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We conduct an asymptotic analysis to derive a macrotransport equation for the long-time
transport of a chemotactic/diffusiophoretic colloidal species in a uniform circular
tube under a steady, laminar, pressure-driven flow and transient solute gradient. The
solute gradient drives a ‘log-sensing’ advective flux of the colloidal species, which
competes with Taylor dispersion due to the hydrodynamic flow. We demonstrate excellent
agreement between the macrotransport equation and direct numerical solution of the
full advection–diffusion equation for the colloidal species transport. In addition to its
accuracy, the macrotransport equation requires O(103) times less computational runtime
than direct numerical solution of the advection–diffusion equation. Via scaling arguments,
we identify three regimes of the colloidal species macrotransport, which span from
chemotactic/diffusiophoretic-dominated macrotransport to the familiar Taylor dispersion
regime, where macrotransport is dominated by the hydrodynamic flow. Finally, we
discuss generalization of the macrotransport equation to channels of arbitrary (but
constant) cross-section and to incorporate more sophisticated models of chemotactic
fluxes. The macrotransport framework developed here will broaden the scope of
designing chemotactic/diffusiophoretic transport systems by elucidating the interplay of
macrotransport due to chemotaxis/diffusiophoresis and hydrodynamic flow.
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1. Introduction

Deterministic motion of a colloidal-scale species can be induced by the concentration
gradient of a surrounding solute. For charged colloids in electrolyte solutions, the
concentration gradient of the electrolyte causes motion known as diffusiophoresis
(Anderson 1989; Velegol et al. 2016; Marbach & Bocquet 2019). Diffusiophoresis is an
electrokinetic phenomenon, comprising a chemiphoretic component due to the osmotic
pressure gradient developed along the colloid surface, and an electrophoretic component
due to the junction potential generated by the diffusion of ions with different diffusivities.
Prieve et al. (1984) derived the drift velocity of a diffusiophoretic colloid, u = M∇ log S,
which was confirmed experimentally (Staffeld & Quinn 1989; Abecassis et al. 2008;
Palacci et al. 2010, 2012; Kar et al. 2015; Banerjee et al. 2016; Shi et al. 2016; Shin et al.
2016; Ault et al. 2017; Shin et al. 2017; Ault, Shin & Stone 2018). The diffusiophoretic
velocity relates to the gradient of the logarithm of the solute concentration S via the
diffusiophoretic mobility M, which has been termed a ‘log-sensing’ response (Palacci
et al. 2012). The mobility encompasses information about the colloid and the solute,
including the colloid surface potential and ionic diffusivities. A positive and a negative
M correspond to the colloids driven up and down the solute gradient, respectively. Since
the solute concentration in a system is often inhomogeneous, diffusiophoresis plays a role
in numerous natural phenomena and applications such as mineral replacement reactions,
drug delivery and enhanced oil recovery (Velegol et al. 2016; Marbach & Bocquet 2019).

While diffusiophoresis is a physico-chemical phenomenon, perhaps surprisingly it
shares the same log-sensing relation with a biological phenomenon: chemotaxis (Keller
& Segel 1971; Brown & Berg 1974; Kalinin et al. 2009; Marbach & Bocquet 2019).
Chemotaxis refers to microorganisms utilizing their transmembrane chemoreceptors to
detect the surrounding solute gradient, along which they perform deterministic motion
(Engelmann 1881; Adler 1966; Brown & Berg 1974; Parkinson & Kofoid 1992; Eisenbach
et al. 2004; Wadhams & Armitage 2004). A widely studied example is Escherichia coli.
In an inhomogeneous solute field, the bacteria sense the solute gradient in a temporal
fashion and use that information to modulate the probability of their run-and-tumble
events. Runs are extended in favourable directions, resulting in a net movement of the
bacteria up/down the gradient of the solute (attractant/repellent) (Brown & Berg 1974; Wu
et al. 2006). Chemotaxis is central to phenomena such as biofilm formation (Eisenbach
et al. 2004) and has been utilized in bioremediation including aquifer restoration (Ford
& Harvey 2007; Adadevoh et al. 2017). In chemotactic log-sensing, M is the chemotactic
sensitivity. Velocity relations other than log-sensing have been proposed to capture various
hallmarks of chemotaxis in more general regimes (Lapidus & Schiller 1976; Segel 1977;
Rivero et al. 1989; Tindall et al. 2008; Menolascina et al. 2017; Salek et al. 2019). Recent
studies also suggest that diffusiophoresis could contribute to the movement of living
colloidal species in addition to chemotaxis (Marbach & Bocquet 2019; Sear 2019).

