x2← (xW

2 ← yR
1) ; % alloc x2 and copy y1 to x2

x1← xW
1 .e(x2) ; % alloc x1 and write e(x2) to x1

xW.b1(x1)) % write b1(x1) to x

In this example and others, we find certain repeating patterns. Abbreviating these makes
the code easier to read and also more compact to write. As a first simplification, we can
use the following shortcuts:

x← y ; Q � x← (x← y) ; Q
x← f y ; Q � x← (x← f y) ; Q

With these, the code for successor becomes

x← succ y=
case yR (b0(y1)⇒ xW

1 ← yR
1 ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x
| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

14 K. Pruiksma and F. Pfenning

| e(y1)⇒ xW
2 ← yR

1 ; % alloc x2 and copy y1 to x2

x1← xW
1 .e(x2) ; % alloc x1 and write e(x2) to x1

xW.b1(x1)) % write b1(x1) to x

The second pattern we notice are sequences of allocations followed by immediate (single)
uses of the new address. We can collapse these by a kind of specialized substitution. We
describe the inverse, namely how the abbreviated notation is elaborated into the language
primitives.

Value Sequence V̄ ::= i(V̄) | (y, V̄) | shift(V̄) | V
At positive types (⊕,⊗, 1, ↓), which write to the variable x with x.V̄ , we define:

xW . i(V̄) � x1← xW
1 . V̄ ; xW.i(x1) (⊕)

xW . 〈y, V̄ 〉 � x1← xW
1 . V̄ ; xW.〈y, x1〉 (⊗)

xW . shift(V̄) � x1← xW
1 . V̄ ; xW.shift(x1) (↓)

In each case, and similar definitions below, x1 is a fresh variable. Using these abbreviations
in our example, we can shorten it further.

x← succ y=
case yR (b0(y1)⇒ xW.b1(y1) % write b1(y1) to x

| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ xW.b1(e(y1))) % write b1(e(y1)) to x

For negative types (�, �, ↑) the expansion is symmetric, swapping the left- and right-
hand sides of the cut. This is because these constructs read a continuation from memory at
x and pass it a value.

xR . i(V̄) � x1← xR.i(x1) ; xR
1 . V̄ (�)

xR . 〈y, V̄ 〉 � x1← xR.〈y, x1〉 ; xR
1 . V̄ (�)

xR . shift(V̄) � x1← xR.shift(x1) ; xR
1 . V̄ (↑)

Similarly, we can decompose a continuation matching against a value sequence (V̄⇒ P).
For simplicity, we assume here that the labels for each branch of a pattern match for
internal (⊕) or external (�) choice are distinct; a generalization to nested patterns is
conceptually straightforward but syntactically somewhat complex so we do not specify
it formally.

(�(V̄�)⇒ P�)�∈L � (�(x1)⇒ case x1 (V̄�⇒ P�))�∈L (⊕, �)
(〈y, V̄ 〉⇒ P) � (〈y, x1〉⇒ case x1 (V̄⇒ P)) (⊗, �)
(shift(V̄)⇒ P) � (shift(x1)⇒ case x1 (V̄⇒ P)) (↓, ↑)

For example, we can rewrite the successor program one more time to express that y1 in the
last case must actually contain the unit element 〈 〉 and match against it as well as construct
it on the right-hand side.

x← succ y=
case yR (b0(y1)⇒ xW.b1(y1) % write b1(y1) to x

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 15

| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e 〈 〉⇒ xW.b1(e 〈 〉)) % write b1(e 〈 〉) to x

We have to remember, however, that intermediate matches and allocations still take place
and the last two programs are not equivalent in case the process with destination y′ does
not terminate.

To implement plus2 we can just compose succ with itself.

(z : bin)� plus2 :: (x : bin)

x← plus2 z=
y← succ z ;
x← succ y

In our concurrent semantics, the two successor processes form a concurrently executing
pipeline — the first reads the initial number from memory, bit by bit, and then writes a
new number (again, bit by bit) to memory for the second successor process to read.

4.2.3 Example: MapReduce.

As a second example we consider mapReduce applied to a tree. We have a neutral element
z (which stands in for every leaf) and a process f to be applied at every node to reduce
the whole tree to a single value. This exhibits a high degree of parallelism, since the oper-
ations on the left and right subtree can be done independently. We abstract over the type
of element A and the result B at the meta-level, so that treeA is a family of types, and
mapReduceAB is a family of processes, indexed by A and B.

treeA =⊕m{empty : 1, node : treeA ⊗ A⊗ treeA}

Since mapReduce applies reduction at every node in the tree, it is linear in the tree. On the
other hand, the neutral element z is used for every leaf, and the associative operation f for
every node, so z requires at least contraction (there must be at least one leaf) and f both
weakening and contraction (there may be arbitrarily many nodes). Therefore, we use three
modes: the linear mode m for the tree and the result of mapReduce, a strict mode s for the
neutral element z, and an unrestricted mode u for the operation applied at each node.

(z : ↑s
mB) (f : ↑u

m((B⊗ A⊗ B) � B)) (t : treeA)�mapReduceAB :: (s : B)

s←mapReduceAB z f t=
case tR (empty 〈 〉⇒ z1← zR.shift(z1) ; % drop f

sW← zR
1

| node 〈l, 〈x, r〉〉⇒ l1←mapReduceAB z f l ;
r1←mapReduceAB z f r ; % duplicate z and f
p← pW.〈l1, 〈x, r1〉〉 ;
s1← f R.shift〈p, s1〉 ;
sW← sR

1)

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

16 K. Pruiksma and F. Pfenning

4.2.4 Example: λ-Calculus.

As a third example, we show an encoding of the λ-calculus using higher order abstract
syntax and parallel evaluation. We specify, at an arbitrary mode m:

expm =⊕{app : exp⊗ exp, val : val}
valm =⊕{lam : val � exp}

An interesting property of this representation is that if we pick m to be linear, we obtain
the linear λ-calculus (Lincoln & Mitchell, 1992), if we pick m to be strict (σ (m)= {C}) we
obtain Church and Rosser’s original λI calculus (Church & Rosser, 1936), and if we set
σ (m)= {W , C} we obtain the usual (intuitionistic) λ-calculus. Evaluation (that is, parallel
reduction to a weak head-normal form) is specified by the following process, no matter
which version of the λ-calculus we consider.

(e : exp)� eval : (v : val)

v← eval e=
case eR (val(v1)⇒ vW← vR

1

| app 〈e1, e2〉⇒ v1← eval e1 ;
v2← eval e2 ;
case vR

1 (lam(f)⇒ e3← f R.〈v2, e3〉 ; % f : val � exp
v← eval e3))

In this code, v2 acts like a future: we spawn the evaluation of e2 with the promise to place
the result in v2. In our dynamics, we allocate a new cell for v2, as yet unfilled. When we
pass v2 to f in f .〈v2, e3〉 the process eval e2 may still be computing, and we will not block
until we eventually try to read from v2 (which may or may not happen).

