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JORDAN LOOPS AND DECOMPOSITIONS OF OPERATORS 

ARLEN BROWN AND CARL PEARCY 

1. Let ffl be a separable, infinite dimensional, complex Hilbert space, and 
le t^f (^?) denote the algebra of all bounded linear operators onjf7. In what 
follows we shall denote the spectrum, essential spectrum, and left essential 
spectrum of an operator T in J?f (Jf7) by a(T), ae(T), and ale(T), respectively. 
Furthermore, if T\ £ ^£\^?) and T\ is unitarily equivalent to a compact 
perturbation of an operator T2, then we write 7\ ~ T2, and if the compact 
perturbation can be chosen to have norm less than e, we write 7\ ~ T2(e). 

One of the fundamental theorems that has proved to be an extremely 
valuable tool in the recent advances in the structure theory of operators is the 
following (cf. [1; 3; 8]). 

THEOREM A. Suppose T £ J£(34?) and B is an arbitrary nonempty closed 
subset of aie(T). Then for every e > 0, there exists an operator TeinJîé?(J#P ® 34?) 
such that T ^ Te(e) and such that 

where Nt is a diagonalizable normal operator of uniform infinite multiplicity in 
&(34?) satisfying a(N€) = ae(N€) = B. 

One reason Theorem A has been so useful, especially in proving density 
theorems, is that the operator T in the hypothesis is completely arbitrary. 
Another is that it is sometimes possible, at the expense of another perturbation 
of small norm, to replace the normal operator Ne appearing in (1) by a nearby 
normal operator whose essential spectrum has desirable properties. The main 
purpose of this note is to prove a theorem of this sort. We show (Theorem 3.1) 
that if B is taken to be the outer boundary of ae(T) (see § 2 for definitions), 
then there exists a normal operator N arbitrarily close to Ne such that a(N) = 
ae(N) and such that ae(N) consists of the union of a finite number of piecewise 
smooth Jordan loops that surround ae(T). Since the outer boundary of cre(T) 
may have positive planar Lebesgue measure, the existence of such an N seems 
not to be completely obvious, and depends upon a result (Theorem 2.1) con­
cerning the geometry of the plane. As consequences of our main theorem we 
obtain new proofs of the central theorems of [5] and [7]. 
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2. We begin with a preliminary discussion whose purpose is to fix terminology 
and notation. If K is a nonempty compact subset of the complex plane C, 
then its complement C\K is a countable union of pairwise disjoint domains 
(i.e., nonempty connected open subsets of C) called the complementary com­
ponents of K. Of these complementary components exactly one—call it Uœ(K) 
—is unbounded. The other, bounded, components of C\K are called holes in K. 
The set of points in K tha t belong to Uœ(K)~ will be called the outer boundary 
of K, and will be denoted by doK. (The outer boundary is thus a par t of the 
boundary dK; all other points of dK belong to the closure of one or more holes 
inK.) 

In what follows we shall be concerned with mat ters having to do with sets of 
Jordan loops and the domains they bound. (We do not distinguish between a 
Jordan loop, which is a continuous mapping 7 of a nondegenerate real interval 
fa, b] into the complex plane tha t is one-to-one except for the fact tha t y (a) = 
y(b), and the range J = y ([a, b]) of 7, which is a connected compact subset of 
C ) . If J is a Jordan loop, then its complement C \ 7 is the union of exactly two 
components, an unbounded component Uœ(J) and one hole H, and / = 
dUœ(J) = dH. The domains Uœ(J) and H are called the exterior and interior 
domains of / , and will be denoted by Ext ( / ) and In t ( J ) , respectively. 

If J\ and / ? are two disjoint Jordan loops, then each must be contained in a 
single complementary component of the other. If each lies in the exterior 
domain of the other, then J\ and Ji are mutually exterior. If J\ lies in In t (J2), 
then J2 C Ext ( J i ) , and we say tha t J\ is interior to J\. A Jordan domain is a 
domain D with the property tha t 3D is the union of a finite number of pair-
wise disjoint Jordan loops. A Jordan region is the closure of a Jordan domain. 

