EXPANSIONS OF ARBITRARY ANALYTIC FUNCTIONS IN SERIES OF EXPONENTIALS

D. G. DICKSON

1. Introduction. Let $\phi \neq 0$ be an entire function of one complex variable and of exponential type. Let *B* denote the set of all monomial exponentials of the form $z^h e^{\zeta z}$ where ζ is a zero of ϕ of order greater than *h*. If *R* is a simply connected plane region and H(R) denotes the space of functions analytic in *R* with the topology of uniform convergence on compacta, then ϕ can be considered as an element of the topological dual H'(R) if the Borel transform $\tilde{\phi}$ of ϕ is analytic on \tilde{R} , the complement of *R*. The duality is given by

$$\langle f, \phi \rangle = \frac{1}{2\pi i} \int_C f(w) \tilde{\phi}(w) dw,$$

where *C* is a simple closed curve in the common region of analyticity of *f* and $\tilde{\phi}$, and *C* winds once around the complement of a set in which $\tilde{\phi}$ is analytic. By the Polya representation

 $\phi(z) = \langle e^{zw}, \phi(w) \rangle.$

B is then not total in H(R) since ϕ annihilates *B* and $\phi \neq 0$. If R + b is the translation of *R* by *b*, then *B* is not total in H(R + b) since $e^{bz}\phi(z)$ is then in H'(R + b) and annihilates *B*.

If P denotes the conjugate indicator diagram of ϕ , then $\tilde{\phi}$ is analytic on the complement of P and cannot be continued analytically to the extreme points of P. If a simply connected region R is a subset of the interior P^0 of P, then B might be total in H(R). This is precisely the case when ϕ is of regular growth, that is, when there exists an increasing sequence $\{r_k\}$ of reals tending to infinity for which

$$r_k^{-1} \log |\phi(r_k e^{i\theta})| \to h(\theta)$$

uniformly in θ where *h* is the indicator function of ϕ . This follows from the Hahn-Banach Theorem and the examination of the indicator of a quotient when the denominator is of regular growth.

When B is total in H(R), it is easily seen that B reduced by a finite number of monomial exponentials is still total in H(R). It follows that each f in H(R) can be written as a compactly convergent series whose terms are linear combinations of B. This may be accomplished by con-

Received July 16, 1979.

structing an exhaustive, increasing sequence of compacta in R and approximating within 1/n on the *n*-th compact the difference between f and its approximation on the preceding compact using monomial exponentials not previously used. It is evident that such series are not unique.

If ϕ is of regular growth, $R \subset P^0$, and f in H(R) is analytic in a larger region S covering the complement of a region in which $\tilde{\phi}$ is analytic, then it is possible to associate with f a particular Fourier-type series that converges to f on certain compacta in $R \cap S$. That is the main content of Section 3. When $S \supset P$, the convergence in P^0 has been established by A. F. Leont'ev [7, 8]. Our proof of that theorem generalizes to include functions f that are analytic in regions not necessarily covering P but necessarily (and imprecisely) covering the singularities of $\tilde{\phi}$, including the extreme points of P. Convergence to f is obtained on certain compacta. The generalization parallels the results of [14] established when ϕ is an exponential polynomial with constant coefficients. The method parallels those of [1, pp. 37, 45] when ϕ is an exponential polynomial with polynomial coefficients.

In Section 4 conditions on ϕ are increased so that when f is analytic on P, the sum of the series is determined at boundary points of P. This partially generalizes the results in [1] and is related to results of [3, 4, 5, 6, 12, 13].

In Section 5 further restrictions on ϕ allow expansions to f on compacta in P^0 when f is analytic in P^0 and has continuous derivatives on P. Similar, but distinct, results have been obtained by Leont'ev [9, 11].

The proof in Section 3 is written so as to permit modifications that give the results of the succeeding sections.

