ON TOTAL MASSES OF BALAYAGED MEASURES
MASAYUKI ITO

Introduction

Beurling and Deny [1], [2] introduced the notion of Dirichlet spaces. They
[2] showed the existence of balayaged measures and equilibrium measures in
the theory of Dirichlet spaces. In this paper, we shall show that the following
equivalence is valid for a Dirichlet space on a locally compact Hausdorff’
space X.

(1) For a pure potential u, such that S,, the support of u, is compact and for a
compact neighborhood o of S,, let 1/ be the balayaged measure of u t0 Fw. Then

Sd,u=§d,u’ .
(2) For an increasing net (w,)s.r 0f relatively compact open sets satisfying o,/ X, let
vy be the equilibrium measure of w,. Then the net (v,)qe; converges vaguely to 0.
Furthermore we shall examine anologous equivalences for a special Dirichlet

space on a locally compact abelian group X.

1. Preliminaries on Dirichlet spaces
According to Beurling and Deny [2], we define a normal contraction of the
complex plane €.

DeriniTION 1. A transformation 7 of € into itself is called a normal
contraction if it satisfies the following conditions:

T(0)=0 and |T2,—Tz,|<]|2,—2,|

for any couple of 2z, and z, in €.

Let X be a locally compact Hausdorff' space and let C,=Cy(X) be the space
of complex valued continuous functions with compact support provided with
the topology of uniform convergence.

DEeFmniTION 2.0 Let & be a positive Radon measure in X which is every-
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D Cf. [2], p. 209.
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where dense (i.e., &w) >0 for each non-empty open set o in X). A Hilbert
space D=D(X, &) is called a &-Dirichlet space (simply, a Dirichlet space) if each
element in D is a complex valued function #(x) which is locally summable for
& and the following three conditions are satisfied.

a) For each compact subset K in X, there exists a positive constant A(K)
such that, for any # in D

[ lu@)de@ = AE) 1 ull.

b) C.nD is dense both in C; and in D.

c) For any normal contraction 7' and any # in D,
TueD and ||[Tu||=[lu]l.

More precisely, two functions which are equal to p.p. in X? represent the same
element in D. The norm in D is denoted by (||, the associated scalar
product by (-, ).

DEeFiNiTION 3.  An element # in D is called a potential if there exists a
Radon measure # such that

(n,v)= Sz‘;dp

for any v in C;ND. Such an element # is denoted by u, Especially if z is
positive, u, is called a pure potential.

It is evident that the subspace of linear combinations of pure potentials is
dense in D.

DEeriNITION 4.9 We say that a property holds p.p.p. on a subset E in X if
the property holds z-p.p. for any pure potential #, such that S,cE.» ‘

It is evident that a property holds p.p. on a subset E in X if the property
holds p.p.p. on E, because for any complex valued bounded measurable func-
tion f with compact support, there exists the potential #, generated by f.

In order to prove our main theorem, we need the following lemmas. Let D
be a Dirichlet space on X. For each element # in D, the refinement of # is

2) A property is said to hold p.p. in a subset E in X if the property holds in E except a
set which is locally of é-measure 0.

3) Cf. [2], p. 209.

O Cf. [7].

5 S, is the support of g.
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denoted by u*.®

LemMAa 1. For elements u and v in D, suppose that u(x)=v(z) p.p. in an open
set G.  Then u*(x) =v*x) p.p.p. in G.

Proof. For any pure potential #, such that S,cG, it is sufficient to prove
that

(u, u,) = (v, u,,),
because
(u,u#)=gu*dﬂ and (v,uﬂ)=gv*dp.

Similarly as in the proof of Lemma 3 in [7], there exist positive bounded
measurable functions f, with compact support such that f,(z)=0 p.p. in &G
and the sequence (ur,) converges weakly u, in D. By our assumption,

(5= (o) £o(0)ae = (ol@) fu0)dE=(0, ).
Hence

(, u,)=lim(u, u ,,) =lm(v, u,,)=(v, u,) .

This completes the proof.
By Lemma 1, we obtain the following domination theorem.

Lemma 2. For pure potentials wp, and wpu, in D, suppose that

% 13(2) =% ()

p-p. in some open neighborhood w of Sp,. Then

Upy = Upy

Proof. By Lemma 1,
ul,(x) =u%,(x)
p.p.p. in . It is known that there exists a pure potential #, such that?
w,=1inf (U py, t ) .

