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EXPANSIONS OF ARBITRARY ANALYTIC 
FUNCTIONS IN SERIES OF EXPONENTIALS 

D. G. DICKSON 

1. Introduction. Let 0 ^ 0 be an entire function of one complex 
variable and of exponential type. Let B denote the set of all monomial 
exponentials of the form zhe*z where f is a zero of <j> of order greater than h. 
If R is a simply connected plane region and H(R) denotes the space of 
functions analytic in R with the topology of uniform convergence on 
compacta, then </> can be considered as an element of the topological dual 
Hf(R) if the Borel transform 0 of 0 is analytic on R, the complement 
of R. The duality is given by 

Z7TZ- «/ c 

where C is a simple closed curve in the common region of analyticity of / 
and 0, and C winds once around the complement of a set in which </> is 
analytic. By the Polya representation 

</>(*) = <6 W , * (W)> . 

B is then not total in H(R) since <j> annihilates B and <£ ̂  0. If R + b is 
the translation of R by b, then B is not total in H(R + b) since ebz4>(z) is 
then in Hf(R + b) and annihilates B. 

If P denotes the conjugate indicator diagram of </>, then <£ is analytic 
on the complement of P and cannot be continued analytically to the 
extreme points of P. If a simply connected region R is a subset of the 
interior P° of P , then i? might be total in H(R). This is precisely the case 
when <j) is of regular growth, that is, when there exists an increasing 
sequence {rk} of reals tending to infinity for which 

rk-
1log\4>(rke

i9)\-+h(6) 

uniformly in 6 where h is the indicator function of 0. This follows from 
the Hahn-Banach Theorem and the examination of the indicator of a 
quotient when the denominator is of regular growth. 

When B is total in H(R), it is easily seen that B reduced by a finite 
number of monomial exponentials is still total in H(R). It follows that 
each / in H(R) can be written as a compactly convergent series whose 
terms are linear combinations of B. This may be accomplished by con-
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structing an exhaustive, increasing sequence of compacta in R and 
approximating within 1/n on the n-th compact the difference between/ 
and its approximation on the preceding compact using monomial ex­
ponentials not previously used. It is evident that such series are not 
unique. 

If 4> is of regular growth, R C P°, a n d / in H(R) is analytic in a larger 
region 5 covering the complement of a region in which <t> is analytic, then 
it is possible to associate with / a particular Fourier-type series that 
converges to / on certain compacta in RC\ S. That is the main content 
of Section 3. When S D P , the convergence in P° has been established 
by A. F. Leont'ev [7, 8]. Our proof of that theorem generalizes to include 
functions / that are analytic in regions not necessarily covering P but 
necessarily (and imprecisely) covering the singularities of </>, including 
the extreme points of P. Convergence to / is obtained on certain com­
pacta. The generalization parallels the results of [14] established when </> 
is an exponential polynomial with constant coefficients. The method 
parallels those of [1, pp. 37, 45] when </> is an exponential polynomial with 
polynomial coefficients. 

In Section 4 conditions on <j> are increased so that when / is analytic 
on P , the sum of the series is determined at boundary points of P . This 
partially generalizes the results in [1] and is related to results of [3, 4, 
5, 6, 12, 13]. 

In Section 5 further restrictions on <£ allow expansions t o / on compacta 
in P° when / is analytic in P° and has continuous derivatives on P . 
Similar, but distinct, results have been obtained by Leont'ev [9, 11]. 

The proof in Section 3 is written so as to permit modifications that give 
the results of the succeeding sections. 

