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EXPANSIONS OF ARBITRARY ANALYTIC 
FUNCTIONS IN SERIES OF EXPONENTIALS 

D. G. DICKSON 

1. Introduction. Let 0 ^ 0 be an entire function of one complex 
variable and of exponential type. Let B denote the set of all monomial 
exponentials of the form zhe*z where f is a zero of <j> of order greater than h. 
If R is a simply connected plane region and H(R) denotes the space of 
functions analytic in R with the topology of uniform convergence on 
compacta, then </> can be considered as an element of the topological dual 
Hf(R) if the Borel transform 0 of 0 is analytic on R, the complement 
of R. The duality is given by 

Z7TZ- «/ c 

where C is a simple closed curve in the common region of analyticity of / 
and 0, and C winds once around the complement of a set in which </> is 
analytic. By the Polya representation 

</>(*) = <6 W , * (W)> . 

B is then not total in H(R) since <j> annihilates B and <£ ̂  0. If R + b is 
the translation of R by b, then B is not total in H(R + b) since ebz4>(z) is 
then in Hf(R + b) and annihilates B. 

If P denotes the conjugate indicator diagram of </>, then <£ is analytic 
on the complement of P and cannot be continued analytically to the 
extreme points of P. If a simply connected region R is a subset of the 
interior P° of P , then i? might be total in H(R). This is precisely the case 
when <j) is of regular growth, that is, when there exists an increasing 
sequence {rk} of reals tending to infinity for which 

rk-
1log\4>(rke

i9)\-+h(6) 

uniformly in 6 where h is the indicator function of 0. This follows from 
the Hahn-Banach Theorem and the examination of the indicator of a 
quotient when the denominator is of regular growth. 

When B is total in H(R), it is easily seen that B reduced by a finite 
number of monomial exponentials is still total in H(R). It follows that 
each / in H(R) can be written as a compactly convergent series whose 
terms are linear combinations of B. This may be accomplished by con-
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structing an exhaustive, increasing sequence of compacta in R and 
approximating within 1/n on the n-th compact the difference between/ 
and its approximation on the preceding compact using monomial ex
ponentials not previously used. It is evident that such series are not 
unique. 

If 4> is of regular growth, R C P°, a n d / in H(R) is analytic in a larger 
region 5 covering the complement of a region in which <t> is analytic, then 
it is possible to associate with / a particular Fourier-type series that 
converges to / on certain compacta in RC\ S. That is the main content 
of Section 3. When S D P , the convergence in P° has been established 
by A. F. Leont'ev [7, 8]. Our proof of that theorem generalizes to include 
functions / that are analytic in regions not necessarily covering P but 
necessarily (and imprecisely) covering the singularities of </>, including 
the extreme points of P. Convergence to / is obtained on certain com
pacta. The generalization parallels the results of [14] established when </> 
is an exponential polynomial with constant coefficients. The method 
parallels those of [1, pp. 37, 45] when </> is an exponential polynomial with 
polynomial coefficients. 

In Section 4 conditions on <j> are increased so that when / is analytic 
on P , the sum of the series is determined at boundary points of P . This 
partially generalizes the results in [1] and is related to results of [3, 4, 
5, 6, 12, 13]. 

In Section 5 further restrictions on <£ allow expansions t o / on compacta 
in P° when / is analytic in P° and has continuous derivatives on P . 
Similar, but distinct, results have been obtained by Leont'ev [9, 11]. 

The proof in Section 3 is written so as to permit modifications that give 
the results of the succeeding sections. 