5 Sequential semantics

While our concurrent semantics is quite expressive and allows for a great deal of par-
allelism, in a real-world setting, the overhead of spawning a new thread can make it
inefficient to do so unless the work that thread does is substantial. The ability to express
sequentiality is therefore convenient from an implementation standpoint, as well as for
ease of reasoning about programs. Moreover, many of the patterns of concurrent compu-
tation that we would like to model involve adding some limited access to concurrency in
a largely sequential language. We can address both of these issues with the concurrent
semantics by adding a construct to enforce sequentiality. Here, we will take as our defini-
tion of sequentiality that only one thread (the active thread) is able to take a step at a time,
with all other threads being blocked.

The key idea in enforcing sequentiality is to observe that only the cut/spawn rule turns
a single thread into two. When we apply the cut/spawn rule to the term x← P ; Q, P and
Q are executed concurrently. One obvious way (we discuss another later in this section) to
enforce sequentiality is to introduce a sequential cut construct x

seq← P ; Q that ensures that
P runs to completion, writing its result into x, before Q can continue. We do not believe

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 17

that we can ensure this using our existing (concurrent) semantics. However, with a small
addition to the language and semantics, we are able to define a sequential cut as syntactic
sugar for a Seax term that does enforce this.

Example revisited: A sequential successor. Before we move to the formal definition that
enforces sequentiality, we reconsider the successor example on binary numbers in its most
explicit form. We make all cuts sequential.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}
(y : bin)� succ :: (x : bin)
x← succ y=

case yR (b0(y1)⇒ x1
seq← (xW

1 ← yR
1) ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x

| b1(y1)⇒ x1
seq← (x1← succ y1) ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x

| e(y1)⇒ x2
seq← (xW

2 ← yR
1) % alloc x2 and copy y1 to x2

x1
seq← xW

1 .e(x2) % alloc x1 and write e(x2) to x1

xW.b1(x1)) % write b1(x1) to x

This now behaves like a typical sequential implementation of a successor function, but in
destination-passing style (Wadler, 1984; Larus, 1989; Cervesato et al., 2002; Simmons,
2012). Much like in continuation-passing style, where each function, rather than returning,
calls a continuation that is passed in, in destination-passing style, rather than returning, a
function stores its result in a destination that is passed in. Likewise, our processes take in
an address or destination, compute their result, and write it to that address. When there is a
carry (manifest as a recursive call to succ), the output bit zero will not be written until the
effect of the carry has been fully computed.

To implement sequential cut, we will take advantage of the fact that a shift from a mode
m to itself does not affect provability, but does force synchronization. If x : Am, we would
like to define

x
seq← P ; Q � x1← P′ ; case x1 (shift(x)⇒Q),

where x1 : ↓m
mAm, and (informally) P′ can be derived from P by a replacement operation

that turns each write to x in P into a pair of simultaneous writes to x and x1 in P′. We
will formally define this operation below, but first, we consider how the overall process
x

seq← P ; Q behaves. We see that Q is blocked until x1 has been written to, and so since P′

writes to x and x1 simultaneously, we guarantee that x is written to before Q can continue.
By doing this, we use x1 as a form of acknowledgment that cannot be written to until P has
finished its computation.6

In order to define P′ from P, we need to provide a way to write to x and x1 simultane-
ously. This requires an addition to the language, since all existing write constructs only

6 There are other ways that we could handle sequentiality, for instance by adding a new construct that blocks
waiting for x to be written to, using x as its own acknowledgment. Each approach has its own advantages, and
we use a separate acknowledgment via a shift because this approach generalizes more smoothly to call-by-
name, which we explore later on.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

18 K. Pruiksma and F. Pfenning

write to a single cell at a time. The simplest way to enable this is to provide a limited form
of atomic write which writes to two cells simultaneously. We define three new constructs
for these atomic writes, shown here along with the non-atomic processes that they imitate.
We do not show typing rules here, but each atomic write can be typed in the same way as
its non-atomic equivalent.

Atomic write Non-atomic equivalent
xW

1 .shift(xW.V) x← xW.V ; xW
1 .shift(x)

xW
1 .shift(case xW K) x← case xW K ; xW

1 .shift(x)
xW

1 .shift(xW← yR) x← (xW← yR) ; xW
1 .shift(x)

Each atomic write simply evaluates in a single step to the configuration where both x and
x1 have been written to, much as if the non-atomic equivalent had taken three steps — first
for the cut, second to write to x, and third to write to x1. This intuition is formalized in the
following transition rules:

thread(x1m, x1
W
m .shift(xW

k .V)) �→ !kcell(xk , V), !mcell(x1m, shift(xk)) atom-val
thread(x1m, x1

W
m .shift(case xW

k K)) �→ !kcell(xk , K), !mcell(x1m, shift(xk)) atom-cont
thread(x1m, x1

W
m .shift(xW

k ← yR
k)), !kcell(yk , D) �→ !kcell(xk , D), !mcell(x1m, shift(xk)) atom-id

Note that the rule for the identity case is different from the other two — it requires the
cell yk to have been written to in order to continue. This is because the xW← yR construct
reads from y and writes to x — if we wish to write to x and x1 atomically, we must also
perform the read from y.

Now, to obtain P′ from P, we define a substitution operation [x1.shift(x)//x] that replaces
writes to x with atomic writes to x and x1 as follows:

(xW.V)[x1.shift(x)//x] = xW
1 .shift(xW.V)

(case xW K)[x1.shift(x)//x] = xW
1 .shift(case xW K)

(xW← yR)[x1.shift(x)//x] = xW
1 .shift(xW← yR)

Extending [x1.shift(x)//x] compositionally over our other language constructs, we can
define P′ = P[x1.shift(x)//x], and so

x
seq← P ; Q � x1← P[x1.shift(x)//x] ; case xR

1 (shift(x)⇒Q).

We now can use the sequential cut to enforce an order on computation. Of particular
interest is the case where we restrict our language so that all cuts are sequential. This gives
us a fully sequential language, where we indeed have that only one thread is active at a
time. We will make extensive use of this ability to give a fully sequential language, and
in Sections 7 and 9, we will add back limited access to concurrency to such a sequential
language in order to reconstruct various patterns of concurrent computation.

There are a few properties of the operation [x1.shift(x)//x] and the sequential cut
that we will make use of in our embeddings. Essentially, we would like to know that
P[x1.shift(x)//x] has similar behavior from a typing perspective to P, and that a sequential
cut can be typed in a similar manner to a standard concurrent cut. We make this precise
with the following lemmas:

Lemma 4. If � � P :: (x : Am), then � � P[x1.shift(x)//x] :: (x1 : ↓m
mAm).

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 19

Lemma 5. The rule

(�C , �≥m≥ r) �C , �� P :: (x : Am) �C , �′, x : Am �Q :: (z : Cr)

�C , �, �′ � (x
seq← P ; Q) :: (z : Cr)

seqcut

is admissible.

Lemma 4 follows from a simple induction on the structure of P, and Lemma 5 can be
proven by deriving the seqcut rule using Lemma 4.

In an earlier version of this paper,7 we developed a separate set of sequential semantics
which is bisimilar to the presentation we give here in terms of sequential cuts. However, by
embedding the sequential cut into the concurrent semantics as syntactic sugar, we are able
to drastically reduce the conceptual and technical overhead needed to look at interactions
between the two different frameworks and simplify our encodings of various concurrency
patterns.