6) Cf. [2], p. 210.
7 Cf. [4], Lemma 2, p. 5.
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By above, it holds that
wi(x)=ph,(x) pp.p.in o,
uz) <u¥,(x) ppp. inX.
Then we have
Rt es—a, |P=11 0 10 |F—2( s, 0,) F [ 1, |2

= {utadrs—2fusdn, +fusas
=(uar—{usap,
= S(u;‘j—u’,‘jz)dv =0.

Hence
Up,=Uy, i.e., Up, = Up, .

This completes the proof.
By the above lemma, we obtain the following unicity theorem.

CoRrROLLARY. Let #ny and uu, be two potentials in D.  If
U (X) =1 po(2) p.p.
in some neighborhood of Su U S s, then pi=p, .
This is evident by Lemma 2.

Lemma 3. For elements u and v in D, the following equalities hold.
(1) (au+ pry*(x) = au*(x)+ pr¥(x) ppp.in X,
(2) (inf (u, v)¥(2)=1inf (u*(z), v*(x)) p.p.p. in X.

The proof is evident by Lemma 1 and the fact that (u*)*(x)=u*(z) p.p.p. in X
for any #in D.

Lemma 4. For any pure potential wu, in D with Sd,u< +co and any positive

number M, there exists a pure potential u p, such that
u () =1nf (u,(x), M) and Sduu = Sd;z .

Proof. The existence of a pure potential #,, is followed from a result of
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Deny.® For a relatively compact open set o, let #, be the equilibrium poten-
tial of 0.9 Then

——

dpn= \wSd = , up) =t dv

w

= {inf (u3(2), M)av < [unav
=usdn=an.
o being arbitrary, we obtain
(are<(an.

‘This completes the proof.

Now we define the spectrum of an element in D. Given an element « in
D, there exists the greatest open set » having the following property: («, v)=0
for any v in C,N D with support in w.

DermniTION 5.9 The complementary set of such an open set o is called the
spectrum of #, denoted by s(«).

Evidently for any potential #, in D, s(#,)=S,.

We put, for an open set o,

DP={ueD; s(u)Cow},
DP={feC,ND;S;Cow},

and for a closed set Fin X,
D¥={ueD; s(u)C F},
D@P={ueD; u*(x)=0 p.p.p. on F}.

LemmA 5. Let u, be a pure potential in D and let F be a closed set in X.  Then
Lhere exists a pure potential w, in D such that

(1) #' is supported by F and Sd/z’s Sd,u ,
(2) uk(x)=u*(x) p.p.p.on F,

(3) () =uw(x) pp. in X,

& Cf. [4], p. 6.
9 Cf. [2], p. 215.
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4) uw is equal to the projection of u. to Dg".
Proof. We put
Euw/F={ueD;u*(x) =u%(x) p.p.p.on F}.

Then Eu,, » is a non-empty closed convex set in D. Let «’ be the unique
element which minimizes the norm in Eu, r.  Similarly as the proof of
Beurling and Deny’s Balayage Theorem,!® we can prove that #’is a pure
potential in D and the conditions (1)—(3) are satisfied. Furthermore similarly
as the proof of Lemma 3 in [7], we can prove that the condition (4) is satisfied.

We remark that for a pure potential #, in D, the element which satisfied the
conditions (1)—(3) is uniquely determined in D by Lemma 2. We call such a
pure potential #,+ the balayaged potential of #, to F and the positive measure
¢’ the balayaged measure of p to F.

Lemma 6. For an open set o in X, Dy is a Dirichlet space on o with the
norm induced from the norm in D.  Let #;, be a pure potential in D such

that S, is compact in o. Then there exists a potential #, in D such that
up(@)=u,(x)—uw(z),
where u, is the balayaged potential of #, to Fw.

Proof. 1Tt is evident that D3’ become a Dirichlet space on » by the norm
induced from the norm in D. We may assume that

D ={u—u,;ueD},
where #, is the projection of # to D&,. Hence there exists an element v in
D’ such that
Uy =v—0,
Obviously
s(v—v)Cs,UZFw.

S, being compact in o, s(v)=S, and for any ¢ in C;NDJ’,

0,¢) ={o(x)dz,

that is, for any ¢ in C,ND,

(v, ) =S¢(x>dﬂ .

1) Cf. [2], p. 210 and [7].
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Therefore v=u, and by Lemma 5, v;=#,. This completes the proof.

2. Main theorems

By the above lemmas, we obtain the following main theorems.