2. Preliminaries. Throughout, <t> is of exponential type and of regular 
growth with 

(1) XQ-linksl+fr**)!, 
rk. 

the limit being uniform in 6 for an increasing sequence {rk}
œ, of positive 

reals with rk —•» GO . {Çk} is the sequence of zeros of </> arranged in an order 
of non-decreasing moduli with mk + 1 the order of ffc. Taking a sub
sequence of \rk), if necessary, we may assume that rk > \Çk\\ otherwise, 
zero terms are introduced in the series considered. P is the conjugate 
indicator diagram of <f> with non-empty interior P°. The Borel transform 
0 of <t> is analytic in the region (open and connected) Ù Z) P- The com
plement 12 of Û is then contained in P . The interior 12° of 12 is then simply 
connected and bounded. For positive <5, P§ will denote the set of points 
of P that are at least a distance ô from the extreme points of P . Tk will 
denote the positively oriented circle \z\ = rk. In general, the complement, 
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interior, closure, boundary, and difference of sets are denoted by A, A°, 
Â, dA, and A ~ B, respectively. If A is a set and e is positive, then 
i © 6 denotes the set of points of the form a + e where a 6 A and 
\e\ < e. 

Definition 1. If 7 is a complex plane curve from z to w parameterized 
by y(t), a ^ t ^ b, its symmetric curve is the curve parameterized by 
z -\- w — y(t), a ^ t S b. The symmetric curve is then the curve sym
metric to the given curve with respect to the midpoint of the line segment 
[z, w]. 

Definition 2. A compact set K in 12° is admissible means that (1) each 
point z of K may be joined to each point w on d!2 with a curve 7 (0, w) in 12 
whose symmetric curve is in P, and (2) the curves 7(2, w) are uniformly 
bounded in length. 

If 12 = P , then each compact in P° is admissible with each 7 taken as 
a straight line segment. When 12 is starlike with respect to each point in 
a compact K in 12°, then K is admissible taking curves 7 as straight line 
segments. Suppose that 12 is a solid F-shaped region and T is a convex, 
triangular set cut from the bottom of the F by a horizontal line; then any 
compact in the interior of T is admissible. 

Biorthogonality conditions such as those given in [2, p. 365] suggest 
coefficients for the terms in B to be used in a series associated with a 
function/. The curves Tk suggest a grouping of the sums of terms from B. 
These observations motivate the next definition, which will be extended 
in a special case in Section 5. 

Definition 3. L e t / be analytic in a simply connected region S D 12. 

e(w-s)tf(s)ds 
a 

where the path of integration is in S. For k and h positive and non-
negative integers, respectively, 

where ck is a positively oriented circle about fA with no other zero of 4> 
in or on ck. The $-series of/ is then defined by 

lmk -, \ 

Z Z E £L„(/)A'*' 
p=l Tp-i<\Çk\<rp \ f t=0 " ! / 

where r0 = — 1. 

We note that F{a, w, t) is an analytic function of w in S for each t and 
entire in t for each w in S. Also, (F(a, w, /), 4>(w)) is entire in t. Lkh(f ) 

https://doi.org/10.4153/CJM-1981-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-028-0


350 D. G. DICKSON 

is easily seen to be independent of the choice of a in S. The abbreviated 
terminology does not indicate the dependence of the series on the choice 
of 12, or Ù, or the sequence {rk}. 

The p-th partial sum Sp(z) of the series may be written as 

t^<rp \2rri J ck 4>{t) h A! I • 

Replacing each mk by infinity does not change the sum since the intro
duced terms are zero by Cauchy's Theorem. Writing the inner sum as an 
exponential enables us to write 

(2) SP(z) = ---. J - ~ (F(a, w, 0 , 4>{w))dt. 

3. Convergence on interior compacta. 

THEOREM 1. Assume that f is analytic in a simply connected region S 
containing 12 and that K is an admissible compact subset of 12°. Then the 
^-series off converges absolutely and uniformly to f in K. 

Proof. The pattern of the proof is to replace a with z in (2), integrate 
by parts producing/(s) as one term, and then show that the remaining 
terms tend to zero as p tends to infinity. Since Sp(z) is independent of 
the choice of a in 5, we initially replace aby z for each z in S. Integrating 
F(z, w, t) by parts k times gives for each z in S 