To model the spatio-temporal evolution of a population of chemotactic/diffusiophoretic
colloidal species (which we will refer to as ‘colloids’ in the rest of this article, for brevity),
one must solve the coupled solute and colloid advection–diffusion–reaction equations
(Lapidus & Schiller 1976; Rivero-Hudec & Lauffenburger 1986; Staffeld & Quinn 1989;
Ford & Cummings 1992; Marx & Aitken 2000; Abecassis et al. 2008; Tindall et al.
2008; Palacci et al. 2010, 2012; Kar et al. 2015; Banerjee et al. 2016; Shi et al. 2016;
Shin et al. 2016; Ault et al. 2017, 2018; Shin et al. 2017; Raynal et al. 2018; Raynal &
Volk 2019; Shim, Stone & Ford 2019; Chu et al. 2020a). The evolving solute gradient
induces a chemical-driven chemotactic/diffusiophoretic drift velocity which contributes
to the advective flux of the colloids, in addition to that due to any imposed hydrodynamic
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Figure 1. Illustration of Taylor hydrodynamic dispersion.

flow, v, such as blood flows in diffusiophoretic colloidal drug delivery and interstitial
fluid flows in chemotactic bioremediation of aquifers. Reactions of colloids refer to an
increase (source) or decrease (sink) in the total amount of the colloids, e.g. death of
bacteria (Servais, Billen & Rego 1985; Golding et al. 1998; Tindall et al. 2008). In general,
chemotactic/diffusiophoretic colloid transport occurs in two or higher spatial dimensions,
for example, in a microchannel. Predicting the transport via direct numerical simulations
is costly especially at long times, since the shortest time scale where the transport occurs
has to be resolved. For instance, for chemotaxis/diffusiophoresis in a hydrodynamic flow
in a long thin channel of radius R, where the colloid diffusivity Dc is typically smaller
or comparable to the solute diffusivity Ds (Ford & Lauffenburger 1991; Lewus & Ford
2001; Tindall et al. 2008; Cussler 2009; Shin et al. 2016; Shim et al. 2019), the shortest
transport time scale is the solute radial diffusion time R2/Ds. This is much smaller than
the solute(colloid) convective time L/v̄ along the length of the channel L (v is the axial
component of v and overbar denotes a cross-sectional average). Nevertheless, one can
leverage this separation of time scales to construct asymptotic schemes to predict the solute
and colloid transport.

To illustrate the idea, let us first focus on the solute transport in the absence of
colloids, as shown in figure 1. The hydrodynamic flow induces concentration gradients
of the solute in the radial direction for times shorter than R2/Ds. However, diffusion
acts to smooth these gradients. At times longer than R2/Ds, where the solute has
fully sampled the velocity variations across the cross-section of the channel, its
concentration no longer varies in the radial direction: only axial gradients persist.
Hence, the transport becomes one-dimensional. Taylor (1953) originally made this
brilliant physical observation and subsequently proposed and experimentally verified
that the two-dimensional transport equation for the solute concentration can be reduced
to a one-dimensional ‘macrotransport’ equation for the cross-sectional averaged solute
concentration. Specifically, the averaged concentration field translates with the mean speed
of the hydrodynamic flow and undergoes an enhanced axial diffusion, or Taylor dispersion
(Aris 1956; Brenner & Edwards 1993), due to the coupling between axial convection and
radial diffusion.

In this work, we follow Taylor’s approach (Taylor 1953) to derive a macrotransport
equation for a chemotactic/diffusiophoretic colloidal species under hydrodynamic flows
and transient solute gradients. A key idea is that, because radial solute gradients
are homogenized at long times, chemical-driven chemotactic/diffusiophoretic fluxes
in the radial direction can be ignored in the colloid macrotransport. Axial solute
gradients and thus chemical-driven fluxes in the axial direction may still be present,
however, and they are captured in the colloid macrotransport. The rest of this article
is outlined as follows. In § 2, we formulate the problem by deriving a macrotransport
(averaged) equation for the two-dimensional, advection–diffusion–reaction transport of
a chemotactic/diffusiophoretic colloidal species in a uniform, circular channel. We
define three flow regimes, from weak to strong hydrodynamic flow strength, where the
macrotransport equation is applicable. In § 3, we verify the macrotransport equation by
comparing its predicted colloid transport with that from direct numerical simulation of the
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two-dimensional equation. Comparisons are conducted for all three aforementioned flow
regimes as well as for a non-unity colloid-to-solute diffusivity ratio, suitable for modelling
chemotaxis and diffusiophoresis. The implementation of the macrotransport equation to
a non-circular channel and non-log-sensing models of chemical-driven transport is also
elucidated. In § 4, we summarize this study and offer ideas for future work.