If Jo is a Jordan loop and J\, . . . , Jk are Jordan loops tha t are mutual ly 
exterior in pairs and all interior to Jo, then 

D = In t (Jo) H Ext (J i) H . . . H Ext (Jk) 

is a bounded Jordan domain, and every bounded Jordan domain is of this 
form. T h e compact Jordan region D~ has J0 for outer boundary and holes 
In t (Ji), i = 1, . . . , k. The Jordan loops Jiy . . . , Jk will be called the inner 
boundary loops of D~. 

Now let 5f = {Ri}Pi=i be a finite set of pairwise disjoint, bounded Jordan 
regions, and let E = Ri W . . . (J RP- Clearly there must exist regions R{ 

belonging toSf tha t can be joined to 00 in Uœ(E), and we shall call such regions 
primary in the set ^ . (An arc a is said to join a set R to 00 in an open set U 
if a is defined on a ray [a, +00 ), a(a) G R, a(t) Ç U for a < t < + 0 0 , and 
lim^+ 0 O |o;(/) | = +00 ; the primary regions in j ^ 7 are simply those whose outer 
boundaries lie in the exterior domain of all the other outer boundary loops of 
the regions Rt, i = 1, . . . , p.) If there are other, nonprimary, regions in S^, 
then each must lie in some one hole of a primary region in S^, and such non-
pr imary regions we call secondary in £/. 
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We are ready, a t last, to prove the following result. 

T H E O R E M 2.1. Let K be a nonempty compact subset of C, let Uœ(K) be the 
unbounded complementary component of K, and let e be an arbitrary positive 
number. Then there exists a finite set S^ = {Ri}Pi=i of pairwise disjoint, simply 
connected, bounded Jordan regions such that if we write E = Rx \J . . . \J Rv, 
then 

i) K C £ ° = RiQ U . . . U Rp°, 

ii) there exist mutually disjoint, piecewise smooth, Jordan loops Ji, . . . , Jv, 
each lying in the exterior domain of all the others, such that for i = 1, . . . , p, 
Ji C Uœ(K) and Rt = J, U In t (Jt), 

iii) for each point X in d{)K there is a point \' in dE = Jx \J . . . VJ Jp such 
that |X — \ ' | < e, and 

iv) for each point /x in dE there is a point \x in doK such that |/x — /x'| < e. 

Proof. If /x0 is any point of d 0 ^ and 77 is an arbi t rary positive number , then 
there exist a point in of Uœ(K) in the open disc of radius 77 centered a t /z0 

and an arc a joining /ii to 00 in Uœ(K). Let r be the line segment joining /x0 to 
Mi (linearly parametr ized) , and let id2 be the last point on r tha t belongs to K. 
Then \x2 G d(,i£, |/x0 — M2I < 7̂, and if n denotes the segment joining JU2 to MI» 
then à = n + a is an arc joining /x2 to 00 and lying entirely in Um(K) except 
for the end point /x2. If we agree to call a point X of doK accessible if there exists 
such an arc joining X to 00 , then the foregoing argument shows tha t the acces­
sible points of d0i£ are dense in doi£. Since d0K is compact , we conclude tha t 
there exists a finite set of points F = {Xi, . . . , X j in d{)K such tha t each Xy is 
accessible and such tha t if X is any point of dGK, then there exists a point Xt-
in F such tha t |X - X*| < e/2. 

Now choose a circle Z in C sufficiently large tha t X C Int (Z) and dist 
(K, Z) > 2e. For each i = 1, . . . , n, let at be an arc joining X̂  to 00 in Uœ(K), 
let X/ denote the first point X of at lying on the circle Z, and let ât denote the 
subarc of at joining \ t to X/ obtained by discarding the rest of at beyond X/. 
Fur thermore , for i = 1, . . . , n, let X/ ' denote the first point X on the arc at 

such tha t \\t — X| = e/2, and let at denote the subarc of ât joining X/ ' to X/. 
Finally let Wt denote the range of a{, and set M = IFi W . . . VJ Wn. Then 
M is a compact subset of Um(K), so dist (M, K) > 0 and In t {Z)\M is an 
open neighborhood of K. 