Example revisited: λ-calculus. If we make all cuts in the λ-calculus interpreter sequen-
tial, we obtain a call-by-value semantics. In particular, it may no longer compute a weak
head-normal form even if it exists. Note that just as we used syntactic sugar for standard
cuts with the identity or call rule on the left, we will also define for convenience

x
seq← y ; Q � x

seq← (x← y) ; Q

x
seq← f y ; Q � x

seq← (x← f y) ; Q

expm =⊕{app : exp⊗ exp, val : val}
valm =⊕{lam : val � exp}
(e : exp)� eval : (v : val)

v← eval e=
case eR (val(v′)⇒ vW← v′R

| app 〈e1, e2〉⇒ v1
seq← eval e1 ;

v2
seq← eval e2 ;

case vR
1 (lam(f)⇒ e3

seq← f R.〈v2, e3〉 ;
v← eval e3))

Call-by-name. As mentioned at the beginning of this section, there are multiple
approaches to enforcing that only one thread is active at a time. We can think of the sequen-
tial cut defined in Section 5 as a form of call-by-value — P is fully evaluated before Q can

continue. Here, we will define a different sequential cut x
N← P ; Q, which will behave more

like call-by-name, delaying execution of P until Q attempts to read from x. Interestingly,
this construct avoids the need for atomic write operations! We nevertheless prefer the
“call-by-value” form of sequentiality as our default, as it aligns better with Halstead’s
approach to futures (Halstead, 1985), which were defined in a call-by-value language, and
also avoids recomputing P if x is used multiple times in Q.

7 Pruiksma & Pfenning (2020), version 1, found at https://arxiv.org/abs/2002.04607

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://arxiv.org/abs/2002.04607
https://doi.org/10.1017/S0956796822000016

20 K. Pruiksma and F. Pfenning

As before, we take advantage of shifts for synchronization, here using an upwards shift
rather than a downward one. If x : Am, we would like to define

x
N← P ; Q � x1← case xW

1 (shift(x)⇒ P) ; Q′,

where x1 : ↑m
mAm, and Q′ can be derived from Q by a replacement operation that turns

each read from x in Q into a read from x1, followed by a read from x. We can formalize
the operation that takes Q to Q′ in a similar manner to [x1.shift(x)//x]. We will call this
operation [x1.shift(x)%x], so Q′ =Q[x1.shift(x)%x].

(xR.V)[x1.shift(x)%x] = x← xR
1 .shift(x) ; xR.V

(case xR K)[x1.shift(x)%x] = x← xR
1 .shift(x) ; case xR K

(yW← xR)[x1.shift(x)%x] = x← xR
1 .shift(x) ; yW← xR

Note that unlike in our “call-by-value” sequential cut, where we wrote to two cells atom-
ically to ensure that one was written before the other, here, the order of reads is enforced
because xR

1 .shift(x) will execute the stored continuation shift(x)⇒ P, which finishes by
writing to x. As such, we are guaranteed that Q′ is paused waiting to read from x until
P finishes executing. Moreover, P is paused within a continuation until Q′ reads from
x1, after which it immediately blocks on x, so we maintain only one active thread as
desired.

While we will not make much use of this form of sequentiality, we find it interesting that
it is so simply encoded, and that the encoding is so similar to that of call-by-value cuts.
Both constructions are also quite natural — the main decision that we make is whether to
pause P or Q inside a continuation. From this, the rest of the construction follows, as there
are two natural places to wake up the paused process — as early as possible or as late as
possible. If we wake the paused process P immediately after the cut, as in

x1← case xW
1 (shift(x)⇒ P) ; x← xR

1 .shift(x) ; Q,

the result is a concurrent cut with the extra overhead of the shift. Our sequential cuts are
the result of waking the paused process as late as possible — once there is no more work
to be done in P in the call-by-value cut, and once Q starts to actually depend on the result
of P in the call-by-name cut.

λ-Calculus example revisited. We can achieve a sequential interpreter for the λ-calculus
with a single use of a by-name cut. This interpreter is then complete: if a weak head-
normal form exists, it will compute it. We also recall that this property holds no matter
which structural properties we allow for the λ-calculus (e.g., purely linear if the mode
allows neither weakening nor contraction, of the λI-calculus if the mode only allows
contraction).

v← eval e=
case eR (val(v1)⇒ vW← vR

1

| app 〈e1, e2〉⇒ v1
seq← eval e1 ;

v2
N← eval e2 ;

case vR
1 (lam(f)⇒ e3

seq← f R.〈v2, e3〉 ;
v← eval e3))

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 21

6 Functions

Rather than presenting an embedding or translation of a full (sequential) functional lan-
guage into our system, we will focus on the case of functions. There is a standard
translation of natural deduction to sequent calculus taking introduction rules to right rules,
and constructing elimination rules from cut and left rules. We base our embedding of func-
tions into our language on this translation. By following a similar process with other types,
one can similarly embed other functional constructs, such as products and sums.

We will embed functions into an instance of Seax with a single mode m. For this exam-
ple, we specify σ (m)= {W , C} in order to model a typical functional language, but we
could, for instance, take σ (m)= {} to model the linear λ-calculus. We also restrict the
language at mode m to only have sequential cuts, which will allow us to better model
a sequential language. Note that while we only specify one mode here, we could work
within a larger mode structure, as long as it contains a suitable mode m at which to imple-
ment functions — namely, one with the appropriate structural properties, and where we
have the restriction of only having sequential cuts. It is this modularity that allows us to
freely combine the various reconstructions presented here and in the following sections.
As we are only working within a single mode in this section, we will generally omit mode
subscripts, but everything is implicitly at mode m.

Now, to add functions to this language, we begin by adding a new type A→ B and two
new constructs — a constructor and a destructor for this type. The constructor, zW.(λx.P
),
writes a λ-abstraction to destination z. Here, we write P
 for a process expression P whose
destination is
. We will write Py for P[y/
]. The use of
 makes this closer to the standard
functional style, where the location that the result is returned to is not made explicit. The
destructor, P
(Q
), applies the function P
 to Q
. These can be typed using variants of the
standard→ I and→ E rules labeled with channels:

�, (x : A)� P
 :: (
 : B)

� � zW.(λx.P
) :: (z : A→ B)
→ I

� � P
 :: (
 : A→ B) � �Q
 :: (
 : A)

� � y← (P
(Q
)) :: (y : B)
→ E

In order to avoid having to augment our language each time, we wish to add a new
feature, we will show that these new constructs can be treated as syntactic sugar for terms
already in the language, and, moreover, that those terms behave as we would expect of
functions and function applications.

We take the following definitions for the new type and terms:

A→ B � A � B

zW.(λx.P
) � case zW (〈x, y〉⇒ Py)

y← (P
(Q
)) � f
seq← Pf ; x

seq←Qx; f R.〈x, y〉
These definitions are type-correct, as shown by the following theorem:

Theorem 6. If we expand all new constructs using �, then the typing rules rules→ I and
→ E above are admissible.