2. Preliminaries. Throughout, ϕ is of exponential type and of regular growth with

(1)
$$h(\theta) = \lim_{k\to\infty} \frac{\log |\phi(r_k e^{i\theta})|}{r_k}$$
,

the limit being uniform in θ for an increasing sequence $\{r_k\}^{\infty}$, of positive reals with $r_k \to \infty$. $\{\zeta_k\}$ is the sequence of zeros of ϕ arranged in an order of non-decreasing moduli with $m_k + 1$ the order of ζ_k . Taking a subsequence of $\{r_k\}$, if necessary, we may assume that $r_k > |\zeta_k|$; otherwise, zero terms are introduced in the series considered. P is the conjugate indicator diagram of ϕ with non-empty interior P^0 . The Borel transform $\tilde{\phi}$ of ϕ is analytic in the region (open and connected) $\tilde{\Omega} \supset \tilde{P}$. The complement Ω of $\tilde{\Omega}$ is then contained in P. The interior Ω^0 of Ω is then simply connected and bounded. For positive δ , P_{δ} will denote the set of points of P that are at least a distance δ from the extreme points of P. Γ_k will denote the positively oriented circle $|z| = r_k$. In general, the complement, interior, closure, boundary, and difference of sets are denoted by \tilde{A} , A^0 , \bar{A} , ∂A , and $A \sim B$, respectively. If A is a set and ϵ is positive, then $A \oplus \epsilon$ denotes the set of points of the form a + e where $a \in A$ and $|e| < \epsilon$.

Definition 1. If γ is a complex plane curve from z to w parameterized by $\gamma(t)$, $a \leq t \leq b$, its symmetric curve is the curve parameterized by $z + w - \gamma(t)$, $a \leq t \leq b$. The symmetric curve is then the curve symmetric to the given curve with respect to the midpoint of the line segment [z, w].

Definition 2. A compact set K in Ω^0 is admissible means that (1) each point z of K may be joined to each point w on $\partial\Omega$ with a curve $\gamma(z, w)$ in Ω whose symmetric curve is in P, and (2) the curves $\gamma(z, w)$ are uniformly bounded in length.

If $\Omega = P$, then each compact in P^0 is admissible with each γ taken as a straight line segment. When Ω is starlike with respect to each point in a compact K in Ω^0 , then K is admissible taking curves γ as straight line segments. Suppose that Ω is a solid V-shaped region and T is a convex, triangular set cut from the bottom of the V by a horizontal line; then any compact in the interior of T is admissible.

Biorthogonality conditions such as those given in [2, p. 365] suggest coefficients for the terms in B to be used in a series associated with a function f. The curves Γ_k suggest a grouping of the sums of terms from B. These observations motivate the next definition, which will be extended in a special case in Section 5.

Definition 3. Let f be analytic in a simply connected region $S \supset \Omega$.

$$F(a, w, t) = \int_{a}^{w} e^{(w-s)t} f(s) ds$$

where the path of integration is in S. For k and h positive and non-negative integers, respectively,

$$L_{kh}(f) = \frac{1}{2\pi i} \int_{c_k} \frac{\left(t - \zeta_k\right)^h}{\phi(t)} \langle F(a, w, t), \phi(w) \rangle dt$$

where c_k is a positively oriented circle about ζ_k with no other zero of ϕ in or on c_k . The ϕ -series of f is then defined by

$$\sum_{p=1}^{\infty} \sum_{\tau_{p-1} < |\xi_k| < \tau_p} \left(\sum_{h=0}^{m_k} \frac{1}{h!} L_{kh}(f) z^h \right) e^{\zeta_k z}$$

where $r_0 = -1$.

We note that F(a, w, t) is an analytic function of w in S for each t and entire in t for each w in S. Also, $\langle F(a, w, t), \phi(w) \rangle$ is entire in t. $L_{kh}(f)$

is easily seen to be independent of the choice of a in S. The abbreviated terminology does not indicate the dependence of the series on the choice of Ω , or $\tilde{\Omega}$, or the sequence $\{r_k\}$.