Tueorem 1. Let D be a Dirichlet space on X. Then the following two
conditions are equivalent.

(I.1) For a pure potential u, in D such that S, is compact in X and a compact
neighborhood o of Sy, let 1’ be the balayaged measure of pn to Fw .1  Then
fan={aw .
(I. 2) For an increasing net (o,) of relatively compact open sets with v,/ X, the net
of the equilibrium measures v, of 0,12 converges vaguely to 0.
Proof. First we prove the implication (I. 1) (I.2). Since the net (u},) is
increasing and converges to 1 p.p.p. in X,

tim({us,dn=lim{us,dp
cel ael

for any u, in D such that S, is compact and any compact neighborhood w. S,
being compact,

0=lim{uy,d(u—p) = lim{(s— 3 )dve

We take a fixed function ¢ in C,. Next we take a relatively compact open sets
o and o, such that

S,CwCaoCo.

Let u;, be the equilibrium potential of w, in the Dirichlet space D3’. By
Lemma 6, there exists a pure potential #, in D such that

u,=u,—uy,

where u, is the balayaged potential of #, to Co. Furtheremore we take a
relatively compact open set ' such that @ce’. Let »”/ be the balayaged
measure of v to & . Then

uy(x) = uv ()

1) Cf. [2], p. 210 and [7].
12) Cf. [2], p. 210 and [7].
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p.p.in . By Lemma 2,
uy(x) =y (x)
p.p. in X. That is,
wi(@)—ui () < ui(x)—uj(x)
p.p.p. in X. Hence there exists a positive number M such that

im Slcpldv“ = Tir‘nMS(ut—u:,)du¢
ael ael

<lim Mg(u’,’f-— ukn)dv,= lirr}MS(u’,'f—u’,‘,‘n)dva =0.
oaEe

ael

Therefore the net (v,)ser converges vaguely to 0.

Next we prove the implication (I.2) = (I. 1). Let #, and ux be the
elements in our theorem. By Lemma 4, for each positive number M, there
exists positive measures gy and y) such that

uuy =inf (u,, M) and u,uM=inf(uyf, M).
Since we have
Sd,uyégdp and Sd,u},éSd,u’ s

we may assume that there exist bounded linear functionals 7 and 77 on C,
where C is the Banach space of bounded continuous functions in X with norm

Il flle=sup| f(z)].
zre X
Then
| dpu—>7(r) and (£ asty—> (1)
as M— oo for any fin C. On the other hand
sl = (et e < (it = (ut,dp<(utdp=\iu, 1 .

Similarly we have
ot B 1w |2

For any bounded measurable function f with compact support, we have the
following convergences
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lim (s, ()£ (2)dé(2) = {,(2) f(@)de (),

M—co
lim (., (2) £ (2)d&(2)= () F () de(2).
M-

Hence (#,,) and (uw,) converges weakly to u, and ., respectively, because the
totality of potentials generated by such functions f is dense in D.  Now for
any ¢ in C,ND,

T(¢)=S¢du and T’(¢)=S¢>dﬂ’.
By the denseness of C,ND in C,,
T(H=(fan and T =(rdw
for any fin C. On the othr hand by lemma 4,
T(l)sgdy and T’(l)sgd;/.
That is,
T(1)=Sd;1 and T/(l):Sd;/.
By the above equality, it is sufficient to prove that for any M >0,
= anm,.

Since we have
O<uf,~uw, <M ppp.inX,
up,—up =0 ppp.in Co,

there exists a function ¢ in C, such that

)~y (2) < ¢(x)
p.p-p-in X. Hence by our assumption,
12?1}3(14,"@——%2:}“)611)‘,, = lirer}ggodv,,:() .
Therefore

lim{ e ) v = Lim ek s ) =0
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That is,
Xdﬂm = Sdu'y .
This completes the proof.

Remark 1. In the above theorem, a sufficient condition for the condition (1. 1)
to be satisfied is the followingq(1.2").

(I.2")  There exists an increasing net (w,)s., of relatively compact open sets such that
wy /X and the net of the equilibrium measures v, of w, converges vaguely to 0.

Remark 2. Let X be a bounded domain in the n-dimensional Euclidean space
R*(n=2) with sufficiently smooth boundary and let 0<a<<2. In the Dirichlet
space Dg on X introduced by Elliott [6), the condition (1. 1) in Theorem 1 is not satisfied,
because for any sequence (w,,) of relatively compact open sets tending to X, the sequence
(vn) of the equiltbrium measures of w.,, converges vaguely to m(x), where

M(x)=fuggxlx~y\‘“‘"dy

and ], is a positive constant.