We can prove this by deriving the typing rules, using Lemma 5 in a few places.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

22 K. Pruiksma and F. Pfenning

Now that we have established that we can expand this syntactic sugar for functions in
a type-correct manner, we examine the evaluation behavior of these terms. First, we con-
sider the lambda abstraction zW.(λx.P
) and its expansion case zW (〈x, y〉⇒ Py). A lambda
abstraction should already be a value, and so we might expect that it can be written to
memory immediately. Indeed, in the expansion, we immediately write the continuation
(〈x, y〉⇒ Py), which serves as the analogue for (λx.P
). This term thus behaves as expected.

We expect that when applying a function P
 to an argument Q
, we first reduce P
 to a
value, then reduce Q
 to a value, and then apply the value of P
 to the value of Q
, generally
by substitution. In the term f

seq← Pf ; x
seq←Qx; f R.〈x, y〉, we see exactly this behavior. We

first evaluate Pf into f , then Qx into x, and then apply the continuation stored in f to the
pair 〈x, y〉.

7 Futures

Futures (Halstead, 1985) are a classic example of a primitive to introduce concurrency
into a sequential language. In the usual presentation, we add to a (sequential) functional
language the ability to create a future that immediately returns a promise and spawns a
concurrent computation. Touching a promise by trying to access its value blocks until that
value has been computed. Futures have been a popular mechanism for parallel execution
in both statically and dynamically typed languages, and they are also used to encapsulate
various communication primitives.

The development of a sequential cut in Section 5 provides us with ways to model or
reconstruct concurrency primitives, and futures are a surprisingly simple example of this.
Starting with a language that only allows sequential cuts, we would like to add a new con-
struct that serves to create a future, as we added functions to the base language in Section 6.
In this case, however, we already have a construct that behaves exactly as desired. The con-
current cut x← P ; Q spawns a new process P and executes P and Q concurrently. When
Q tries to read from x, it will block until P has computed a result W and written it to x.
If we wish to add an explicit synchronization point, we can do so with minimal overhead
by making use of identity to read from x. For instance, the process z← (zW← xR) ; Q will
first copy or move the contents of cell x to cell z, and then run Q. As such, it delays the
execution of Q until x has been written to, even if Q does not need to look at the value of
x until later. This is analogous to the touch construct of some approaches to futures.

In other words, in this language, futures, rather than being a construct that we need to add
and examine carefully, are in fact the default. This is, in a sense, opposite to the standard
approach, where sequentiality is the norm and a new construct is needed to handle futures.
By instead adding sequential cut to our otherwise concurrent language, we get the same
expressive power, being able to specify whenever we spawn a new computation whether
it should be run concurrently with or sequentially before the continuation process.

These futures, much like those in Halstead’s Multilisp, are not distinguished at the type
level and do not require an explicit touch construct for synchronization, although we can
add synchronization points as shown. It is possible to provide an encoding of futures with
a distinct type, as they are used in many more modern languages (see Appendix 1), but
we find the form presented here more natural, as it allows a great deal of flexibility to the
programmer — a process using a variable x does not know and need not care whether the
value of x is computed concurrently or not.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 23

One interesting result that arises from this approach to futures, and in particular from
the fact that this approach works at any mode m, regardless of what σ (m) is, is that by
considering the case where σ (m)= {}, we recover a definition of linear futures, which
must be used exactly once. This is limited in that the base language at mode m will also be
linear, along with its futures. However, we are not restricted to working with one mode. For
instance, we may take a mode S with σ (S)= {}, which allows for programming linearly
with futures, and a mode S∗ with σ (S∗)= {W, C} and S < S∗, which allows for standard
functional programming. The shifts between the linear and non-linear modes allow both
types of futures to be used in the same program, embedding the linear language (including
its futures) into the non-linear language via the monad ↑S∗

S ↓S∗
S . Uses for linear futures

(without a full formalization) in the efficient expression of certain parallel algorithms have
already been explored in prior work (Blelloch & Reid-Miller, 1999), but to our knowledge,
no formalization of linear futures has yet been given.

Binary numbers revisited. The program for plus2 presented in Section 4.2 is a clas-
sic example of a (rather short-lived) pipeline set up with futures. For this to exhibit the
expected parallelism, the individual succ process should also be concurrent in its recursive
call.

(z : bin)� plus2 :: (x : bin)

x← plus2 z=
y← succ z ;
x← succ y

Simple variations (for example, setting up a Boolean circuit on bit streams) follow the
same pattern of composition using futures.

mapReduce Revisited. As a use of futures, consider making all cuts in mapReduce
sequential except those representing a recursive call:

(z : ↑s
mB) (f : ↑u

m((B⊗ A⊗ B) � B)) (t : treeA)�mapReduceAB :: (s : B)

s←mapReduceAB z f t=
case tR (empty 〈 〉⇒ z1

seq← zR.shift(z1) ; % drop f
sW← zR

1

| node 〈l, 〈x, r〉〉⇒ l1←mapReduceAB z f l ;
r1←mapReduceAB z f r ; % duplicate z and f

p
seq← pW.〈l1, 〈x, r1〉〉 ;

s1
seq← f R.shift〈p, s1〉 ;

sW← sR
1)

In this program, the computation at each node is sequential, but the two recursive calls to
mapReduce are spawned as futures. We synchronize on these futures when they are needed
in the computation of f .

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

24 K. Pruiksma and F. Pfenning

8 Fork/Join parallelism

While futures allow us a great deal of freedom in writing concurrent programs with
fine-grained control, sometimes it is useful to have a more restrictive concurrency prim-
itive, either for implementation reasons or for reasoning about the behavior of programs.
Fork/join parallelism is a simple, yet practically highly successful paradigm, allowing mul-
tiple independent threads to run in parallel, and then collecting the results together after
those threads are finished, using a join construct. Many slightly different treatments of
fork/join exist. Here, we will take as the primitive construct a parallel pair 〈P
 |Q
〉, which
runs P
 and Q
 in parallel, and then stores the pair of results. Joining the computation then
occurs when the pair is read from, which requires both P
 and Q
 to have terminated. This
form of fork/join is common in the literature dealing with scheduling and other optimiza-
tions for parallelism, particularly nested parallelism (e.g. Acar et al. (2018)), due to its
relative simplicity.

As with our reconstruction of functions in Section 6, we will use a single mode m which
may have arbitrary structural properties, but only allows sequential cuts. As we are working
with only a single mode, we will generally omit the subscripts that indicate mode, writing
A rather than Am.

We introduce a new type Am‖Bm of parallel pairs and new terms to create and read from
such pairs. We present these terms in the following typing rules:

�C , � � P
 :: (
 : A) �C , ��Q
 :: (
 : B)

�C , �, �� zW.〈P
 |Q
〉 :: (z : A‖B)
‖R

�, (z : A), (w : B)� R :: (c : C)

�, (x : A‖B)� case xR (〈z |w〉⇒ R) :: (c : C)
‖L

As in Section 6 we can reconstruct these types and terms in Seax already. Here, we
define:

A‖B � A⊗ B

zW.〈P
 |Q
〉 � x1← P
[x1.shift(x)//
] ;
y1←Q
[y1.shift(y)//
] ;
case xR

1 (shift(x)⇒ case yR
1 (shift(y)⇒ zW.〈x, y〉))

case xR (〈z |w〉⇒ R) � case xR (〈z, w〉⇒ R)

This definition respects the typing as prescribed by the ‖R and ‖L rules.