The p-th partial sum $S_p(z)$ of the series may be written as

$$\sum_{|\boldsymbol{\xi}_k| < \tau_p} \left(\frac{1}{2\pi i} \int_{c_k} \frac{\langle F(a, w, t), \phi(w) \rangle}{\phi(t)} \sum_{h=0}^{m_k} \frac{z^h (t - \boldsymbol{\zeta}_k)^h}{h!} dt \right) e^{\boldsymbol{\xi}_k z}.$$

Replacing each m_k by infinity does not change the sum since the introduced terms are zero by Cauchy's Theorem. Writing the inner sum as an exponential enables us to write

(2)
$$S_p(z) = \frac{1}{2\pi i} \int_{\Gamma_p} \frac{e^{zt}}{\phi(t)} \langle F(a, w, t), \phi(w) \rangle dt.$$

3. Convergence on interior compacta.

THEOREM 1. Assume that f is analytic in a simply connected region S containing Ω and that K is an admissible compact subset of Ω^0 . Then the ϕ -series of f converges absolutely and uniformly to f in K.

Proof. The pattern of the proof is to replace a with z in (2), integrate by parts producing f(z) as one term, and then show that the remaining terms tend to zero as p tends to infinity. Since $S_p(z)$ is independent of the choice of a in S, we initially replace a by z for each z in S. Integrating F(z, w, t) by parts k times gives for each z in S

(3) $S_p(z) = f(z) - Q_p(z) - T_p(z) + R_p(z)$

where

$$Q_{p}(z) = \langle f, \phi \rangle \frac{1}{2\pi i} \int_{\Gamma_{p}} \frac{e^{zt}}{t\phi(t)} dt,$$

$$T_{p}(z) = \sum_{q=1}^{k-1} \langle f^{(q)}, \phi \rangle \frac{1}{2\pi i} \int_{\Gamma_{p}} \frac{e^{zt}}{t^{q+1}\phi(t)} dt, \text{ and}$$

$$R_{p}(z) = \frac{1}{2\pi i} \int_{\Gamma_{p}} \frac{1}{t^{k}\phi(t)} \left\langle \int_{z}^{w} e^{(z+w-s)t} f^{(k)}(s) ds, \phi(w) \right\rangle dt.$$

Since K is admissible and Ω is compact, $\epsilon > 0$ may be chosen sufficiently small so that both $K \oplus \epsilon \subset \Omega^0$ and $\Omega \oplus 5\epsilon \subset S$. Rectifiable simple closed curves C and D winding once about Ω are chosen in $\Omega \cap S$ so that C is in $\Omega \oplus \epsilon \sim \Omega$ and D is in $\Omega \oplus 5\epsilon \sim \overline{\Omega \oplus 4\epsilon}$. Then each point of C is within ϵ of a point of Ω and so within ϵ of a point of $\partial\Omega$. Each point of D is at least 3ϵ from each point of C. For each p we choose $k_p = [3\epsilon r_p]$ and write $S_p(z)$ as in (3) after integrating by parts k_p times. Estimates on T_p and R_p are made by computing the derivatives of f using Cauchy integrals over D and computing the duality integrals with respect to w

https://doi.org/10.4153/CJM-1981-028-0 Published online by Cambridge University Press

using integrals over C. For notational simplicity we will temporarily write k for k_p .

Consider first $T_p(z)$ for z in K and $k \ge 3$. Let M denote the maximum of $|f(\zeta)\tilde{\phi}(w)|$ for ζ on D and w on C; let L denote 2π times the maximum of the lengths of C and D. Writing $\langle f^{(q)}, \phi \rangle$ as an integral over C and $f^{(q)}(w)$ for w on C as a Cauchy integral over D, we obtain the estimate

$$|\langle f^{(q)}, \boldsymbol{\phi} \rangle| \leq q! ML^2/(3\epsilon)^{q+1}.$$

Also

$$\sum_{q=1}^{k-1} q!/k^{q-1} \le 1 + 2(k-2)/k < 3$$

These estimates, together with the fact that $k = k_p \leq 3\epsilon r_p$ give for t on Γ_p

$$\left|\sum_{q=1}^{k-1} \langle f^{(q)}, \phi \rangle / t^{q+1} \right| \leq M \left(\frac{L}{\epsilon r_p}\right)^2.$$

The regularity of ϕ and the choice of ϵ imply that

(4) $\log |\phi(r_p e^{i\theta})| \ge r_p(h(\theta) - \epsilon/2)$

for all p sufficiently large, and

(5)
$$\mathscr{R}(ze^{i\theta}) \leq h(\theta) - \epsilon$$

for all z in K.