(3) Sp(z) = f(z) - Qp(z) - Tp(z) + 22,00 

where 

&<»> = </• *> h L , m dt> 
W = | ( / - . ) ^ / r j ^ ^ and 

*•<•> - h Lj4(f)(f?u+a~s)tfm{s)ds' *{w))dt-
Since K is admissible and 12 is compact, e > 0 may be chosen suffi

ciently small so that both K © e C 12° and 12 © 5e C S. Rectirjable simple 
closed curves C and D winding once about 12 are chosen in 12 C\ S so that 
C is in 12 © € —' 2̂ and D is in 12 © 5e ~ 12 © 4e. Then each point of C 
is within e of a point of 12 and so within e of a point of 512. Each point of 
D is at least 3e from each point of C. For each p we choose kp = [3erP] 
and write Sp(z) as in (3) after integrating by parts kp times. Estimates 
on Tp and Rp are made by computing the derivatives of / using Cauchy 
integrals over D and computing the duality integrals with respect to w 
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using integrals over C. For notatioilal simplicity we will temporarily 
write k for kp. 

Consider first Tp(z) for z in K and k ^ 3. Let M denote the maximum 
0 1 I /(f)<Hw)l I o r ^ on D and w on C\ let L denote 2w times the maximum 
of the lengths of C and D. Writing (/{q), </>) as an integral over C and 
/ {q) (w) for w on C as a Cauchy integral over Z), we obtain the estimate 

| < / < ' \ 0 ) | £qlML*/(3t)'+K 

Also 

Z ff!/*""1 ^ 1 + 2(* - 2 ) /* < 3. 

These estimates, together with the fact that k = kp ^ 3erp give for t on Tp 

IS </<9u>/H * M ( £ ) * . 
I $ = 1 I \£rp/ 

The regularity of </> and the choice of e imply that 

(4) log|*(r,e")| ^ rp(h(6) - e/2) 

for all p sufficiently large, and 

(5) St(zei9) S h(d) - e 

for all z in i£. 
Writing Tp{z) with rp parameterized by t = rpe

id, we conclude that 

Tp{z) = Oir^exp (-erp/2)) 

for z in K and all large p. Hence Tp(z) —> 0 uniformly on i£ as £ —» oo . 
Now consider i?p(z) for z in K (or even z in P when 0 = P ) . We again 

use C and Z) as in the Tp estimate. Using the admissibility of K, we 
choose for the integral from z in K to w on C a path 77(2;, w) = 7(2, ze/) + 
[w', w] where wf is on d£2 with \w — wr\ < e and where 7(2, wf) is chosen 
so its symmetric curve is in P. Then rj(z, w) is in 12 © e and its symmetric 
curve is in P © e. The lengths of the curves rj(z,w) are uniformly 
bounded by some b > 0 since the y(z,w') are uniformly bounded in 
length. Since z -\- w — s is in P © e when 5 is on 77(2, w), we have for all 6 

&((z + w- s)eid) ^ h(6) + e. 

Coupling this inequality with (4) and using the fact that k = kp g Serp, 
we have 

\Rp(z)\iS —7£— p ^ e x p (2erp). 

This inequality, together with the inequalities k\ < kke~k(2k + 1) and 
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kp ^ Serp < kp + 1, implies that for z in K and p large 

Rp(z) = 0(rp(6trp + 1) exp (-erp)). 

Hence Rp(z) —> 0 uniformly on K as p —» oo . 
(?P(2)""~*0 uniformly on i£ since (4) and (5) insure that Qp{z) = 

<9(exp ( — erp/2)). Qv was separated from Tv here for use in the theorem 
of the next section. 

The absolute convergence of the series also follows from the above 
estimates. For Sv(z) — f(z) = 0(exp ( — erp/4)) for z in K. Hence 
Sp+i(z) — Sp(z) also admits such an estimate. Since $ is of exponential 
type, |ffc| > kc for some c > 0 and all k > 1. Our assumption that 
r* > If*| gives rp > pc and Sp+i(z) — Sp(z) = 0(l/^>2), insuring absolute 
convergence. 

4. Convergence on the boundary. By increasing the assumptions 
on the lower bound of $ on TP1 one can draw conclusions concerning the 
sum of the 0-series of/ at points on dP when/ is analytic on P. Uniform 
convergence to / in a neighborhood of P cannot be expected, for that 
would imply that / satisfies the convolution equation (f(z + w), 
<t>{w)) = 0 in a neighborhood of the origin. 