Theorem 7. If we expand all new constructs using �, then the ‖R and ‖L rules above are
admissible.

This theorem follows quite straightforwardly from Lemma 4.
The evaluation behavior of these parallel pairs is quite simple — we first observe that,

as the derivation of ‖L in the theorem above suggests, the reader of a parallel pair behaves
exactly as the reader of an ordinary pair. The only difference, then, is in the synchronization
behavior of the writer of the pair. Examining the term

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 25

x1← P
[x1.shift(x)//
] ;
y1←Q
[y1.shift(y)//
] ;
case xR

1 (shift(x)⇒ case yR
1 (shift(y)⇒ zW.〈x, y〉))

we see that it spawns two new threads, which run concurrently with the original thread.
The new threads execute P
[x1.shift(x)//
] and Q
[y1.shift(y)//
] with destinations x1 and
y1, respectively, while the original thread waits first on x1, then on y1, before writing the
pair 〈x, y〉 to z. Because the new threads will write to x and x1 atomically, and similarly
for y and y1, by the time 〈x, y〉 is written to z, x and y must have already been written to.
However, because both cuts in this term are concurrent cuts, P
 and Q
 run concurrently,
as we expect from a parallel pair.

mapReduce Revisited. We can use the fork/join pattern in the implementation of
mapReduce so that we first synchronize on the results returned from the two recursive
calls before we call f on them.

(z : ↑s
mB) (f : ↑u

m((B⊗ A⊗ B) � B)) (t : treeA)�mapReduceAB :: (s : B)

s←mapReduceAB z f t=
case tR (empty 〈 〉⇒ z1

seq← zR.shift(z1)
sW← zR

1

| node 〈l, 〈x, r〉〉⇒
rl← rlW.〈mapReduceAB x f l |mapReduceAB x f r〉 ;
case rlR (〈l1 | r1〉⇒ p

seq← pW.〈l1, 〈x, r1〉〉 ;
s1

seq← f R.shift〈p, s1〉 ;
sW← sR

1))

9 Monadic concurrency

For a different type of concurrency primitive, we look at a monad for concurrency, taking
some inspiration from SILL (Toninho et al., 2013; Toninho, 2015; Griffith, 2016), which
makes use of a contextual monad to embed the concurrency primitives of linear session
types into a functional language. This allows us to have both a fully-featured sequential
functional language and a fully-featured concurrent linear language, with the concurrent
layer able to refer on variables in the sequential layer, but not the other way around.
By keeping the layers separate in this way, we can reason about them independently.
Moreover, the sequential layer could be implemented more simply than the concurrent
layer — while the concurrent layer needs some form of locking or synchronization to
ensure that a cell is not read from until it has been written to, the sequential layer can avoid
all of this overhead. Similarly, while in the sequential layer, an implementation could avoid
the extra work of thread management by maintaining a single thread.

To construct this concurrency monad, we will use two modes N and S with N < S.
Intuitively, the linear concurrent portion of the language is at mode N, while the func-
tional portion is at mode S. As in common in functional languages, S allows weakening
and contraction (σ (S)= {W , C}), but only permits sequential cuts (by which we mean that

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

26 K. Pruiksma and F. Pfenning

any cut whose principal formula is at mode S must be a sequential cut) so that it mod-
els a sequential functional language. By contrast, N allows concurrent cuts, but is linear
(σ (S)= {}). We will write AS and AN for sequential and concurrent types, respectively.

The basic operations that we need, embedding concurrent processes in the functional
layer and functional values in the concurrent layer, are simply the shifts ↑S

N and ↓S
N, respec-

tively. Composing these then yields a monad ↑S
N↓S

NAS, with cell data of this type being a
stored concurrent process which, when evaluated, yields a a functional value of type AS,
tagged with a shift.

To illustrate how this can be used for programming, we will present implementations
of some of the features of SILL in this instance of Seax. SILL uses the type {AN} to lift
processes from the concurrent layer to the functional layer, and types AS ∧ BN and AS ⊃ BN

to send and receive functional values in the concurrent layer, respectively. Sending and
receiving in a message-passing setting have analogs in writing values and continuations in
Seax. For instance, rather than sending an AS and continuing as BN, a process in Seax with
type AS ∧ BN will write a pair of addresses pointing to an AS and a BN.

The type {AN} of SILL has as values process expressions {P
} such that P
 :: (
 : AN).
These process expressions can be constructed and passed around in the functional layer.
In order to actually execute these processes, however, we need to use a bind construct
{cN}←Q
 in the functional layer, which will evaluate Q
 into an encapsulated process
expression {P
} and then run P
, storing its result in cN. We can add {·} to our language
with the typing rules below. Here, �S indicates that all assumptions in � are at mode S:

�S � P
 :: (
N : AN)

�S � yS.{P
} :: (yS :: {AN})
{·}I

�S �Q
 :: (
S :: {AN})
�S � {cN}←Q
 :: (cN : AN)

{·}E

Since they live in the session-typed layer, the ∧ and ⊃ constructs fit more straightfor-
wardly into our language. We will focus on the type AS ∧ BN, but AS ⊃ BN can be handled
similarly. A process of type AS ∧ BN writes a pair of a functional value with type AS and a
concurrent value with type BN. These terms and their typing rules are shown below:

�W , (vS : AS), (yN : BN)� xN.〈vS, yN〉 :: (xN :: AS ∧ BN)
∧R0

�, (vS : AS), (yN : AN)� Pz :: (zN : CN)

�, (xN : AS ∧ BN)� case xN (〈vS, yN〉⇒ Pz) :: (zN : CN)
∧L

To show that these constructs can be expressed in the base language, we define

{AN} � ↑S
NAN

AS ∧ BN �
(↓S

NAS
)⊗ BN

dW
S .{P
} � case dW

S (shift(xN)⇒ Px)

{cN}←Q
 � yS
seq←Qy; yR

S .shift(cN)

dW
N .〈vS, yN〉 � xN← xW

N .shift(vS); dW
N .〈xN, yN〉

case dR
N (〈uS, wN〉⇒ Pz) � case dR

N (〈xN, wN〉⇒ case xR
N(shift(uS)⇒ Pz))

These definitions give us the usual type-correctness theorem:

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 27

Theorem 8. If we expand all new constructs using �, then the typing rules for {·} and ∧
are admissible.

As with the previous sections, it is not enough to know that these definitions are well-
typed — we would also like to verify that they have the behavior we expect from SILL. In
both cases, this is relatively straightforward. Examining the term

dW
S .{P
} � case dW

S (shift(xN)⇒ Px),

we see that this writes a continuation into memory, containing the process Px. A reference
to this continuation can then be passed around freely, until it is executed using the bind
construct:

{cN}← P
 � yS
seq← Py; yS.shift(cN)

This construct first evaluates Py with destination yS, to get a stored process, and then
executes that stored process with destination cN.