Writing $T_p(z)$ with Γ_p parameterized by $t = r_p e^{i\theta}$, we conclude that

$$T_p(z) = O(r_p^{-1} \exp(-\epsilon r_p/2))$$

for z in K and all large p. Hence $T_p(z) \to 0$ uniformly on K as $p \to \infty$.

Now consider $R_p(z)$ for z in K (or even z in P when $\Omega = P$). We again use C and D as in the T_p estimate. Using the admissibility of K, we choose for the integral from z in K to w on C a path $\eta(z, w) = \gamma(z, w') +$ [w', w] where w' is on $\partial\Omega$ with $|w - w'| < \epsilon$ and where $\gamma(z, w')$ is chosen so its symmetric curve is in P. Then $\eta(z, w)$ is in $\Omega \oplus \epsilon$ and its symmetric curve is in $P \oplus \epsilon$. The lengths of the curves $\eta(z, w)$ are uniformly bounded by some b > 0 since the $\gamma(z, w')$ are uniformly bounded in length. Since z + w - s is in $P \oplus \epsilon$ when s is on $\eta(z, w)$, we have for all θ

 $\mathscr{R}((z+w-s)e^{i\theta}) \leq h(\theta) + \epsilon.$

Coupling this inequality with (4) and using the fact that $k = k_p \leq 3\epsilon r_p$, we have

$$|R_p(z)|_{\mathbf{I}} \leq \frac{ML^2 b}{3\epsilon} \frac{k!}{k^k} r_p \exp((2\epsilon r_p)).$$

This inequality, together with the inequalities $k! < k^k e^{-k}(2k+1)$ and

 $k_p \leq 3\epsilon r_p < k_p + 1$, implies that for z in K and p large

$$R_p(z) = O(r_p(6\epsilon r_p + 1) \exp((-\epsilon r_p))).$$

Hence $R_p(z) \to 0$ uniformly on K as $p \to \infty$.

 $Q_p(z) \to 0$ uniformly on K since (4) and (5) insure that $Q_p(z) = O(\exp(-\epsilon r_p/2))$. Q_p was separated from T_p here for use in the theorem of the next section.

The absolute convergence of the series also follows from the above estimates. For $S_p(z) - f(z) = O(\exp(-\epsilon r_p/4))$ for z in K. Hence $S_{p+1}(z) - S_p(z)$ also admits such an estimate. Since ϕ is of exponential type, $|\zeta_k| > kc$ for some c > 0 and all k > 1. Our assumption that $r_k > |\zeta_k|$ gives $r_p > pc$ and $S_{p+1}(z) - S_p(z) = O(1/p^2)$, insuring absolute convergence.

4. Convergence on the boundary. By increasing the assumptions on the lower bound of ϕ on Γ_p , one can draw conclusions concerning the sum of the ϕ -series of f at points on ∂P when f is analytic on P. Uniform convergence to f in a neighborhood of P cannot be expected, for that would imply that f satisfies the convolution equation $\langle f(z + w), \phi(w) \rangle = 0$ in a neighborhood of the origin.

The second conclusion of the following theorem corresponds to the convergence of a Fourier series of f on [-1, 1] to (f(1) + f(-1))/2 at z = 1 when $\phi(z) = e^z - e^{-z}$, a result that was generalized in [1].

