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EXPANSIONS OF ARBITRARY ANALYTIC
FUNCTIONS IN SERIES OF EXPONENTIALS

D. G. DICKSON

1. Introduction. Let ¢ # 0 be an entire function of one complex
variable and of exponential type. Let B denote the set of all monomial
exponentials of the form z"e¢$* where { is a zero of ¢ of order greater than &.
If R is a simply connected plane region and H(R) denotes the space of
functions analytic in R with the topology of uniform convergence on
compacta, then ¢ can be considered as an element of the topological dual
H'(R) if the Borel transform ¢ of ¢ is analytic on R, the complement
of R. The duality is given by

) =55 | resan

where C is a simple closed curve in the common region of analyticity of f
and ¢, and C winds once around the complement of a set in which ¢ is
analytic. By the Polya representation

b(z) = (™, $(w)).

B is then not total in H(R) since ¢ annihilates B and ¢ # 0. If R + b is
the translation of R by b, then B is not total in H(R + b) since e*?¢/(z) is
then in H' (R + b) and annihilates B.

If P denotes the conjugate indicator diagram of ¢, then ¢ is analytic
on the complement of P and cannot be continued analytically to the
extreme points of P. If a simply connected region R is a subset of the
interior P° of P, then B might be total in H(R). This is precisely the case
when ¢ is of regular growth, that is, when there exists an increasing
sequence {r;} of reals tending to infinity for which

it log|e (rie®®)| — h(6)

uniformly in 6 where & is the indicator function of ¢. This follows from
the Hahn-Banach Theorem and the examination of the indicator of a
quotient when the denominator is of regular growth.

When B is total in H(R), it is easily seen that B reduced by a finite
number of monomial exponentials is still total in H(R). It follows that
each f in H(R) can be written as a compactly convergent series whose
terms are linear combinations of B. This may be accomplished by con-
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structing an exhaustive, increasing sequence of compacta in R and
approximating within 1/# on the n-th compact the difference between f
and its approximation on the preceding compact using monomial ex-
ponentials not previously used. It is evident that such series are not
unique.

If ¢ is of regular growth, R C P°, and f in H(R) is analytic in a larger
region S covering the complement of a region in which ¢ is analytic, then
it is possible to associate with f a particular Fourier-type series that
converges to f on certain compacta in R (M .S. That is the main content
of Section 3. When S D P, the convergence in P° has been established
by A. F. Leont’ev (7, 8]. Our proof of that theorem generalizes to include
functions f that are analytic in regions not necessarily covering P but
necessarily (and imprecisely) covering the singularities of ¢, including
the extreme points of P. Convergence to f is obtained on certain com-
pacta. The generalization parallels the results of [14] established when ¢
is an exponential polynomial with constant coefficients. The method
parallels those of (1, pp. 37, 45] when ¢ is an exponential polynomial with
polynomial coefficients.

In Section 4 conditions on ¢ are increased so that when f is analytic
on P, the sum of the series is determined at boundary points of P. This
partially generalizes the results in [1] and is related to results of (3, 4,
5, 6,12, 13].

In Section 5 further restrictions on ¢ allow expansions to f on compacta
in P when f is analytic in P° and has continuous derivatives on P.
Similar, but distinct, results have been obtained by Leont’ev [9, 11].

The proof in Section 3 is written so as to permit modifications that give
the results of the succeeding sections.

2. Preliminaries. Throughout, ¢ is of exponential type and of regular
growth with

(1) Ko = lim 210D
NS g°

the limit being uniform in 8 for an increasing sequence {r;}”, of positive
reals with 7, — 0. {{;} is the sequence of zeros of ¢ arranged in an order
of non-decreasing moduli with m; + 1 the order of {;. Taking a sub-
sequence of {r;}, if necessary, we may assume that r, > |{;|; otherwise,
zero terms are introduced in the series considered. P is the conjugate
indicator diagram of ¢ with non-empty interior P°. The Borel transform
é of ¢ is analytic in the region (open and connected) & D P. The com-
plement Q of Q is then contained in P. The interior Q° of Q is then simply
connected and bounded. For positive §, P; will denote the set of points
of P that are at least a distance § from the extreme points of P. T; will
denote the positively oriented circle |z| = 7,. In general, the complement,
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interior, closure, boundary, and difference of sets are denoted by 4, 49,
A, 94, and 4 ~ B, respectively. If 4 is a set and ¢ is positive, then
A @ e denotes the set of points of the form a + ¢ where ¢ € A and
le] < e.

Definition 1. If v is a complex plane curve from z to w parameterized
by y(t), « £t £ b, its symmetric curve is the curve parameterized by
z4+ w— (), a £t £ b. The symmetric curve is then the curve sym-
metric to the given curve with respect to the midpoint of the line segment
[z, w].