The ∧ construct is even simpler. Writing a functional value using the term

dN.〈vS, yN〉 � xN← xN.shift(vS); dN.〈xN, yN〉
sends both a shift (bringing the functional value into the concurrent layer) and the pair
〈xN, yN〉 of the continuation yN and the shift-encapsulated value xN. Reading such a value
using the term

case dN (〈vS, yN〉⇒ Pz) � case dN (〈xN, yN〉⇒ case xN(shift(vS)⇒ Pz))

just does the opposite — we read the pair out of memory, peel the shift off of the functional
value vS to return it to the sequential, functional layer, and continue with the process Pz,
which may make use of both vS and the continuation yN.

These terms therefore capture the general behavior of a monad used to encapsulate
concurrency inside a functional language. The details of the monad we present here are
different from that of SILL’s (contextual) monad, despite our use of similar notation, but
the essential idea is the same.

Example: A concurrent counter. We continue our example of binary numbers, this time
supposing that the mode m= S, that is, our numbers and the successor function on them are
sequential and allow weakening and contraction. counter represents a concurrently running
process that can receive inc and val messages to increment or retrieve the counter value,
respectively.

ctrN =�N{inc : ctrN, val : binS ∧ ctrN}
(x : binS)� counter :: (c : ctrN)

c← counter x=
case c (inc(c1)⇒ x1

seq← succ x ;
c1← counter x1

| val(c1)⇒ c2← counter x ;
cW

1 .〈x, c2〉

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

28 K. Pruiksma and F. Pfenning

10 Conclusion

We have presented a concurrent shared-memory semantics based on a semi-
axiomatic (DeYoung et al., 2020) presentation of adjoint logic (Reed, 2009; Licata &
Shulman, 2016; Licata et al., 2017; Pruiksma & Pfenning, 2019), for which we have usual
variants of progress and preservation, as well as confluence. We then demonstrate that
by adding a limited form of atomic writes, we can model sequential computation. Taking
advantage of this, we reconstruct several patterns that provide limited access to concur-
rency in a sequential language, such as fork/join, futures, and monadic concurrency in the
style of SILL. The uniform nature of these reconstructions means that they are all mutually
compatible, and so we can freely work with any set of these concurrency primitives within
the same language. Moreover, taking advantage of the adjoint nature of the language, we
can have multiple modes, each with different features — for instance, one mode where
computation is purely sequential, another with futures, and yet another with fork/join. The
separation between these modes means that we can reason about programs at each mode
separately — not needing to think about concurrency at the purely sequential mode, for
example. Building on this, an actual implementation of this language could make opti-
mizations based on the restrictions at each mode, not needing to worry about the full range
of features that may exist at other modes. Seax therefore allows us to get many of the bene-
fits of working in a restricted language (at a specific mode), without the drawbacks of only
having specific tools to work with (since we can weaken those restrictions or place other
restrictions at different modes).

There are several potential directions that future work in this space could take. In our
reconstruction of futures, we incidentally also provide a definition of linear futures, which
have been used in designing pipelines (Blelloch & Reid-Miller, 1999), but to our knowl-
edge have not been examined formally or implemented. One item of future work, then,
would be to further explore linear futures, now aided by a formal definition which is also
amenable to implementation. We also believe that it would be interesting to explore an
implementation of our language as a whole and to investigate what other concurrency
patterns arise naturally when working in it. Another item of future work is to make more
precise the correctness of the encodings we describe in Sections 6, 8 and 9. For instance, for
functions, we can prove beta reduction admissible already, but for the other encodings, we
lack similar results, as this kind of functional correctness result appears to require a better
notion of equivalence for Seax processes, allowing us to compare terms in the languages
augmented with additional constructs to terms in the base language that use encodings in
place of those additional constructs. Additionally, the stratification of the language into
layers connected with adjoint operators strongly suggests that some properties of a lan-
guage instance as a whole can be obtained modularly from properties of the sublanguages
at each mode. Although based on different primitives, research on monads and comonads
to capture effects and coeffects, respectively (Curien et al., 2016; Gaboardi et al., 2016),
also points in this direction. In particular, we would like to explore a modular theory of
(observational) equivalence using this approach. Some work on observational equivalence
in a substructural setting already exists (Kavanagh, 2020), but works in a message-
passing setting and does not seem to translate directly to the shared-memory setting
of Seax.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 29

Conflicts of Interest

None.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Grant No. 1718267.

References

Acar, U. A., Charguéraud, A., Guatto, A., Rainey, M. & Sieczkowski, F. (2018) Heartbeat
scheduling: Provable efficiency for nested parallelism. Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 769–782.

Benton, N. (1994) A mixed linear and non-linear logic: Proofs, terms and models. Pacholski, L. &
Tiuryn, J. (eds), Selected Papers from the 8th International Workshop on Computer Science Logic
(CSL’94). LNCS, vol. 933. Springer, pp. 121–135. An extended version appears as Technical
Report UCAM-CL-TR-352, University of Cambridge.

Blelloch, G. E. & Reid-Miller, M. (1999) Pipeling with futures. Theory Comput. Syst. 32, 213–239.
Cervesato, I. & Scedrov, A. (2009) Relating state-based and process-based concurrency through

linear logic. Inform. Comput. 207(10), 1044–1077.
Cervesato, I., Hodas, J. S. & Pfenning, F. (2000) Efficient resource management for linear logic proof

search. Theor. Comput. Sci. 232(1–2), 133–163. Special issue on Proof Search in Type-Theoretic
Languages, D. Galmiche & D. Pym, editors.

Cervesato, I., Pfenning, F., Walker, D. & Watkins, K. (2002) A Concurrent Logical Framework
II: Examples and Applications. Tech. rept. CMU-CS-02-102. Department of Computer Science,
Carnegie Mellon University. Revised May 2003.

Church, A. & Rosser, J. (1936) Some properties of conversion. Trans. Amer. Math. Soc. 39(3),
472–482.

Conway, M. E. (1963) A multiprocessor system design. Proceedings of the Fall Joint Computer
Conference (AFIPS’63). ACM, pp. 139–146.

Curien, P.-L., Fiore, M. P. & Munch-Maccagnoni, G. (2016) A theory of effects and resources:
Adjunction models and polarised calculi. In Proceedings of the 43rd Symposium on Principles of
Programming Languages (POPL 2016), Bodík, R. & Majumdar, R. (eds). ACM, pp. 44–56.

Das, A. & Pfenning, F. (2020) Rast: Resource-aware session types with arithmetic refinements. In
5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020),
Ariola, Z. (ed). LIPIcs 167, pp. 33:1–33:17. System description.

DeYoung, H., Pfenning, F. & Pruiksma, K. (2020) Semi-axiomatic sequent calculus. In 5th
International Conference on Formal Structures for Computation and Deduction (FSCD 2020),
Ariola, Z. (ed). LIPIcs 167, pp. 29:1–29:22.