We now construct a set ^ = {SjJLi of pairwise disjoint Jo rdan regions 
such tha t if we write L = SY\J . . .\J Sq, then K C £° C L C In t ( Z ) \ M , 
dist (X, X ) < e for every X in L, and dL is the union of a finite set of pairwise 
disjoint, piecewise linear, Jordan loops (every point of each of which lies in 
C\K and is a t a distance less than e from K). This is a s tandard construction 
and we omit the details; see [9, Theorem 13.5] or [2, Problems 5M-5K]. 

WTe next consider the pr imary regions Sh, . . . , Sip in the set ^~, and for 
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each such primary region Sik1 we denote the piecewise linear Jordan loop tha t 
is the outer boundary of Sik by Jk. For k = 1, . . . , p, we define Rk = In t (Jk) 
U Jk, and we shall show tha t the set S^ = {Rk}l=i of Jordan regions has the 
desired properties. 

In the first place, since the Sik, k = 1, . . . , p, are the primary regions of J ^ , 
each of the Jordan loops Jk lies in the exterior region of all the Jordan loops 
Ji, . . . , Jk-iy Jk+i, . . . , Jp. Thus the Jordan regions Ri, . . . , Rp are mutual ly 
disjoint and simply connected. Fur thermore if we set E = Ri U • • . U RP, 
then dE = J\ U • • • U JP, and it is obvious tha t L C E. Moreover, since 
dE C dL and each point X of L satisfies dist (X, K) < e, it is clear tha t dE C 
In t (Z) and thus E C In t (Z). Also, since each point of M can be joined to Z 
by an arc lying entirely in M, it follows tha t M C\ E = 0, for otherwise 
M C\ dE would be nonvoid and this would contradict the facts tha t dE C dL 
and L C\ M = 0. Thus we have 

K C L° C E° C E In t (Z)\M, 

which proves (i). Since 

dE = Jx \J . . . \J Jv C dL C C \ X , 

and each Jk can be joined to GO in Uœ(L) C Uœ(K) (by definition of a pri­
mary region), each j ^ can be joined to GO in Uœ(K) and thus must lie in Uœ(K), 
which proves (ii). To establish (iv), let /z £ dE = Ji^J . . . U Jp (Z Uœ(K), 
and recall tha t since /x ^ L, there exists a point JUI in i£ such tha t |JU — MI| < e-
Let îr be the last point on the line segment joining /xi to /x tha t belongs to i£. 
Then /*' Ç ^X, and since M/ is joined to /x in C\K and ^ £ C Uœ(K), it follows 
tha t /xr £ do^£, and thus (iv) is proved. 

We complete the proof of the theorem by establishing (iii). Since every 
point in d{)K is within e/2 of some point X* in F, it suffices to show tha t each 
such Xt is within e/2 of a point of dE. Consider the arc au constructed earlier, 
t ha t joins X* to co in Um(K). Since X* £ £ ° by (i), the range of at must inter­
sect dE = Jx \J . . . \J Jp. But this intersection cannot take place on or out­
side the circle Z, since dist (K, Z) > 2e and every point of dE is within e of 
a point of K. Nor can the intersection take place in range ât = Wt C M, 
since by construction dE C Int (Z)\M. Thus the intersection must take place 
on the subarc of at joining X* to X/ ' . But by construction, all points in the 
range of this subarc are interior to the circle with center \ t and radius e/2. 
T h u s there is a point of dE interior to this circle, and the theorem is proved. 