2. Preliminaries. Throughout, <t> is of exponential type and of regular 
growth with 

(1) XQ-linksl+fr**)!, 
rk. 

the limit being uniform in 6 for an increasing sequence {rk}
œ, of positive 

reals with rk —•» GO . {Çk} is the sequence of zeros of </> arranged in an order 
of non-decreasing moduli with mk + 1 the order of ffc. Taking a sub­
sequence of \rk), if necessary, we may assume that rk > \Çk\\ otherwise, 
zero terms are introduced in the series considered. P is the conjugate 
indicator diagram of <f> with non-empty interior P°. The Borel transform 
0 of <t> is analytic in the region (open and connected) Ù Z) P- The com­
plement 12 of Û is then contained in P . The interior 12° of 12 is then simply 
connected and bounded. For positive <5, P§ will denote the set of points 
of P that are at least a distance ô from the extreme points of P . Tk will 
denote the positively oriented circle \z\ = rk. In general, the complement, 
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interior, closure, boundary, and difference of sets are denoted by A, A°, 
Â, dA, and A ~ B, respectively. If A is a set and e is positive, then 
i © 6 denotes the set of points of the form a + e where a 6 A and 
\e\ < e. 

Definition 1. If 7 is a complex plane curve from z to w parameterized 
by y(t), a ^ t ^ b, its symmetric curve is the curve parameterized by 
z -\- w — y(t), a ^ t S b. The symmetric curve is then the curve sym­
metric to the given curve with respect to the midpoint of the line segment 
[z, w]. 

Definition 2. A compact set K in 12° is admissible means that (1) each 
point z of K may be joined to each point w on d!2 with a curve 7 (0, w) in 12 
whose symmetric curve is in P, and (2) the curves 7(2, w) are uniformly 
bounded in length. 

If 12 = P , then each compact in P° is admissible with each 7 taken as 
a straight line segment. When 12 is starlike with respect to each point in 
a compact K in 12°, then K is admissible taking curves 7 as straight line 
segments. Suppose that 12 is a solid F-shaped region and T is a convex, 
triangular set cut from the bottom of the F by a horizontal line; then any 
compact in the interior of T is admissible. 

Biorthogonality conditions such as those given in [2, p. 365] suggest 
coefficients for the terms in B to be used in a series associated with a 
function/. The curves Tk suggest a grouping of the sums of terms from B. 
These observations motivate the next definition, which will be extended 
in a special case in Section 5. 

Definition 3. L e t / be analytic in a simply connected region S D 12. 

e(w-s)tf(s)ds 
a 

where the path of integration is in S. For k and h positive and non-
negative integers, respectively, 

where ck is a positively oriented circle about fA with no other zero of 4> 
in or on ck. The $-series of/ is then defined by 

lmk -, \ 

Z Z E £L„(/)A'*' 
p=l Tp-i<\Çk\<rp \ f t=0 " ! / 

where r0 = — 1. 

We note that F{a, w, t) is an analytic function of w in S for each t and 
entire in t for each w in S. Also, (F(a, w, /), 4>(w)) is entire in t. Lkh(f ) 
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is easily seen to be independent of the choice of a in S. The abbreviated 
terminology does not indicate the dependence of the series on the choice 
of 12, or Ù, or the sequence {rk}. 

The p-th partial sum Sp(z) of the series may be written as 

t^<rp \2rri J ck 4>{t) h A! I • 

Replacing each mk by infinity does not change the sum since the intro­
duced terms are zero by Cauchy's Theorem. Writing the inner sum as an 
exponential enables us to write 

(2) SP(z) = ---. J - ~ (F(a, w, 0 , 4>{w))dt. 

3. Convergence on interior compacta. 

THEOREM 1. Assume that f is analytic in a simply connected region S 
containing 12 and that K is an admissible compact subset of 12°. Then the 
^-series off converges absolutely and uniformly to f in K. 

Proof. The pattern of the proof is to replace a with z in (2), integrate 
by parts producing/(s) as one term, and then show that the remaining 
terms tend to zero as p tends to infinity. Since Sp(z) is independent of 
the choice of a in 5, we initially replace aby z for each z in S. Integrating 
F(z, w, t) by parts k times gives for each z in S 