Definition 2. A compact set K in Q is admissible means that (1) each
point z of K may be joined to each point w on dQ with a curve v (z, w) in @
whose symmetric curve is in P, and (2) the curves y(z, w) are uniformly
bounded in length.

If @ = P, then each compact in P° is admissible with each v taken as
a straight line segment. When Q is starlike with respect to each point in
a compact K in @, then K is admissible taking curves v as straight line
segments. Suppose that € is a solid V-shaped region and 7 is a convex,
triangular set cut from the bottom of the V by a horizontal line; then any
compact in the interior of 7" is admissible.

Biorthogonality conditions such as those given in [2, p. 365] suggest
coefficients for the terms in B to be used in a series associated with a
function f. The curves T'; suggest a grouping of the sums of terms from B.
These observations motivate the next definition, which will be extended
in a special case in Section 5.

Definition 3. Let f be analytic in a simply connected region .S D Q.

Fl,w,t) = fwe(’”—S)']‘(s)ds

where the path of integration is in S. For k and % positive and non-
negative integers, respectively,

1 [ )"
271 J o, ()

where ¢; is a positively oriented circle about {; with no other zero of ¢
in or on ¢;. The ¢-series of f is then defined by

[ee]
>
p=1

where 7o = —1.

Lkh(f) = <F(a‘v w, t), ¢(w)>d[

My

Z _1", Lkh(f)zh) erkz

Tp=1<T3 1<rp (}z=0

We note that F(a, w, t) is an analytic function of w in S for each ¢ and
entire in ¢ for each w in S. Also, (F(a, w, t), ¢(w)) is entire in {. Lz (f)
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is easily seen to be independent of the choice of @ in .S. The abbreviated
terminology does not indicate the dependence of the series on the choice
of ©, or ©, or the sequence {7,}.

The p-th partial sum S,(z) of the series may be written as

_1__ <F(av w, t)v ¢(w)> zh<t —_ g‘k
1$1<r ( Z dt)

271 J ¢, () =0

Replacing each m; by infinity does not change the sum since the intro-
duced terms are zero by Cauchy’s Theorem. Writing the inner sum as an
exponential enables us to write

@ se=55) & 5 R w0, @)

3. Convergence on interior compacta.

THEOREM 1. Assume that f is analytic in o simply connected region S
contaiming Q@ and that K is an admassible compact subset of Q0. Then the
o-series of [ converges absolutely and uniformly to f in K.

Proof. The pattern of the proof is to replace ¢ with z in (2), integrate
by parts producing f(z) as one term, and then show that the remaining
terms tend to zero as p tends to infinity. Since S,(z) is independent of
the choice of ¢ in S, we initially replace a by z for each z in S. Integrating
F(z, w, t) by parts k times gives for each z in S

(3) Sp(z) = f(2) — Qp(2) — T(2) + Ry(2)
where

zt

0ne) = {f, ) 3oz f t;@—d:,

2t

e
27” . 50 dt, and

1 1 v z+w—s
R,(z) = Sri .y Z%<f2 et )tf(k)(s)ds, ¢(w)>dt.

Since K is admissible and @ is compact, ¢ > 0 may be chosen suffi-
ciently small so that both K @ ¢ C Qand @ @ 5¢ C S. Rectifiable simple
closed curves C and D winding once about @ are chosen in @ A S so that
CisinQ®e~Qand Disin Q@ ® 5e ~ Q @ 4e. Then each point of C
is within e of a point of @ and so within e of a point of dQ. Each point of
D is at least 3e from each point of C. For each p we choose k, = [3er,]
and write S,(z) as in (3) after integrating by parts k, times. Estimates
on T, and R, are made by computing the derivatives of f using Cauchy
integrals over D and computing the duality integrals with respect to w

Ty(z) = Z (2, )5
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using integrals over C. For notatiorial simplicity we will temporarily
write k for k,.

Consider first 7,(z) for z in K and & = 3. Let M denote the maximum
of | f(¢)é(w)]| for { on D and w on C;let L denote 27 times the maximum
of the lengths of C and D. Writing (f ?, ¢) as an integral over C and
f @ (w) for w on C as a Cauchy integral over D, we obtain the estimate

[{f@, ¢) = q! ML?/(3e)et1.
Also

k—1

g/t 14+ 2(k — 2)/k < 3.
¢=1
These estimates, together with the fact thatk = &, < 3er, giveforton I,
/ 2
< m(£ ) .