3 . In this section we pu t together Theorem A and Theorem 2.1 to obtain a 
decomposition theorem for arbi t rary operators (Theorem 3.1). This result is 
then employed to give different proofs of the main results of [5] and [7]. We 
begin by introducing certain operators tha t are pert inent to the discussion. 
Let Ji, . . . , Jp be pairwise disjoint, piecewise smooth, Jordan loops in C, each 
of which lies in the exterior domain of all the others, and for j = 1, . . . , p, 
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let Rj be the simply connected Jordan region Rj = J}\J Int (Jf). We set 
12 = Rx U . . . U Rv, and observe that d!2 = ^ U . . . U Jp and 12° = Int (Ji) 
U . . . U Int (/p). Let /x denote arc length measure on d!2, and let L2(dl2) be 
the Hilbert space consisting of all functions defined on d!2 that are square 
integrable with respect to JU. The normal operator on L2(dl2) that is multiplica­
tion by the coordinate function (i.e., the operator/(X) —> X/(X)) will be denoted 
by Af(dl2), and it is clear that (j(Af(dl2)) = ae(M(dQ)) = d!2. The direct sum 
of No copies of M(d$l) acting on the direct sum L2(dl2) of Ko copies of L2(dl2) 
will be denoted by Af(dl2). Once again it is easy to verify that <r(M(dQ)) = 
ae(M(dQ)) = <912. 

We shall denote by Rat (12) the algebra of all rational functions r(z) whose 
poles lie outside 12, and by i/2(d!2) the subspace of L2(dl2) consisting of the 
closure in L2(dl2) of the linear manifold {r|d!2: r £ Rat (12)}. It is clear that 
H2(dQ) is an invariant subspace of M(dQ), and we set M+ (d!2) = M(dQ) \H2(dQ). 
One knows from [3, Proposition 9.1] that H2(dQ) is a proper subspace of 
L2(dl2), that the subnormal operator if+(d!2) satisfies ae(M+(d^l)) = 512 and 
<r(M+(dQ)) = 12, and that the self-commutator of M+(dl2) is compact. 

We are now prepared to prove the basic decomposition theorem. 

THEOREM 3.1. Suppose T £ «if (Jtif) and e is an arbitrary positive number. 
Then there exists an operator T' inS£\3tif) such that \\T — T'\\ < e and such that 
T' is unitarily equivalent to an operator of the form 

L o sr 
where 

a) 12 is the union 12 = Ri^J . . . KJ Rv of a finite number of pairwise disjoint, 
simply connected, bounded Jordan domains Rj with boundaries dRj = Jj that 
are piecewise smooth Jordan loops, each of which lies in the exterior domain of all 
the others, 

b) ae(S) C *e(T) C 0°, 

c) <r(S) r\ d!2 = 0. 

Proof. One knows that d0(re(T) is contained in ale(T), and thus we can 
apply Theorem A to T to conclude that there exists an operator 7\ such that 
T ~ 7\(e/3), and such that T\ has the form 

* - [" $]• 
where N is a diagonalizable normal operator staisfying <r(N) = ae(N) = 
doae(T). Since T ~ Tit we have ae(Ti) = ae(T), and since cre(TV) = d0o-e(3Hi), 
an easy calculation shows that ae(S) C <re(7\). 

We now apply Theorem 2.1 with i£ = <re(Ti) = ae(T) to conclude the 
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existence of a finite collection {/i, . . . , Jp) of pairwise disjoint, piecewise 
smooth Jordan loops, each lying in the exterior domain of all the others, such 
that if we set Rj = Jj U Int ( / ,) , j = 1, . . . , p, and 12 = Rx U . . . U RP1 

then (i) <re(T) C 12°, (ii) every point X in docre(T) is within e/3 of some point 
of (912, and (iii) every point fx in <912 is within e/3 of some point of dQae(T). 
Moreover, since cre(S) C <re(T) C 12°, it follows that dist (ae(S), (312) > 0, and 
therefore that <r(S) /O <912 is a finite set. It is thus a simple matter to perturb 
the Jordan loops Ju . . . , Jv slightly to arrange that <r(S) H <912 = 0, and we 
shall assume that this has been done. Furthermore, in view of (ii) and (iii) 
and the fact that the eigenvalues of TV are dense in d0ae(T), it is easy to see 
(cf. [3, Proposition 6.2]) that there exists a diagonalizable normal operator N' 
such that <re(N') = <r(N') = (912 and such that \\N' - N\\ < e/3. Moreover 
it follows from the strong converse of the Berg-Weyl-von Neumann theorem 
(cf. [6] or [8]) that N' ~ M(dQ) (y) for every positive number y, and thus, 
in particular, N' ~ M(dQ) (e/3). If C/is a unitary operator such that || UN'U* 
— M(dQ)\\ < e/3 and we set Af = UA, then it follows by putting together 
the above facts that there is an operator T' such that \\T — T'\\ < e and such 
that T' is unitarily equivalent to the operator 

Thus the proof of the theorem is complete. 