(3) Sp(z) = f(z) - Qp(z) - Tp(z) + 22,00 

where 

&<»> = </• *> h L , m dt> 
W = | ( / - . ) ^ / r j ^ ^ and 

*•<•> - h Lj4(f)(f?u+a~s)tfm{s)ds' *{w))dt-
Since K is admissible and 12 is compact, e > 0 may be chosen suffi­

ciently small so that both K © e C 12° and 12 © 5e C S. Rectirjable simple 
closed curves C and D winding once about 12 are chosen in 12 C\ S so that 
C is in 12 © € —' 2̂ and D is in 12 © 5e ~ 12 © 4e. Then each point of C 
is within e of a point of 12 and so within e of a point of 512. Each point of 
D is at least 3e from each point of C. For each p we choose kp = [3erP] 
and write Sp(z) as in (3) after integrating by parts kp times. Estimates 
on Tp and Rp are made by computing the derivatives of / using Cauchy 
integrals over D and computing the duality integrals with respect to w 
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using integrals over C. For notatioilal simplicity we will temporarily 
write k for kp. 

Consider first Tp(z) for z in K and k ^ 3. Let M denote the maximum 
0 1 I /(f)<Hw)l I o r ^ on D and w on C\ let L denote 2w times the maximum 
of the lengths of C and D. Writing (/{q), </>) as an integral over C and 
/ {q) (w) for w on C as a Cauchy integral over Z), we obtain the estimate 

| < / < ' \ 0 ) | £qlML*/(3t)'+K 

Also 

Z ff!/*""1 ^ 1 + 2(* - 2 ) /* < 3. 

These estimates, together with the fact that k = kp ^ 3erp give for t on Tp 

IS </<9u>/H * M ( £ ) * . 
I $ = 1 I \£rp/ 

The regularity of </> and the choice of e imply that 

(4) log|*(r,e")| ^ rp(h(6) - e/2) 

for all p sufficiently large, and 

(5) St(zei9) S h(d) - e 

for all z in i£. 
Writing Tp{z) with rp parameterized by t = rpe

id, we conclude that 

Tp{z) = Oir^exp (-erp/2)) 

for z in K and all large p. Hence Tp(z) —> 0 uniformly on i£ as £ —» oo . 
Now consider i?p(z) for z in K (or even z in P when 0 = P ) . We again 

use C and Z) as in the Tp estimate. Using the admissibility of K, we 
choose for the integral from z in K to w on C a path 77(2;, w) = 7(2, ze/) + 
[w', w] where wf is on d£2 with \w — wr\ < e and where 7(2, wf) is chosen 
so its symmetric curve is in P. Then rj(z, w) is in 12 © e and its symmetric 
curve is in P © e. The lengths of the curves rj(z,w) are uniformly 
bounded by some b > 0 since the y(z,w') are uniformly bounded in 
length. Since z -\- w — s is in P © e when 5 is on 77(2, w), we have for all 6 

&((z + w- s)eid) ^ h(6) + e. 

Coupling this inequality with (4) and using the fact that k = kp g Serp, 
we have 

\Rp(z)\iS —7£— p ^ e x p (2erp). 

This inequality, together with the inequalities k\ < kke~k(2k + 1) and 
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kp ^ Serp < kp + 1, implies that for z in K and p large 

Rp(z) = 0(rp(6trp + 1) exp (-erp)). 

Hence Rp(z) —> 0 uniformly on K as p —» oo . 
(?P(2)""~*0 uniformly on i£ since (4) and (5) insure that Qp{z) = 

<9(exp ( — erp/2)). Qv was separated from Tv here for use in the theorem 
of the next section. 

The absolute convergence of the series also follows from the above 
estimates. For Sv(z) — f(z) = 0(exp ( — erp/4)) for z in K. Hence 
Sp+i(z) — Sp(z) also admits such an estimate. Since $ is of exponential 
type, |ffc| > kc for some c > 0 and all k > 1. Our assumption that 
r* > If*| gives rp > pc and Sp+i(z) — Sp(z) = 0(l/^>2), insuring absolute 
convergence. 

4. Convergence on the boundary. By increasing the assumptions 
on the lower bound of $ on TP1 one can draw conclusions concerning the 
sum of the 0-series of/ at points on dP when/ is analytic on P. Uniform 
convergence to / in a neighborhood of P cannot be expected, for that 
would imply that / satisfies the convolution equation (f(z + w), 
<t>{w)) = 0 in a neighborhood of the origin. 