€7y

k—1
Z <f(4)r ¢>/tq+1
g=1

The regularity of ¢ and the choice of ¢ imply that

(4) logle(re™)| = r,(h(0) — €¢/2)
for all p sufficiently large, and

(5) R (ze") = h(0) — e

for all z in K.
Writing 75, (2) with T', parameterized by ¢ = 7,e*%, we conclude that

Ty(z) = O(r," exp (—er,/2))

for z in K and all large p. Hence 73,(z) — 0 uniformly on K as p — .
Now consider R,(z) for zin K (or even z in P when @ = P). We again
use C and D as in the 7, estimate. Using the admissibility of K, we
choose for the integral from z in K to w on C a path (3, w) = v(z, w') +
[w’, w] where @’ is on 9@ with |w — w’| < e and where vy(z, ') is chosen
so its symmetric curve is in P. Then n(z, w) isin @ @ e and its symmetric
curve is in P @ e. The lengths of the curves 5(z, w) are uniformly
bounded by some b > 0 since the v(z, w’) are uniformly bounded in
length. Since z + w — sisin P @ e when s is on 5(z, w), we have for all §

Z((z 4w — s)e') < h(0) + e

Coupling this inequality with (4) and using the fact that # = k, £ 3er,,
we have

ML k!
[R,(2) 5= 5. FEPEXP (2er,).

This inequality, together with the inequalities k! < k*¢=*(2k 4+ 1) and
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k, < 3er, < k, + 1, implies that for z in K and p large
Ry(2) = O(r,(Ger, 4 1) exp (—erp)).

Hence R,(z) — 0 uniformly on K as p — c0.

0,(z) — 0 uniformly on K since (4) and (5) insure that Q,(z) =
O(exp (—er,/2)). Q, was separated from 7', here for use in the theorem
of the next section.

The absolute convergence of the series also follows from the above
estimates. For S,(z) — f(z) = O(exp (—er,/4)) for z in K. Hence
Sp41(z) — Sp(2) also admits such an estimate. Since ¢ is of exponential
type, |¢xl > kc for some ¢ > 0 and all k£ > 1. Our assumption that
e > |Gl gives 7, > pecand S,,1(z) — S,(z) = O(1/p?), insuring absolute
convergence.

4. Convergence on the boundary. By increasing the assumptions
on the lower bound of ¢ on T, one can draw conclusions concerning the
sum of the ¢-series of f at points on dP when [ is analytic on P. Uniform
convergence to f in a neighborhood of P cannot be expected, for that
would imply that f satisfies the convolution equation (f(z + w),
¢(w)) = 0 in a neighborhood of the origin.

The second conclusion of the following theorem corresponds to the
convergence of a Fourier series of f on [—1,1] to (f(1) 4+ f(—1))/2 at
z = 1 when ¢(2) = ¢* — e7?, a result that was generalized in [1].

THEOREM 2. In addition to (1), ¢ salisfies
(6) |p(re®®)| = A exp (h(6)7,)

for some A > 0 and all p. f is analytic on P. Then:

(a) The ¢-series of f converges to f at each boundary point of P that lies
on only one support line of P, in particular at each non-extreme point.

(b) If z on 9P is on lines of support X (z¢'®) = h(8) for 8 in [8;, 82] only
and

lim,_ e exp (27,¢") /¢ (rpe') = L(z)
uniformly on compact subsets of (6,1, 02), then the ¢p-series of f converges at z to

s — L= g .

6y — 8, is the supplement of the tangential interior angle of P at 3.
(c) The ¢-series of f converges uniformly to | on each Ps.

Proof. We will modify the proof of Theorem 1, treating P as K and
taking P as @ with 5(z, w) = [z, w]. Conditions (4) and (5) are then
replaced by (6) and

(7) A (ze') < h(9).
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Then for z in P, T,(z) = O(1/r,) while the estimate on R,(z) is un-
changed. Hence the convergence of the series depends on the behavior
of Q,(z) as p — 0.

Let

1 ezl
be) =55 f o i)

and let I,(z, a, 8) be that part of I,(z) obtained by integration over T,
from 7, exp(ia) to r, exp(¢8) when a < 8. The inequalities (6) and (7)
imply that

@z e, 8) £ (B —a)/(2nd).

(a) The hypothesis implies that if z is such a boundary point, then
X (z¢'%) < h(8) with equality holding for exactly one 8§ = 6,. If € is in
(0, 7), then I,(z, 00 — €, 8y + ¢) is bounded in modulus by ¢/(74) and
1,(2,60 + ¢, 00 — ¢ + 27) is bounded by 4~! exp (—nr,) where n > 0 is
chosen so that

h(0) — R (ze) = g

for 6 in that closed interval. By choosing ¢ small and then p large, we
see that I,(z) > 0 as p — .

(b) The fact that 1,(z, 6, 61 + 27) — 0 as p — oo is established as in
(a). Writing the difference between I,(z, 81, 6:) and L(z) (6 — 61)/27 as
the sum of integrals from 6, to 8; + ¢, 0; + € to 8; — ¢, and 6, — ¢ to 6y,
the sum of the first and third integrals is bounded by e(4~! 4+ L(2))/=
while the second tends to zero as p — o0 as a result of the limit hypothesis.
It follows that

I,(z, 01, 05) — L(z) (62 — 6:)/2m.