Fairtlough, M. & Mendler, M. (1997) Propositional lax logic. Inform. Comput. 137(1), 1–33.
Gaboardi, M., ya Katsumata, S., Orchard, D., Breuvart, F. & Uustalu, T. (2016) Combining effects

and coeffects via grading. In 21st International Conference on Functional Programming (ICFP
2016), Garrigue, J., Keller, G. & Sumii, E. (eds). ACM, Nara, Japan, pp. 476–489.

Gay, S. J. & Hole, M. (2005) Subtyping for session types in the π -calculus. Acta Informat. 42(2–3),
191–225.

Gay, S. J. & Vasconcelos, V. T. (2010) Linear type theory for asynchronous session types. J. Funct.
Program. 20(1), 19–50.

Gentzen, G. (1935) Untersuchungen über das logische Schließen. Math. Z. 39, 176–210, 405–431.
English translation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pp. 68–131,
North-Holland, 1969.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

30 K. Pruiksma and F. Pfenning

Girard, J.-Y. & Lafont, Y. (1987) Linear logic and lazy computation. In Proceedings of the
International Joint Conference on Theory and Practice of Software Development, Ehrig, H.,
Kowalski, R., Levi, G. & Montanari, U. (eds) vol. 2, LNCS, vol. 250. Springer-Verlag, pp. 52–66.

Griffith, D. (2016) Polarized Substructural Session Types. PhD thesis, University of Illinois at
Urbana-Champaign.

Halstead, R. H. (1985) Multilisp: A language for parallel symbolic computation. ACM Trans.
Program. Lang. Syst. 7(4), 501–539.

Hilbert, D. & Bernays, P. (1934) Grundlagen der Mathematik. Springer-Verlag.
Honda, K. (1993) Types for dyadic interaction. In 4th International Conference on Concurrency

Theory (CONCUR 1993), Best, E. (ed). LNCS, vol. 715. Springer, pp. 509–523.
Honda, K., Vasconcelos, V. T. & Kubo, M. (1998) Language primitives and type discipline for

structured communication-based programming. In 7th European Symposium on Programming
Languages and Systems (ESOP 1998), Hankin, C. (ed). LNCS, vol. 1381. Springer, pp. 122–138.

Kavanagh, R. (2020) Substructural observed communication semantics. In 27th International
Workshop on Expressiveness in Concurrency (EXPRESS/SOS 2020), Dardha, O. & Rot, J. (eds).
EPTCS, vol. 322, pp. 69–87.

Larus, J. R. (1989) Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors.
PhD thesis, University of California, Berkeley.

Licata, D. R. & Shulman, M. (2016) Adjoint logic with a 2-category of modes. In International
Symposium on Logical Foundations of Computer Science (LFCS). LNCS, vol. 9537. Springer,
pp. 219–235.

Licata, D. R., Shulman, M. & Riley, M. (2017) A fibrational framework for substructural and modal
logics. In Proceedings of the 2nd International Conference on Formal Structures for Computation
and Deduction (FSCD’17), Miller, D. (ed). LIPIcs, pp. 25:1–25:22.

Lincoln, P. & Mitchell, J. C. (1992) Operational aspects of linear lambda calculus. In 7th Annual
Symposium on Logic in Computer Science (LICS 1992). IEEE, Santa Cruz, California, pp. 235–
246.

Miller, H., Haller, P., Müller, N. & Boullier, J. (2016) Function passing: A model for typed, dis-
tributed functional programming. In International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2016), Visser, E., Murphy-Hill, E. &
Lopes, C. (eds). ACM, pp. 82–97.

Pruiksma, K. & Pfenning, F. (2019) A message-passing interpretation of adjoint logic. In Workshop
on Programming Language Approaches to Concurrency and Communication-Centric Software
(PLACES), Martins, F. & Orchard, D. (eds). EPTCS, vol. 291, pp. 60–79.

Pruiksma, K. & Pfenning, F. (2020) Back to futures. CoRR abs/2002.04607(Feb.).
Pruiksma, K., Chargin, W., Pfenning, F. & Reed, J. (2018) Adjoint Logic. Unpublished manuscript.
Reed, J. (2009) A Judgmental Deconstruction of Modal Logic. Unpublished manuscript.
Simmons, R. J. (2012) Substructural Logical Specifications. PhD thesis, Carnegie Mellon

University. Available as Technical Report CMU-CS-12-142.
Toninho, B. (2015) A Logical Foundation for Session-based Concurrent Computation. PhD thesis,

Carnegie Mellon University and Universidade Nova de Lisboa. Available as Technical Report
CMU-CS-15-109.

Toninho, B., Caires, L. & Pfenning, F. (2013) Higher-order processes, functions, and sessions: A
monadic integration. In Proceedings of the European Symposium on Programming (ESOP’13),
Felleisen, M. & Gardner, P. (eds). LNCS, vol. 7792. Springer, pp. 350–369.

Wadler, P. (1984) Listlessness is better than laziness: Lazy evaluation and garbage collection at
compile-times. In Conference on Lisp and Functional Programming (LFP 1984). ACM, Austin,
Texas, pp. 45–52.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 31

1 Typed futures

The futures that we discuss in Section 7 behave much like Halstead’s original futures in
Multilisp Halstead (1985), which, rather than being distinguished at the type level, are
purely operational. One side effect of this is that while we can explicitly synchronize these
futures, we can also make use of implicit synchronization, where accessing the value of
the future blocks until it has been computed, without the need for a touch construct.

Here, we will look at a different encoding of futures, which distinguishes futures at the
type level, as they have often been presented since. As in Section 6, we will work with a
single mode m, in which we will only allow sequential cuts, and which may have any set
σ (m) of structural properties. To the base language, we add the following new types and
process terms for futures:

Types A ::= . . . | fut A
Processes P ::= . . . | xW.〈P
〉 | touch yR (〈z〉⇒ P)

We type these new constructs as:

� � P
 :: (
 : Am)

� � xW
m .〈P
〉 :: (xm : fut Am)

futR

�, zm : Am �Q :: (wm : Cm)

�, xm : fut Am � touch xR
m (〈zm〉⇒Q) :: (wm : Cm)

futL

We then reconstruct this in Seax by defining

fut Am � ↓m
m↓m

mAm

xW
m .〈P
〉 � ym← P
[ym.shift(zm)//
] ; xW

m .shift(ym)
touch xR

m (〈zm〉⇒Q) � case xR
m (shift(ym)⇒ case yR

m(shift(zm)⇒Q))

This is not the only possible reconstruction,8 but we use it because it is the simplest one
that we have found. The first property to verify is that these definitions are type-correct:

Theorem 9. If we expand all new constructs using �, then the rules futL and futR are
admissible.

Proof. By examining typing derivations for these processes, we see that these rules can be
derived as follows:

� � P
 :: (
 :: Am)

� � P
[ym.shift(zm)//
] :: (ym : ↓m
mAm)

Lemma 4
ym : ↓m

mAm � xW
m .shift(ym) :: (xm : ↓m

m↓m
mAm)

↓R0

� � ym← P
[ym.shift(zm)//
] ; xW
m .shift(ym) :: (xm : ↓m

m↓m
mAm)

cut

8 In particular, as the role of the outer shift is simply to allow the client of the future to proceed, we can replace
the shift with any other type that forces a send but does not provide any useful information. Examples include
↑m

m↓m
mAm and 1m ⊗ (↓m

mAm).