THEOREM 2. In addition to (1), ϕ satisfies

(6)
$$|\phi(r_p e^{i\theta})| \ge A \exp(h(\theta)r_p)$$

for some A > 0 and all p. f is analytic on P. Then:

(a) The ϕ -series of f converges to f at each boundary point of P that lies on only one support line of P, in particular at each non-extreme point.

(b) If z on ∂P is on lines of support $\mathscr{R}(ze^{i\theta}) = h(\theta)$ for θ in $[\theta_1, \theta_2]$ only and

 $\lim_{p\to\infty} \exp (zr_p e^{i\theta}) / \phi(r_p e^{i\theta}) = L(z)$

uniformly on compact subsets of (θ_1, θ_2) , then the ϕ -series of f converges at z to

$$f(z) = \frac{(\theta_2 - \theta_1)}{2\pi} \langle f, \phi \rangle L(z)$$

θ₂ - θ₁ is the supplement of the tangential interior angle of P at z.
(c) The φ-series of f converges uniformly to f on each P_δ.

Proof. We will modify the proof of Theorem 1, treating P as K and taking P as Ω with $\eta(z, w) = [z, w]$. Conditions (4) and (5) are then replaced by (6) and

(7)
$$\mathscr{R}(ze^{i\theta}) \leq h(\theta)$$

Then for z in P, $T_p(z) = O(1/r_p)$ while the estimate on $R_p(z)$ is unchanged. Hence the convergence of the series depends on the behavior of $Q_p(z)$ as $p \to \infty$.

Let

$$I_p(z) = \frac{1}{2\pi i} \int_{\Gamma_p} \frac{e^{zt}}{t\phi(t)} dt$$

and let $I_p(z, \alpha, \beta)$ be that part of $I_p(z)$ obtained by integration over Γ_p from $r_p \exp(i\alpha)$ to $r_p \exp(i\beta)$ when $\alpha \leq \beta$. The inequalities (6) and (7) imply that

$$|I_p(z, \alpha, \beta)| \leq (\beta - \alpha)/(2\pi A).$$

(a) The hypothesis implies that if z is such a boundary point, then $\mathscr{R}(ze^{i\theta}) \leq h(\theta)$ with equality holding for exactly one $\theta = \theta_0$. If ϵ is in $(0, \pi)$, then $I_p(z, \theta_0 - \epsilon, \theta_0 + \epsilon)$ is bounded in modulus by $\epsilon/(\pi A)$ and $I_p(z, \theta_0 + \epsilon, \theta_0 - \epsilon + 2\pi)$ is bounded by $A^{-1} \exp(-\eta r_p)$ where $\eta > 0$ is chosen so that

$$h(\theta) - \mathscr{R}(ze^{i\theta}) \ge \eta$$

for θ in that closed interval. By choosing ϵ small and then p large, we see that $I_p(z) \to 0$ as $p \to \infty$.

(b) The fact that $I_p(z, \theta_2, \theta_1 + 2\pi) \to 0$ as $p \to \infty$ is established as in (a). Writing the difference between $I_p(z, \theta_1, \theta_2)$ and $L(z)(\theta_2 - \theta_1)/2\pi$ as the sum of integrals from θ_1 to $\theta_1 + \epsilon$, $\theta_1 + \epsilon$ to $\theta_2 - \epsilon$, and $\theta_2 - \epsilon$ to θ_2 , the sum of the first and third integrals is bounded by $\epsilon(A^{-1} + L(z))/\pi$ while the second tends to zero as $p \to \infty$ as a result of the limit hypothesis. It follows that

$$I_p(z, \theta_1, \theta_2) \rightarrow L(z)(\theta_2 - \theta_1)/2\pi.$$

(c) Consider P_{δ} as the union of $P_{\delta} \cap P^0$ and $P_{\delta} \cap \partial P$. If z is in $P_{\delta} \cap P^0$, then $\mathscr{R}(ze^{i\theta}) < h(\theta)$ for all θ .