The second conclusion of the following theorem corresponds to the 
convergence of a Fourier series of / on [—1, 1] to ( / ( l ) + / ( —1))/2 at 
z = 1 when <f>(z) = ez — e~z, a result that was generalized in [1]. 

THEOREM 2. In addition to (1), 0 satisfies 

(6) \4>(rpe
i0)\ £ A exp (h(d)rp) 

for some A > 0 and all p. f is analytic on P. Then: 
(a) The (^-series of f converges to f at each boundary point of P that lies 

on only one support line of P , in particular at each non-extreme point. 
(b) / / z on dP is on lines of support S% (zeie) = h{6) for 6 in [du 62] only 

and 

lim^oo exp (zrpe
i9)/4>(rpe

ie) = L(z) 

uniformly on compact subsets of (6U 02), then the 4>-series off converges at z to 

m - - ( ^ F ^ </, 4>)Uz). 

62 — 61 is the supplement of the tangential interior angle of P at z. 
(c) The <p-series off converges uniformly to f on each P^ 

Proof. We will modify the proof of Theorem 1, treating Pa.sK and 
taking P as 12 with rj(z,w) = [z,w]. Conditions (4) and (5) are then 
replaced by (6) and 

(7) &(zeie) ^ h{B). 
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Then for z in P , Tp(z) = 0(1/rv) while the est imate on Rp(z) is un
changed. Hence the convergence of the series depends on the behavior 
of Qp(z) as p —> oo . 

Let 

and let Ip(z, a, ft) be tha t par t of Ip(z) obtained by integration over Yv 

from rp exp(ia) to rp exp(ift) when a ^ ft. The inequalities (6) and (7) 
imply tha t 

\Ip(z,a,ft)\ ^ (ft-a)/(2irA). 

(a) The hypothesis implies t ha t if z is such a boundary point, then 
&(zeie) ^ h(6) with equality holding for exactly one 0 = 0O. If e is in 
(0, 7r), then Ip(z, do — e, 0O + e) is bounded in modulus by e/(wA) and 
Ip(z, 0o + e, 0O — e + 2ir) is bounded by A~l exp ( — r)rp) where 77 > 0 is 
chosen so tha t 

h(d) - &(zeie) ^ v 

for 0 in tha t closed interval. By choosing e small and then p large, we 
see t ha t Ip(z) —> 0 as p —> GO . 

(b) The fact t ha t Ip(z, 62, B\ + 2ir) —> 0 as p —̂  00 is established as in 
(a) . Wri t ing the difference between Ip(z, 0i, 02) and L(z)(62 — 6i)/2w as 
the sum of integrals from 0i to 0i + e, 0i + e to 02 — e, and 02 — e to 02, 
the sum of the first and third integrals is bounded by e(A~l + L(z))/ir 
while the second tends to zero as p —> co as a result of the limit hypothesis. 
I t follows tha t 

IP(z, 0 i , 0 2 ) - > £ ( * ) (02 - 0I)/2TT. 

(c) Consider P8 as the union of Pg P\ P° and Pg P\ <9P. If s is in 
P ô H P°, then &(zeie) < h{6) for all 0. 

We assert t h a t if z is in P ô P\ dP, then s is in a finite union of closed 
disjoint line segments Ij on which 3$(z exp (i07-)) = h(dj) for unique 0;-. 
Let N denote the set of non-extreme points of d P . Then Ps H dP C iV. 
Each point of TV is an interior point of an open line segment of dP (in 
the topology relative to dP) with extreme points as endpoints. Hence N 
is the union of such intervals. Since P° ^ 0 and P is convex, dP is a 
Jordan curve and TV is a countable union of disjoint open intervals with 
endpoints extreme points; say N = U Jj. Since d P is rectifiable, for some 
n > 0 the length of the J j is less than 25 when j > ?z. For such j the 
interval P,- is not in P§. Denoting by Ij the interval J j minus open end 
segments of length 5, it follows tha t P j C\ dP is contained in S ï P , . Since 
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each Ij is on a unique line of support of P , 