2. Diffusiophoretic/chemotactic macrotransport model

2.1. Mathematical formulation
We consider diffusiophoresis/chemotaxis of a colloidal species due to a surrounding solute
gradient in an incompressible, unidirectional hydrodynamic flow v inside a uniform,
circular channel of radius R (figure 2). The channel wall is impenetrable to the solute and
the colloid. The steady hydrodynamic flow v(r) is directed along the axial direction z and
may vary in the radial direction r. The colloid C(r, z, t) and solute S(r, z, t) concentration
fields are symmetrically distributed about the channel centreline, and may vary in the
radial and axial directions, and in time t. For C � S, which is common for colloidal or
bacterial suspensions containing molecular solutes, the influence of the evolution of C on
S is negligible (Lapidus & Schiller 1976; Rivero-Hudec & Lauffenburger 1986; Staffeld &
Quinn 1989; Ford & Cummings 1992; Marx & Aitken 2000; Abecassis et al. 2008; Tindall
et al. 2008; Palacci et al. 2010, 2012; Kar et al. 2015; Banerjee et al. 2016; Shi et al. 2016;
Shin et al. 2016; Ault et al. 2017, 2018; Peraud et al. 2017; Shin et al. 2017; Balu & Khair
2018; Raynal et al. 2018; Raynal & Volk 2019; Shim et al. 2019; Chu et al. 2020a). The
advection–diffusion transport of the solute is governed by

∂S
∂t

+ v
∂S
∂z

= Ds

r
∂

∂r

(
r
∂S
∂r

)
+ Ds

∂2S
∂z2 , (2.1)

where Ds is the constant, intrinsic solute diffusivity. The hydrodynamic flow causes solute
concentration gradients in the radial direction for t < R2/Ds. However, diffusion acts to
smooth these gradients. Following Taylor’s and Aris’ (Aris 1956) analyses, subsequent
studies (Bailey & Gogarty 1962; Gill & Sankarasubramanian 1970; Ng & Rudraiah 2008)
showed that, at times larger than the solute radial diffusive time t ≥ R2/Ds, variations in
the solute concentration across the channel cross-section have been smeared out, and the
macrotransport equation for the cross-sectional averaged solute concentration, S̄(z, t), is

∂ S̄
∂t

+ v̄
∂ S̄
∂z

=
(

Ds + v̄2R2

48Ds

)
∂2S̄
∂z2 for t ≥ R2/Ds, (2.2)

where the cross-sectional average is ¯(·) = ∫ 2π

0

∫ R
0 (·)r dr dθ/πR2 with θ being the azimuth,

and the second term in the bracket is an enhanced axial diffusion, or Taylor dispersion
(Taylor 1953; Aris 1956; Brenner & Edwards 1993), owing to the coupling between axial
convection and radial diffusion.

The evolving solute gradient induces a chemical-driven flow u(S) of the
diffusiophoretic/chemotactic colloids. The solute gradient also induces a slip flow adjacent
to the channel walls, known as diffusioosmosis. However, the effect of diffusioosmosis on
the solute and colloid transport is negligible to the leading order of the aspect ratio of
the channel (Ault et al. 2018) and thus it is ignored in the present study. As discussed
in § 1, an important feature in common between diffusiophoresis and chemotaxis is
the log-sensing chemical flow response, u = M∇ log S. Note, however, that the present
derivation is not limited to any particular form of the chemical flow, and thus we keep the
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r
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v u

Colloid
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Figure 2. A diffusiophoretic/chemotactic colloidal species in a solute gradient inside a uniform, circular
channel of radius R under an incompressible, unidirectional hydrodynamic flow v. The solute gradient induces
a chemical-driven flow u of the colloids via diffusiophoresis/chemotaxis, where the colloids can be attracted
(as shown) or repelled.