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

32 K. Pruiksma and F. Pfenning

�, zm : Am �Q :: (w : Cm)

�, ym : ↓m
mAm � case yR

m(shift(zm)⇒Q) :: (w : Cm)
↓L0

�, xm : ↓m
m↓m

mAm � case xR
m (shift(ym)⇒ case yR

m(shift(zm)⇒Q)) :: (w : Cm)
↓L0

Note that we omit mode conditions on cut because within a single mode m, they are
necessarily satisfied. �

Now, we examine the computational behavior of these terms to demonstrate that they
behave as futures. The type ↓m

mAm, much like in Section 5 where we used it to model
sequentiality, adds an extra synchronization point. Here, we shift twice, giving ↓m

m↓m
mAm,

to introduce two synchronization points. The first is that enforced by our restriction to only
allow sequential cuts in this language (outside of futures), while the second will become
the touch construct. We will see both of these when we examine each process term.

We begin by examining the constructor for futures. Intuitively, when creating a future,
we would like to spawn a new thread to evaluate P
 with new destination zm, and imme-
diately write the promise of zm (represented by a hypothetical new value 〈zm〉) into xm, so
that any process waiting on xm can immediately proceed. The term

xW
m .〈P
〉 � yW

m ← P
[ym.shift(zm)//
] ; xW
m .shift(ym)

behaves almost exactly as expected. Rather than spawning P
 with destination zm, we
spawn P
[ym.shift(zm)//
], which will write the result of P
 to zm, and a synchronizing
shift to ym. Concurrently, we write the value shift(ym) to xm, allowing the client of xm to
resume execution, even if xm was created by a sequential cut. This value shift(ym) is the
first half of the promise 〈zm〉, and the second half, shift(zm), will be written to ym when P
finishes executing.

If, while P continues to execute, we touch xm, we would expect to block until the promise
〈zm〉 has been fulfilled by P having written to zm. Again, we see exactly this behavior from
the term

touch xR
m (〈zm〉⇒Q) � case xR

m (shift(ym)⇒ case yR
m(shift(zm)⇒Q)).

This process will successfully read shift(ym) from xm, but will block trying to read from ym

until ym is written to. Since zm and ym are written to at the same time, we block until zm is
written to, at which point the promise is fulfilled. Once a result W has been written to zm

and (simultaneously) shift(zm) has been written to ym, this process can continue, reading
both ym and zm, and continuing as Q. Again, this is the behavior we expect a touch construct
to have.

This approach does effectively model a form of typed future, which ensures that all
synchronization is explicit, but comes at the cost of overhead from the additional shifts.
Both this and the simpler futures that we describe in Section 7 have their uses, but we
believe that the futures native to Seax are more intuitive in general.

2 Proofs of type correctness

In Sections 6, 8 and 9, we present type-correctness theorems for our reconstructions of
various concurrency primitives, but omit the details of the proofs. Here, we present those
details.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

Back to futures 33

Functions. We derive the typing rules as follows, making use of Lemma 5 to use the
admissible seqcut rule. We omit the conditions on modes for cut, as we only have one
mode:

�, x : A� Py :: (y : B)

� � case z (〈x, y〉⇒ Py) :: (z : A � B)
� R

� � Pf :: (f : A � B)

� �Qx :: (x : A) �, (f : A � B), (x : A)� f .〈x, y〉 :: (y : B)
� L0

�, (f : A � B)� x
seq←Qx; f .〈x, y〉 :: (y : B)

seqcut

� � f
seq← Pf ; x

seq←Qx; f .〈x, y〉 :: (y : B)
seqcut

Fork/Join. Due to the length of the process term that defines z.〈P
 |Q
〉, we elide portions
of it throughout the derivation below, and we will write P′ for P
[x′.shift(x)//
], and simi-
larly Q′ for Q
[y′.shift(y)//
]. With these abbreviations, we have the following derivation
for the ‖R rule, where the dashed inferences are made via Lemma 4.

�C , � � Px :: (x : A)

�C , � � P′ :: (x′ : ↓m
mA)

�C , ��Qy :: (y : B)

�C , ��Q′ :: (y′ : ↓m
mB)

x : A, y : B� z.〈x, y〉 :: (z : A⊗ B)
⊗R0

x : A, y′ : ↓m
mB� case y′ (. . .) :: (z : A⊗ B)

↓L0

x′ : ↓m
mA, y′ : ↓m

mB� case x′ (. . .) :: (z : A⊗ B)
↓L0

�C , �, x′ : ↓m
mA� y′ ←Q′ ; . . . :: (z : A⊗ B)

cut

�C , �, �� x′ ← P′ ; . . . :: (z : A⊗ B)
cut

The left rule is much more straightforward, since this encoding makes the writer of the
pair rather than the reader responsible for synchronization.

�, z : A, w : B� R :: (c : C)

�, x : A⊗ B� case x (〈z, w〉⇒ R) :: (c : C)
⊗L0

Monadic Concurrency. We first construct the typing rules for {·}, which are straightfor-
ward:

�S � Px :: (xN : AN)

�S � case dS (shift(xN)⇒ Px) :: (dS : ↑S
NAN)

↑R

�S ≥ S≥N �S � Py :: (yS : ↑S
NAN) (yS : ↑S

NAN)� yS.shift(cN) :: (cN : AN)
↑L0

�S � yS
seq← Py; yS.shift(cN) :: (cN : AN)

seqcut

We then construct the typing rules for ∧:

vS : AS � xN.shift(vS) :: (xN :: ↓S
NAS)

↓R0

�W , (xN :: ↓S
NAS)� dN.〈xN, yN〉 :: (dN :: (↓S

NAS)⊗ BN)
⊗R0

�W , (vS : AS), (yN : BN)� xN← xN.shift(vS); dN.〈xN, yN〉 :: (dN :: AS ∧ BN)
cut

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

34 K. Pruiksma and F. Pfenning

�, (vS : AS), (wN : BN)� Pz :: (zN : CN)

�, (xN : ↓S
NAS), (wN : BN)� case xN(shift(vS)⇒ Pz) :: (zN : CN)

↓L0

�, (dN : (↓S
NAS)⊗ BN)� case dN (〈xN, wN〉⇒ case xN(shift(vS)⇒ Pz)) :: (zN : CN)

⊗L0

Note that unlike the rules for {·} or for many of the constructs in previous sections, those
for ∧ are not only admissible — they are derivable.

https://doi.org/10.1017/S0956796822000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000016

	Back to futures
	Introduction
	Adjoint logic
	Seax: Types and syntax
	Concurrent semantics
	Results
	Examples
	Example: Binary Numbers.
	Example: Computing with Binary Numbers.
	Example: MapReduce.
	Example: -Calculus.

	Sequential semantics
	Functions
	Futures
	Fork/Join parallelism
	Monadic concurrency
	Conclusion
	Typed futures
	Proofs of type correctness