We assert that if z is in $P_{\delta} \cap \partial P$, then z is in a finite union of closed disjoint line segments I_j on which $\mathscr{R}(z \exp(i\theta_j)) = h(\theta_j)$ for unique θ_j . Let N denote the set of non-extreme points of ∂P . Then $P_{\delta} \cap \partial P \subset N$. Each point of N is an interior point of an open line segment of ∂P (in the topology relative to ∂P) with extreme points as endpoints. Hence N is the union of such intervals. Since $P^0 \neq \emptyset$ and P is convex, ∂P is a Jordan curve and N is a countable union of disjoint open intervals with endpoints extreme points; say $N = \bigcup J_j$. Since ∂P is rectifiable, for some n > 0 the length of the J_j is less than 2δ when j > n. For such j the interval J_j is not in P_{δ} . Denoting by I_j the interval J_j minus open end segments of length δ , it follows that $P_{\delta} \cap \partial P$ is contained in $\sum_{i=1}^{n} I_j$. Since each I_j is on a unique line of support of P,

 $\mathscr{R}(z \exp(i\theta_j)) = h(\theta_j)$

for z on I_j for a unique θ_j .

Then for z in P_{δ} , $h(\theta) - \Re(ze^{i\theta}) \ge 0$ with equality only for some z when $\theta = \theta_j$, j = 1, 2, ..., n. $I_p(z)$ can then be written as the sum of an integral over small ϵ -neighborhoods of the θ_j and an integral over the remaining intervals. The first is bounded by $\epsilon n/\pi A$ while the second is bounded by $A^{-1} \exp(-\eta r_p)$ where $\eta > 0$ is chosen so that

 $h(\theta) - \mathscr{R}(ze^{i\theta}) \ge \eta$

when θ is in the compact intervals not containing the θ_j and z is in the compact P_{δ} . Again choosing ϵ small and p large, it follows that $I_p(z) \to 0$ uniformly on P_{δ} as $p \to \infty$ and the series converges uniformly to f.

5. Extensions. Additional conditions may be placed on ϕ that imply the continuity of $\tilde{\phi}$ on $\tilde{P} \cup \partial P$ and allow the "duality" integrals $\langle h, \phi \rangle$ to be taken on ∂P when h is continuous there. This is the case when there is a positive function v(r) with $\int_{r'}^{\infty} v(r) dr < \infty$ for some r' > 0 and

(8) $|\phi(re^{i\theta})| \leq v(r)e^{h(\theta)r}$

for all r > 0.

When f is continuous on P and analytic in P^0 , the ϕ -series of f may be defined as earlier with the paths of integration from a in P to w on ∂P taken as straight line segments. Then F(a, w, t) is analytic in w in P^0 and continuous in P for each t. For each w in P, F(a, w, t) is entire in t. $L_{kh}(f)$ is independent of the choice of a in P by the extended Cauchy Theorem for triangles.

Using this extended definition of a ϕ -series and placing appropriate lower bounds on $|\phi|$ on Γ_p , we can establish convergence of the series to f on compact in P^0 .

THEOREM 3. In addition to (1) and (8)

(9) $|\phi(r_p e^{i\theta})| \ge A r_p^{-\mu} \exp(h(\theta) r_p)$

for some A > 0, $\mu \ge 0$ and all p. f is in $C^{k}(P) \cap H(P^{0})$ and $k > \mu$. Then the ϕ -series of f converges to f uniformly on compacta in P^{0} .

Proof. For compact K in P^0 choose $\epsilon > 0$ sufficiently small so that $K \oplus \epsilon \subset P$. For the proof it is sufficient to consider the case when $k - 1 \leq \mu < k$ since $C^k(P) \subset C^{k-1}(P)$. As in the proof of Theorem 1, we replace a by z in $S_p(z)$, integrate by parts k times since f is in $C^k(P)$, and obtain (3). Consider first $Q_p(z)$ and $T_p(z)$ for z in K. Inequalities

(5) and (9) yield the estimate

$$|e^{zt}/t^{q}\phi(t)| \leq r_{p}^{\mu-q}A^{-1}\exp(-\epsilon r_{p})$$

for $q = 0, 1, \ldots, k - 1$. Hence $Q_p(z)$ and $T_p(z) \to 0$ as $p \to \infty$.