general notation u. In contrast to the hydrodynamic flow v, the chemical flow is usually
compressible (∇ · u /= 0) due to the spatio-temporal variation of the solute concentration.
Under the chemical and hydrodynamic flow, the advection–diffusion–reaction equation for
the diffusiophoretic/chemotactic colloids is

∂C
∂t

+ v
∂C
∂z

+ 1
r

∂(rurC)

∂r
+ ∂(uzC)

∂z
= Dc

r
∂

∂r

(
r
∂C
∂r

)
+ Dc

∂2C
∂z2 − Γ C, (2.3)

where ur(r, z, t) and uz(r, z, t) are the radial and axial components of the chemical flow,
respectively. In diffusiophoresis, Dc is the constant, intrinsic diffusivity of the colloid
(Staffeld & Quinn 1989; Abecassis et al. 2008; Palacci et al. 2010, 2012; Kar et al. 2015;
Banerjee et al. 2016; Shi et al. 2016; Shin et al. 2016; Ault et al. 2017, 2018; Shin et al.
2017; Raynal et al. 2018; Raynal & Volk 2019; Chu et al. 2020a). In chemotaxis, Dc is
the random motility of the microorganism. Since a run of a bacterium typically last for
approximately a second before being interrupted by a rapid [(0.1) s] tumble and subsequent
change its direction (Brown & Berg 1974; Ford & Lauffenburger 1991; Wu et al. 2006),
microorganism motility is random and can be interpreted as a diffusivity on times longer
than the runtime, which is of the order of seconds. Note that such an interpretation is valid
for the macrotransport equation which applies for t ≥ R2/Dc. For instance, in a typical
microfluidic setting for bacteria where R = 10−4 m and Dc = 10−9 m2 s−1, R2/Dc = 10 s
is longer than the correlation time of the bacteria run-and-tumble motion. On a different
note, Dc may generally depend on the solute concentration and gradient. It is taken as a
constant here as in many prior studies (see a comprehensive review by Tindall et al. 2008)
and was justified for a shallow spatial and temporal gradient (Ford & Lauffenburger 1991).
Regarding the reaction term Γ C, in chemotaxis it represents the death of microorganisms
due to biological cycles or toxic environments (Servais et al. 1985; Golding et al. 1998;
Tindall et al. 2008). The decay rate Γ is taken as a constant here.

Our goal is to derive an averaged, or macrotransport, equation from (2.3), suitable for
probing the cross-sectionally averaged colloid concentration at long times, t ≥ R2/Dc.
For typical diffusiophoresis/chemotaxis systems where Dc/Ds ≤ 1 (Ford & Lauffenburger
1991; Lewus & Ford 2001; Tindall et al. 2008; Cussler 2009; Shin et al. 2016; Shim et al.
2019), the long-time condition for the solute is automatically satisfied so long as that for
the colloid is met. Recall that for t ≥ R2/Ds radial solute gradients have been homogenized
by the hydrodynamic flow. This justifies dropping the radial chemical flow ur in (2.3) and
the axial chemical flow uz varies only in z. We further write the colloid concentration and
the hydrodynamic flow in terms of their cross-sectional averages (overbar) and variations,
or fluctuations, therefrom (prime): C(r, z, t) = C̄(z, t) + C′(r, z, t) and v(r) = v̄ + v′(r).
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Equation (2.3) becomes

∂(C̄ + C′)
∂t

+ (v̄ + v′)
∂(C̄ + C′)

∂z
+ ∂(ūzC̄)

∂z
= Dc

r
∂

∂r

(
r
∂C′

∂r

)

+ Dc
∂2(C̄ + C′)

∂z2 − Γ (C̄ + C′). (2.4)

The cross-sectional average of (2.4) is

∂C̄
∂t

+ v̄
∂C̄
∂z

+ v′ ∂C′

∂z
+ ∂(ūzC̄)

∂z
= Dc

∂2C̄
∂z2 − Γ C̄. (2.5)

To solve for C′, we subtract (2.5) from (2.4) and invoke two assumptions following Taylor’s
classical analysis (Taylor 1953; Aris 1956; Brenner & Edwards 1993): namely, (i) C′ � C̄,
and (ii) the contribution to the colloid transport by the axial diffusion is small relative
to the radial diffusion at long times, t ≥ R2/Dc. The governing equation of C′ is thus
obtained as

v′ ∂C̄
∂z

= Dc

r
∂

∂r

(
r
∂C′

∂r

)
− Γ C′. (2.6)

Valdes-Parada et al. (2009) presented a similar equation to (2.6) in the development
of a macrotransport theory for non-decaying (Γ = 0) chemotactic bacteria. In their
equation, there is an additional term associated with ‘chemotactic dispersion’, that is,
the enhancement or reduction of the axial diffusion of colloids due to the radial solute
gradient. However, above, we have justified that such an effect can be ignored for t ≥
R2/Ds.