By Beurling and Deny’s Representation Theorem!® and our Theorem I, we
obtain the following

Tueorem II.  Let D be a Dirichlet space on X.  Then the following two
conditions are equivalent.

(II. 1) For a pure potential u, in D such that S, is compact and a compact neighbor-
hood o of S, let ' be the balayaged measure of p to Ew. Then

far={aw.

(I1. 2)  There exist a positive Hermitian form N(f, g) on C,N D with a local character'
and a positiveve symmeiric measure ¢ in X X X—3(3 is the diagonal set of X x X) such that

(f, 0=Nf, 9+ [ (@) r@)Nat)—gw)do(w, v).

By Beurling and Deny’s Representation Theorem and the remark with respect
to it in [7], it is evident that the conditions (I. 1) and (II. 2) are equivalent.

13) Cf. [2], pp. 211 and [7].
14) This means that N(f, g)=0 if g is constant in some neighborhood of S;.
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3. Special Dirichlet spaces
According to Beurling and Deny [2], we define a negative definite function in
a locally compact abelian group X and a special Dirichlet space on X.

DEeFINITION 6.1 A complex valued continuous function (z) defined in X is
said to be negative definite if the following Hermitian form

JZ: (z(xi)+3(?71)“‘3(901—xj))m91

i 1

is positive for each set of » points z,, z,, ...... » %, in X and each n complex
number p;, oz, ..... , Pn (m=1,2,...... ).

DerinrTION 7.1 A Dirichlet space D=D(X, &) is said to be special if X is a
locally compact abelian group and ¢ is the Haar measure on X, the following
condition being satisfied.

d) If U,u is the function obtained from # in D by the translation zeX(i.e.,
U,u(y)=u(y—=)), then

U,ueD and ||U,ull=llull

Buerling and Deny [2] showed the following important result.

To a special Dirichlet space D on X corresponds a real valued negative
definite function (%) on the dual group X of X such that 1! is locally summ-
able and the following equality holds:

[l ={ @) (@) 2a (1)

for any # in C,N D, where 0 is the Fourier transform of .

Conversely, such a negative definite function (%) on X defines, by means
of (1), a special Dirichlet space on X.

Furthermore for a special Dirichlet space D, there exists a positive measure
« having 1-! as the Fourier transform. We call this measure « the kernel of D.
We [7] proved the following proposition.

ProrosiTiON.  Let D be a special Dirichlet space on X and let k be the kernal
of D. For a point x in X and a compact neighborhood o of x, there exists a positive
measure ¢, such that

15) Cf. [2], p. 214 and [4], p. 8.
16) Cf. [2], p. 215 and [4], p. 9.
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(1) ¢, supported by & w and Sde;é 1,
(2) K¥e,= k¥, 45 4 measure in Fw,
(3) ke, ke, in X,

This meaure ¢; is called the balayaged measure of the unit measure ¢, at x

to Fw.

To prove the second main theorem, we need the following lemmas.

LemMA 7. Let D be a special Dirichlet space on X.  For each increaesing net
(0a)aer Of relatively compact open sets with w,* X, the net (vy)ae, converges vaguely to
A(B) if 2(8) = 0, where v, is the equilibrium measure of o, .

Cf. [7], Lamma 12.

LemMA 8. Let D, and D, be special Dirichlet spaces on X and 2,(2) and 2,(%) be
the negative definite functions of D, and D,, respectively. If 2,(2) = 2,(%), then D,CD,.

Proof. For any # in C,ND,,
=@ 1 *2(@)as < [1(@)12 a@de =,

where |[+]); is the norm in D;, Then « isin D, and [Ju |, <|l«],.

Therefore D,c D,, because C,ND, is dense in D,. This completes the proof.
By Lemma 7 and Lemma 8, we obtain the following

Lemma 9. Let D be a special Dirichlet space on X and let A(%) be the negative
definite function of D.  For each increasing net (w,)e, 0f relatively compact open sets
with v,/ X, the net (v,)qe, converges vaguely to A(0), where v, is the equilibrium
measure of w, .

Progf. For a fixed positive number ¢, we put
X(®)=2%)+c.