We now show that $R_p(z) \to 0$ as $p \to \infty$. The crucial estimate here is on the modulus of

$$e^{(z+w-s)t}/t^{k-1}\boldsymbol{\phi}(t)$$

for $t = r_p e^{i\theta}$, z in K, w on ∂P , and s on [z, w]. The numerator is of modulus near $h(\theta)r_p$ when s is near z. When s is bounded from z by a small $\eta > 0$, the numerator is of modulus less than $\exp(h(\theta) - \eta)r_p$. Suppose that $\delta \in (0, \epsilon)$. For each p let

$$\delta_p = \delta r_p^{k-\mu-1} \leq \delta.$$

To estimate $R_p(z)$ we write it as the sum of two terms corresponding to integrations from z to $z + \delta_p(w - z)$ and from $z + \delta_p(w - z)$ to w. The first will be bounded in modulus by a constant multiple of δ using (9) and the fact that the integration with respect to s is over an interval of small length δ_p . The second integral is bounded in modulus by a constant multiple of

 $r_p^{\mu-k-1} \exp(-\delta r_p^{k-\mu})$

since on that interval of integration with respect to *s*,

$$\mathscr{R}((z+w-s)e^{i\theta}) < (h(\theta)-\delta_p)r_p, \text{ and } \delta_pr_p = \delta r_p^{k-\mu}.$$

Since $k > \mu$, the second integral is arbitrarily small when p is large. By choosing δ small and then p large, it is seen that $R_p(z) \to 0$ uniformly on K as $p \to \infty$.

It is evident that either stronger conditions on f or on $|\phi|$ on Γ_p will simplify the proof and can be made to yield absolute convergence.

References

- 1. D. G. Dickson, Expansions in series of solutions of linear difference-differential and infinite order differential equations with constant coefficients, Mem. Amer. Math. Soc. 23 (1957), 860.
- 2. Analytic mean periodic functions, Trans. Amer. Math. Soc. 110 (1964), 361-374.
- V. K. Dzjadyk, On convergence conditions for Dirichlet series on closed polygons, Mat. Sb. 95(173) (1974), 475-493.
- 4. V. K. Dzjadyk and E. K. Krutigolova, The representation of analytic functions by a Dirichlet series at the boundary of the convergence domain, Mat. Zametki 14 (1973), 796–780.
- 5. E. K. Krutigolova, The behavior of a Dirichlet series on the boundary of a region of convergence, Ukrain. Mat. Ž. 27 (1975), 234-240.
- 6. ——— Representation of analytic functions by Dirichlet series on the boundaries of closed convex polygon domains, Ukrain. Mat. Ž. 27 (1975), 516–521.

- 7. A. F. Leont'ev, Representation of arbitrary functions by Dirichlet series, Dokl. Nauk SSSR 164 (1965), 40-42.
- 8. ——— On the representation of functions by sequences of Dirichlet polynomials, Mat. Sb. 70 (112) (1966), 132–144.
- 9. —— On the representation of analytic functions by Dirichlet series, Mat. Sb. 80 (122) (1969), 117–156.
- Representation of functions by generalized Dirichlet series, Uspehi Mat. Nauk 24 (1969), 97–164.
- 11. ——— On conditions of expandibility of analytic functions in Dirichlet series, Izv. Akad. Nauk SSSR 36 (1972), 1282–1295.
- On the representation of analytic functions in a closed convex region by a Dirichlet series, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 577–592.
- 13. The representation of analytic functions in a polygonal convex closed domain by Dirichlet series, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 127–137.
- 14. M. G. Moore, On expansions in series of exponential functions, Amer. J. Math. 62 (1940), 83-90.
- A. M. Sedletskii, Expansions of functions into Dirichlet series on closed convex polygons, Siberian Math. J. 19 (1979), 622-629.

University of Michigan, Ann Arbor, Michigan