Subramanian & Gill (1974), who studied the dispersion of a decaying species in the
absence of chemical flows, pointed out that (2.6) should not be used to determine the
dispersion due to species decay, as was erroneously done by others (Gupta & Gupta 1972;
Vidyanidhi & Murty 1976). They conducted a separate analysis, showing exactly that the
effect of species decay only manifests in the Γ C̄ term in (2.5) without any additional
dispersion. In other words, Γ C′ can be dropped from (2.6). The resulting equation can
be integrated twice to obtain an expression for C′ which, upon multiplying with v′ and
averaging the product, gives

v′C′ = −Dc,Dis
∂C̄
∂z

, (2.7)

where the dispersivity of the colloid is defined as

Dc,Dis = − 2
R2

∫ R

0

[
v′

Dc

∫ r

0

1
r1

(∫ R

r1

v′(r2)r2 dr2

)
dr1

]
r dr, (2.8)

in which r1 and r2 are dummy variables. The dispersivity Dc,Dis can be determined for a
given hydrodynamic flow v. In the present case for a steady, pressure-driven laminar flow
in a uniform circular tube, we recover Taylor’s result Dc,Dis = v̄2R2/48Dc (Taylor 1953)
for v(r) = −ΔPR2(1 − r2/R2)/4η, v̄ = −ΔPR2/8η, v′(r) = −ΔPR2(1/2 − r2/R2)/4η,
where ΔP is the applied pressure gradient and η is the solvent viscosity. On recognizing
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that ∂(v′C′)/∂z = v′∂C′/∂z, (2.7) gives

v′ ∂C′

∂z
= −Dc,Dis

∂2C̄
∂z2 . (2.9)

Upon substituting (2.9) into (2.5), finally we obtain

∂C̄
∂t

+ v̄
∂C̄
∂z

+ ∂(ūzC̄)

∂z
=

(
Dc + v̄2R2

48Dc

)
∂2C̄
∂z2 − Γ C̄ for t ≥ R2/Dc. (2.10)

Equation (2.10) is a key result of this work: it represents a macrotransport equation for
a diffusiophoretic/chemotactic colloidal species under a hydrodynamic flow and evolving
solute gradient. Hydrodynamic flow contributes to dispersion via the dispersivity Dc,Dis,
the second term in the bracket on the right-hand side of (2.10). We reiterate that by
dispersion we mean the enhanced axial diffusion due to the coupling of axial convection
and radial diffusion. Thus, chemical flow does not cause dispersion at long times but
it does contribute to colloid advection and spreading, i.e. macrotransport, via the term
∂(ūzC̄)/∂z. This term is in turn influenced by the action of the hydrodynamic flow on the
solute gradient.

Equation (2.10) reduces to classical macrotransport equations in limiting cases. For
instance, when there is no solute gradient, ∂(ūzC̄)/∂z vanishes and (2.10) recovers the
result of Subramanian & Gill (1974), where colloid diffusion is solely governed by the sum
of the colloid intrinsic diffusivity/motility and hydrodynamic dispersion. Further, when
there is no solute gradient and the colloid is non-decaying, ∂(ūzC̄)/∂z and Γ C̄ vanish, and
(2.10) recovers Taylor’s and Aris’ classical result (Taylor 1953; Aris 1956). Equation (2.10)
is valid formally for t ≥ R2/Dc (Bailey & Gogarty 1962; Gill & Sankarasubramanian
1970; Ng & Rudraiah 2008). Thus, for most diffusiophoresis/chemotaxis systems where
Dc/Ds ≤ 1 (Ford & Lauffenburger 1991; Lewus & Ford 2001; Tindall et al. 2008;
Cussler 2009; Shin et al. 2016; Shim et al. 2019), (2.10) is applicable for t ≥ R2/Dc ≥
R2/Ds, whereas for cases where Dc/Ds ≥ 1, (2.10) is applicable for t ≥ R2/Ds ≥ R2/Dc.
A typical value of R2/Dc = 10s for chemotaxis is noted in the previous paragraph; for
diffusiophoresis, R = 10−5m and Dc ≤ 10−11m2s−1, R2/Dc ≥ 10s is the regime of major
interest in common diffusiophoretic systems (Shin et al. 2016). We remark that (2.10) is
general to any initial distributions of the solute and the colloid, such as a Gaussian or a
spike. In § 3.5, we will discuss the generalization of (2.10) to other models of the chemical
flow and channels of arbitrary but uniform cross-sections.