The second conclusion of the following theorem corresponds to the 
convergence of a Fourier series of / on [—1, 1] to ( / ( l ) + / ( —1))/2 at 
z = 1 when <f>(z) = ez — e~z, a result that was generalized in [1]. 

THEOREM 2. In addition to (1), 0 satisfies 

(6) \4>(rpe
i0)\ £ A exp (h(d)rp) 

for some A > 0 and all p. f is analytic on P. Then: 
(a) The (^-series of f converges to f at each boundary point of P that lies 

on only one support line of P , in particular at each non-extreme point. 
(b) / / z on dP is on lines of support S% (zeie) = h{6) for 6 in [du 62] only 

and 

lim^oo exp (zrpe
i9)/4>(rpe

ie) = L(z) 

uniformly on compact subsets of (6U 02), then the 4>-series off converges at z to 

m - - ( ^ F ^ </, 4>)Uz). 

62 — 61 is the supplement of the tangential interior angle of P at z. 
(c) The <p-series off converges uniformly to f on each P^ 

Proof. We will modify the proof of Theorem 1, treating Pa.sK and 
taking P as 12 with rj(z,w) = [z,w]. Conditions (4) and (5) are then 
replaced by (6) and 

(7) &(zeie) ^ h{B). 
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Then for z in P , Tp(z) = 0(1/rv) while the est imate on Rp(z) is un­
changed. Hence the convergence of the series depends on the behavior 
of Qp(z) as p —> oo . 

Let 

and let Ip(z, a, ft) be tha t par t of Ip(z) obtained by integration over Yv 

from rp exp(ia) to rp exp(ift) when a ^ ft. The inequalities (6) and (7) 
imply tha t 

\Ip(z,a,ft)\ ^ (ft-a)/(2irA). 

(a) The hypothesis implies t ha t if z is such a boundary point, then 
&(zeie) ^ h(6) with equality holding for exactly one 0 = 0O. If e is in 
(0, 7r), then Ip(z, do — e, 0O + e) is bounded in modulus by e/(wA) and 
Ip(z, 0o + e, 0O — e + 2ir) is bounded by A~l exp ( — r)rp) where 77 > 0 is 
chosen so tha t 

h(d) - &(zeie) ^ v 

for 0 in tha t closed interval. By choosing e small and then p large, we 
see t ha t Ip(z) —> 0 as p —> GO . 

(b) The fact t ha t Ip(z, 62, B\ + 2ir) —> 0 as p —̂  00 is established as in 
(a) . Wri t ing the difference between Ip(z, 0i, 02) and L(z)(62 — 6i)/2w as 
the sum of integrals from 0i to 0i + e, 0i + e to 02 — e, and 02 — e to 02, 
the sum of the first and third integrals is bounded by e(A~l + L(z))/ir 
while the second tends to zero as p —> co as a result of the limit hypothesis. 
I t follows tha t 

IP(z, 0 i , 0 2 ) - > £ ( * ) (02 - 0I)/2TT. 

(c) Consider P8 as the union of Pg P\ P° and Pg P\ <9P. If s is in 
P ô H P°, then &(zeie) < h{6) for all 0. 

We assert t h a t if z is in P ô P\ dP, then s is in a finite union of closed 
disjoint line segments Ij on which 3$(z exp (i07-)) = h(dj) for unique 0;-. 
Let N denote the set of non-extreme points of d P . Then Ps H dP C iV. 
Each point of TV is an interior point of an open line segment of dP (in 
the topology relative to dP) with extreme points as endpoints. Hence N 
is the union of such intervals. Since P° ^ 0 and P is convex, dP is a 
Jordan curve and TV is a countable union of disjoint open intervals with 
endpoints extreme points; say N = U Jj. Since d P is rectifiable, for some 
n > 0 the length of the J j is less than 25 when j > ?z. For such j the 
interval P,- is not in P§. Denoting by Ij the interval J j minus open end 
segments of length 5, it follows tha t P j C\ dP is contained in S ï P , . Since 
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each Ij is on a unique line of support of P , 