As an immediate consequence of this result, we obtain the principal theorem 
of [7]. 

COROLLARY 3.2. The set of operators in J£ (£if) with disconnected spectrum 
[respectively, disconnected essential spectrum] is norm dense in S£\^f). 

Proof. If T" is as in Theorem 3.1, easy calculations show that 

<r{T") = cr(M(<912)) U a"(5) = (912 \J <j{S) 

and that 

<je{T") = (ie(M(ai2)) U <re(S) = dUKJ ae(S). 

Since dist (̂ 12, a(S)) > 0, the result follows. 

COROLLARY 3.3. Suppose T Ç S£ (Jtif) and e is an arbitrary positive number. 
Then there exists an operator T' such that \\T — T'\\ < e and such that T' is 
similar to an operator of the form M(dQ) © 5 where Af (<912) and S are as in 
Theorem 3.1. 

Proof. It is a well known fact that since <r(M(dQ)) C\ <r(S) = 0, the operator 
T" of Theorem 3.1 is similar to M{dQ) 0 S. 

Recall that the set of biquasitriangular operators in J£(^), denoted by 
(BQT), consists of all operators T in <& (J4?) such that both T and T* are 
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quasitriangular. One knows from [1, Theorem 5.4] that T £ (BQT) if and only 
if for every X in C such that T — X is a semi-Fredholm operator, it is true that 
index (T — X) = 0 . We shall write (BQT)qs for the set of all operators 5 in 
J£ (Jtf?) such that 5 is quasisimilar to some biquasitriangular operator. Whether 
(BQT)qs = *£(Jtif) is an important problem, since an affirmative answer to 
this question would allow one to reduce the hyperinvariant subspace problem 
for operators on separable Hilbert space to the case of operators in (BQT) 
without using the deep results of [1]. In [5] it was shown that (BQT)QS is at 
least norm dense in *£ {^), and Theorem 3.1 allows us to give a different 
proof of this result. 

COROLLARY 3.4. The set (BQT) qs is norm dense in^ (^f). 

Proof. By virtue of Corollary 3.3, it suffices to prove that every operator of 
the form M(di2) © S £ (BQT)qs, where M{dti) and 5 are as in Theorem 3.1. 
If we write L2(dil) = H2(diï) © H2(diï)-L, then, corresponding to this decom­
position, the operator M(dQ) can be written as a matrix 

(2) 
M+(dQ) 

. 0 
G 

M-(dQ). 

(See the discussion preceding Theorem 3.1.) Since M(dQ) is normal and 
ikf+(dft) has a compact self-commutator, it follows that G is compact. More­
over, it is obvious that for every positive integer n, the matrix (2) is similar 
to the matrix 

|~M+(dfi) G/n 1 

Thus, applying Proposition 4.2 of [4] and the fact that M(dtl) is the direct 
sum of Ko copies of M(diï), we conclude that 5 © M(dil) is quasisimilar to 

s® E © M+(dtl) 
0 

G/n 
M-(dQ). 

Since the operator 

5 @ Lo o J 
is obviously compact, and the class (BQT) is stable under compact perturba­
tions, the proof can be completed by establishing that the operator Q = S © 
Zn=i © (M+(dQ) © M_(dl2)) is biquasitriangular. Calculation shows that 
both the spectrum and the essential spectrum of the operator ^^Li © (M+(dQ.) 
© ÀT_(dŒ)) are equal to 12, and since <re(S) C &° by b) of Theorem 3.1, it 
follows that ae(Q) = 12. Finally, for any X in 12°, one knows from [3, Proposition 
9.1] that M+(dil) is a Fredholm operator of index —1 and M_(dti) is a Fred-
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holm operator of index + 1 . Thus it is impossible that Q — X be semi-Fredholm 
for any such X, and that Q £ (BQT) now follows from [1, Theorem 5.4]. 
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