(c) Consider P; as the union of P; M P® and P; M 9P. If z is in
P; M\ P then X (ze*®) < h(0) for all 6.

We assert that if z is in P; M 9P, then z is in a finite union of closed
disjoint line segments 7; on which % (z exp (6;)) = h(6;) for unique 6.
Let N denote the set of non-extreme points of P. Then P; M 9P C N.
Each point of NV is an interior point of an open line segment of 4P (in
the topology relative to dP) with extreme points as endpoints. Hence N
is the union of such intervals. Since P° # @ and P is convex, 9P is a
Jordan curve and N is a countable union of disjoint open intervals with
endpoints extreme points; say N = \U J,. Since 9P is rectifiable, for some
n > 0 the length of the J; is less than 26 when j > n. For such j the
interval J; is not in P;. Denoting by I; the interval J, minus open end
segments of length §, it follows that P; M 9P is contained in Y7 I;. Since
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each I, is on a unique line of support of P,
X (z exp (16;)) = h(6;)

for z on I, for a unique 6;.

Then for z in P;, h(8) — X (ze'*) = 0 with equality only for some z
when 6 = 6,, 7 =1,2,...,n. I,(z) can then be written as the sum of
an integral over small e-neighborhoods of the 6; and an integral over the
remaining intervals. The first is bounded by en/mA4 while the second is
bounded by 4~ exp (—7r,) where n > 0 is chosen so that

h(0) — R (ze') = g

when 6 is in the compact intervals not containing the 6; and z is in the
compact P;. Again choosing e small and p large, it follows that I,,(z) — 0
uniformly on P; as p — o0 and the series converges uniformly to f.

5. Extensions. Additional conditions may be placed on ¢ that imply
the continuity of ¢ on P \U 9P and allow the ‘“‘duality” integrals (k, ¢)
to be taken on 4P when & is continuous there. This is the case when there
is a positive function z(r) with f‘f" v(r)dr < o for some ' > 0 and

(8) lp(re®®)| < v(r)er®r

for all » > 0.

When f is continuous on P and analytic in P?, the ¢-series of f may be
defined as earlier with the paths of integration from @ in P to w on 9P
taken as straight line segments. Then F(a, w, t) is analytic in w in P° and
continuous in P for each ¢. For each win P, F(a, w, t) isentirein . Ly, (f)
is independent of the choice of ¢ in P by the extended Cauchy Theorem
for triangles.

Using this extended definition of a ¢-series and placing appropriate
lower bounds on |¢| on T,, we can establish convergence of the series to
f on compacta in P°.

THEOREM 3. In addition to (1) and (8)
9) lo(re')| = Ar, ™ exp (h(0)r,)

for some A > 0, p = 0and all p. fisin C*(P) M H(P°) and k > pu. Then
the ¢-series of f converges to f uniformly on compacta in P°.

Proof. For compact K in P° choose ¢ > 0 sufficiently small so that
K ® ¢ C P. For the proof it is sufficient to consider the case when
k— 1< u < ksince C*(P) C C*1(P). As in the proof of Theorem 1,
we replace a by z in .S,(z), integrate by parts k times since f is in C¥(P),
and obtain (3). Consider first Q,(z) and 7,(z) for z in K. Inequalities
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(5) and (9) yield the estimate
le?t/tip ()] = 1A~ exp(—erp)

forg =0,1,...,%k — 1. Hence Q,(z) and T,(z) >0 as p — 0.
We now show that R,(z) — 0 as p — 0. The crucial estimate here is
on the modulus of

e(z+w—s) t/tk—ld) (l)

fort = 7", zin K, won 4P, and s on [z, w]. The numerator is of modulus
near k(0)r, when s is near z. When s is bounded from z by a small > 0,
the numerator is of modulus less than exp(kh(6) — 7)r,. Suppose that
5 € (0, ¢). For each p let

8, = or,fmr1 < 6.

To estimate R,(z) we write it as the sum of two terms corresponding to
integrations from z to z 4+ 6,(w — 2z) and from z + §,(w — z) to w. The
first will be bounded in modulus by a constant multiple of § using (9)
and the fact that the integration with respect to s is over an interval of
small length §,. The second integral is bounded in modulus by a constant
multiple of

1 exp (—or, )
since on that interval of integration with respect to s,
R((z 4+ w— s)e®) < (h(0) — 6,)r,, and 68,7, = ér,f=.

Since k& > p, the second integral is arbitrarily small when p is large. By
choosing 6 small and then p large, it is seen that R,(z) — 0 uniformly on
Kasp— 0.

It is evident that either stronger conditions on f or on |¢| on T, will
simplify the proof and can be made to yield absolute convergence.
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