&(zexp (idj)) = h(dj) 

for z on Ij for a unique 6j. 
Then for z in P5 , ft(0) — & (zeid) ^ 0 with equality only for some z 

when 0 = 6j, j = 1, 2, . . . , n. IP(z) can then be written as the sum of 
an integral over small e-neighborhoods of the Oj and an integral over the 
remaining intervals. The first is bounded by en/irA while the second is 
bounded by A~l exp ( — rjrp) where rj > 0 is chosen so that 

h(6) - &(zeie) ^ y] 

when 6 is in the compact intervals not containing the 6j and z is in the 
compact Pg. Again choosing e small and p large, it follows that Ip(z) —> 0 
uniformly on Pg as p —> oo and the series converges uniformly to / . 

5. Extensions. Additional conditions may be placed on <f> that imply 
the continuity of <f on ? U dP and allow the "duality" integrals (h, <t>) 
to be taken on dP when h is continuous there. This is the case when there 
is a positive function v(r) with )°?> v{r)dr < co for some r' > 0 and 

(8) \ct>(reie)\ ^ v(r)eh^r 

for all r > 0. 
W h e n / is continuous on P and analytic in P°, the </>-series of/ may be 

defined as earlier with the paths of integration from a in P to w on dP 
taken as straight line segments. Then P(a, w, t) is analytic in w in P° and 
continuous in P for each t. For each 7£; in P , P(a, w, /) is entire in t. Lkh(f ) 
is independent of the choice of a in P by the extended Cauchy Theorem 
for triangles. 

Using this extended definition of a ^-series and placing appropriate 
lower bounds on |</>| on Tp, we can establish convergence of the series to 
f on compacta in P°. 

THEOREM 3. In addition to (I) and (8) 

(9) |<Kv^)l = Ar^ exP (*(^)^) 

/or some A > 0, M ^ 0 aw^ a// >̂. / is in Ck(P) H\ H(P°) and k > /A. 77&ew 
f̂ê  <j>-series of f converges to f uniformly on compacta in P°. 

Proof. For compact K in P° choose e > 0 sufficiently small so that 
K@eC.P- For the proof it is sufficient to consider the case when 
k — 1 ^ M < k since C*(P) C Ck~l(P). As in the proof of Theorem 1, 
we replace a by z in Sp(z), integrate by parts k times since/ is in Ck(P), 
and obtain (3). Consider first Qp(z) and Tp(z) for s in K. Inequalities 
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(5) and (9) yield the estimate 

\ezt/t^{t)\ ^ r^-'A-1 exp(-er p ) 

for q = 0, 1, . . . , k — 1. Hence Qp(z) and Tp(z) —• 0 as p —> oo. 
We now show that i?p(;s) —> 0 as p —> oo. The crucial estimate here is 

on the modulus of 

for t — rpe
ie, z in K, w on dP, and 5 on [z, w]. The numerator is of modulus 

near h{6)rp when s is near s. When 5 is bounded from s by a small 77 > 0, 
the numerator is of modulus less than exp(/&(0) — rj)rp. Suppose that 
Ô e (0, e). For each p let 

bp = ôr/-»-1 ^ Ô. 

To estimate Rp{z) we write it as the sum of two terms corresponding to 
integrations from z to z + 8p(w — z) and from z + 8p(w — z) to w. The 
first will be bounded in modulus by a constant multiple of ô using (9) 
and the fact that the integration with respect to 5 is over an interval of 
small length dp. The second integral is bounded in modulus by a constant 
multiple of 

r/-k~l expi — ôr/-*) 

since on that interval of integration with respect to s, 

S%{(z + w - s)eid) < (h(0) - 5p)rp, and ôprp = or/-». 

Since k > JJL, the second integral is arbitrarily small when p is large. By 
choosing ô small and then p large, it is seen that Rp(z) —> 0 uniformly on 
K as p •—> co . 

It is evident that either stronger conditions o n / or on |</>| on Yp will 
simplify the proof and can be made to yield absolute convergence. 
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