Then % is negative definite and 2/~ is finite continuous in X. Let D’ be the
special Dirichlet space on X such that 2(2) is the negative definite function of
D’'. For our net (w,)qe,, We take another net (0}),., of relatively compact open
sets such that

wan;

for any .  Let u,,, be the condensor potential with respect to o, and Z e, in
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D’.  We take a fixed function ¢ in C, such that

¢(2)=0 and S(p(x)dx=1 .
Then upx¢ isin C,ND’. Put

Uo(X)=Up*p(x) .

Then u,(x) tends to 1. For any # in C,ND’, there exists a number «, such
that u,(x)=1 in some neighborhood of S, for each « =«,. By Beurling and
Deny’s Representation Theorem and Lemma 7,

() =(0)+0) |u(@)dz +2{ [u@) 1~ u () do(z, ),

where (+, + ) is the scalar product in D’ and ¢ is a positive symmetric measure
in XxX—34 (5 is the diagonal set of XxX). Hence we obtain that

lim (u, u,) = IimSu(x),ua*qa(x)dx

acl acl

=(2(0) + c)Su(x)dx .

On the other hand by Beurling and Deny’s Representation theorem and Lemma
8, The net (vs) converges vaguely to some positive measure v and we obtain the

following equality,

lim (x, u,) =Su(x)du(x) .

ael

Since we have the equality
(s, o) —(, ) = cSu(x)u_a(w)dx=6Su(x)uu(@dm ,

ligl (%, u,) =Su(x)du(x)=l(6)gu(x)dx .

By the denseness of C,ND’"in C,, we have the equality »=2() as a measure in
X. This completes the proof.
By Theorem I and the above lemma, we obtain the following theorem.

Tueorem II1.  Let D be a special Dirichlet space on X. Then the following
three condition are equivalent.

(1) There exist a point x in X and a compact neighborhood o of x such that
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fae=1,

where ¢ is the balayaged measure of ¢, to Fo .

(2) (6)=0.
(8) For any point « in X and any compact neighborhood o of x, the total mass of the
balayaged measure of ¢, to Z o is equal to 1.

Proof.  First we shall prove the implication (1)c>(2). Assume that
A(0)= 0. Then 27! is finite continuous in X, because

A(Z) = 2(0)

for all # in X. By Bochner’s theorem, the total mass of the kernel « of D is
finite. By the unicity theorem with respect to special Dirichlet spaces (Cf. [7]),

Xd/c >Sd(x*s;)=gdx-gde'z

for each 2 and each compact neighborhood w of x.  That is, the total mass of
¢, is less than 1. This contradicts our assumption.
The implication (2) > (3) is evidently followed from Theorem I and Lemma

9.

The implication (3) ) (1) is evident.
This completes the proof.

Moreover we obtain the following

TueoreM IV. Let D be a special Dirichlet space on X and let (%) be the
negative definite function of D.  Assume that 2(6) # Q. Then for any increasing net
(04)ee: Of compact neighborkoods of x in X with w,/* X, we obtain the following
convergence

lim{ae, =0,

where ¢, is the balayaged measrure of ¢, to F o, .

Proof. By our assumption, A(Z) >0 for any £ in X. Hence the total mass
of the kernel « of D is finite. Since

Sdef,<1 and S/ CZ 0.,

we obtain the convergence
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limS fla)de,=0,
ael

for any finite continuous function f vanishing at infinity. On the other hand

ZACIPAC)

if @ < g for any pure potential u,, where u. and Uuy are the balayaged poten-

tials of #, to €, and & ws, respectively. Hence

Kkey = pkep

if @< 8. Since the total mass of « is finite, there exists a positive measure 5
such that

limgf(x)d(x*e;) =Sf(x)d7?

acl

for any bounded continouus function f in X. For each ¢ in C, mxp(x) is a
finite continuous function vanishing at infinity, and hence

liH}Sq&(w)d(lz*s;)=1ir}’15x*ga(x)de;= 0.

®E. @€
Therefore y=0. Now since the total mass of « is not zero, there exists a
bounded measurable function f in X such that

tf(x)=1

in X. Then

liglgde“ = l:gl S:c*f(x)de‘,

=lim { 7(@)d(ox<l)=lim{ f(2)d(ex)=0.
ael ecl
This completes the proof.

Remark. Let D be a Dirichlet space on a locally compact Hausdorff
space X. It is an open question if the same result with Theorem IV exists
when v,, the equilibrium measure of ,, tends vaguely to a non-zero measure
for an increasing net (o,) of relatively compact open sets with o, X.
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