&(zexp (idj)) = h(dj) 

for z on Ij for a unique 6j. 
Then for z in P5 , ft(0) — & (zeid) ^ 0 with equality only for some z 

when 0 = 6j, j = 1, 2, . . . , n. IP(z) can then be written as the sum of 
an integral over small e-neighborhoods of the Oj and an integral over the 
remaining intervals. The first is bounded by en/irA while the second is 
bounded by A~l exp ( — rjrp) where rj > 0 is chosen so that 

h(6) - &(zeie) ^ y] 

when 6 is in the compact intervals not containing the 6j and z is in the 
compact Pg. Again choosing e small and p large, it follows that Ip(z) —> 0 
uniformly on Pg as p —> oo and the series converges uniformly to / . 

5. Extensions. Additional conditions may be placed on <f> that imply 
the continuity of <f on ? U dP and allow the "duality" integrals (h, <t>) 
to be taken on dP when h is continuous there. This is the case when there 
is a positive function v(r) with )°?> v{r)dr < co for some r' > 0 and 

(8) \ct>(reie)\ ^ v(r)eh^r 

for all r > 0. 
W h e n / is continuous on P and analytic in P°, the </>-series of/ may be 

defined as earlier with the paths of integration from a in P to w on dP 
taken as straight line segments. Then P(a, w, t) is analytic in w in P° and 
continuous in P for each t. For each 7£; in P , P(a, w, /) is entire in t. Lkh(f ) 
is independent of the choice of a in P by the extended Cauchy Theorem 
for triangles. 

Using this extended definition of a ^-series and placing appropriate 
lower bounds on |</>| on Tp, we can establish convergence of the series to 
f on compacta in P°. 

THEOREM 3. In addition to (I) and (8) 

(9) |<Kv^)l = Ar^ exP (*(^)^) 

/or some A > 0, M ^ 0 aw^ a// >̂. / is in Ck(P) H\ H(P°) and k > /A. 77&ew 
f̂ê  <j>-series of f converges to f uniformly on compacta in P°. 

Proof. For compact K in P° choose e > 0 sufficiently small so that 
K@eC.P- For the proof it is sufficient to consider the case when 
k — 1 ^ M < k since C*(P) C Ck~l(P). As in the proof of Theorem 1, 
we replace a by z in Sp(z), integrate by parts k times since/ is in Ck(P), 
and obtain (3). Consider first Qp(z) and Tp(z) for s in K. Inequalities 
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(5) and (9) yield the estimate 

\ezt/t^{t)\ ^ r^-'A-1 exp(-er p ) 

for q = 0, 1, . . . , k — 1. Hence Qp(z) and Tp(z) —• 0 as p —> oo. 
We now show that i?p(;s) —> 0 as p —> oo. The crucial estimate here is 

on the modulus of 

for t — rpe
ie, z in K, w on dP, and 5 on [z, w]. The numerator is of modulus 

near h{6)rp when s is near s. When 5 is bounded from s by a small 77 > 0, 
the numerator is of modulus less than exp(/&(0) — rj)rp. Suppose that 
Ô e (0, e). For each p let 

bp = ôr/-»-1 ^ Ô. 

To estimate Rp{z) we write it as the sum of two terms corresponding to 
integrations from z to z + 8p(w — z) and from z + 8p(w — z) to w. The 
first will be bounded in modulus by a constant multiple of ô using (9) 
and the fact that the integration with respect to 5 is over an interval of 
small length dp. The second integral is bounded in modulus by a constant 
multiple of 

r/-k~l expi — ôr/-*) 

since on that interval of integration with respect to s, 

S%{(z + w - s)eid) < (h(0) - 5p)rp, and ôprp = or/-». 

Since k > JJL, the second integral is arbitrarily small when p is large. By 
choosing ô small and then p large, it is seen that Rp(z) —> 0 uniformly on 
K as p •—> co . 

It is evident that either stronger conditions o n / or on |</>| on Yp will 
simplify the proof and can be made to yield absolute convergence. 
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