2.2. Hydrodynamic flow regimes of macrotransport
Probstein (2003) characterized three different hydrodynamic flow regimes of the
original Taylor–Aris solute macrotransport equation. To prepare for testing the present
macrotransport theory in these regimes in the next section, below we recapitulate
Probstein’s analysis and extend it to the present colloidal species macrotransport.

To facilitate the discussion, the original Taylor–Aris solute macrotransport (2.2) is
normalized using the following scales,

t̂ = t
R2/Ds

, r̂ = r
R

, ẑ = z
L

, ûz = uz

v̄
, ûr = ur

v̄

L
R

,

Γ̂ = Γ

Ds/R2 , Ĉ = C
C0

, Ŝ = S
S0

, ε = R
L

, Pe = v̄R
Ds

,

⎫⎪⎪⎬
⎪⎪⎭

(2.11)

where L and ε < 1 is the length and aspect ratio of the channel, respectively; C0 and S0
are the characteristic colloid and solute concentration; and Pe is the Péclet number which
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describes the relative importance of hydrodynamic convection of solute to solute intrinsic
diffusivity. The normalized solute macrotransport equation reads

∂ ˆ̄S
∂ t̂

+ εPe
∂ ˆ̄S
∂ ẑ

=
(

ε2 + ε2 Pe2

48

)
∂2 ˆ̄S
∂ ẑ2 . (2.12)

The first regime defined by Probstein is the Taylor regime, where convection dominates
dispersion (εPe � ε2Pe2/48) and dispersion dominates intrinsic diffusion (ε2Pe2/48 �
ε2). This sets the range of Pe as 48/ε � Pe � √

48. The second one is the convective axial
diffusion regime, the opposite limit to the Taylor regime, where convection dominates
intrinsic diffusion (εPe � ε2) and the latter dominates dispersion (ε2 � ε2Pe2/48).
This gives 48/ε � Pe � √

48. In between the Taylor and the convective axial diffusion
regimes is the Taylor–Aris regime where convection dominates dispersion (εPe �
ε2Pe2/48) while dispersion is comparable to intrinsic diffusion (ε2Pe2/48 ∼ ε2). This
gives Pe as 48/ε � Pe and Pe should be between Pe � √

48 and Pe � √
48. For example,

ε = 5 × 10−4 and Pe = 10 would satisfy these conditions for the Taylor–Aris regime.
Here, we extend Probstein’s analysis to the present colloid macrotransport (2.10). The

normalized colloid macrotransport equation reads,

∂ ˆ̄C
∂ t̂

+ εPe
∂ ˆ̄C
∂ ẑ

+ εPe
∂( ˆ̄uz

ˆ̄C)

∂ ẑ
=

(
ε2 Dc

Ds
+ ε2 Ds

Dc

Pe2

48

)
∂2 ˆ̄C
∂ ẑ2 − Γ̂ ˆ̄C. (2.13)

The range of Pe for each regime is obtained as follows. Convective axial diffusion regime:
(48/ε)(Dc/Ds) � Pe � (Dc/Ds)

√
48; Taylor–Aris regime: (48/ε)(Dc/Ds) � Pe for Pe

between Pe � (Dc/Ds)
√

48 and Pe � (Dc/Ds)
√

48; Taylor regime: (48/ε)(Dc/Ds) �
Pe � (Dc/Ds)

√
48. Since the colloid macrotransport requires coupling to the solute

macrotransport, their conditions for Pe have to be considered together. Focusing on
Dc/Ds ≤ 1, this sets the following conditions for the present macrotransport framework:

Convective axial diffusion :
48
ε

Dc

Ds
� Pe � Dc

Ds

√
48,

Taylor-Aris :
48
ε

Dc

Ds
� Pe, between Pe �

√
48 and Pe � Dc

Ds

√
48,

Taylor :
48
ε

Dc

Ds
� Pe �

√
48.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

The convective axial diffusion, Taylor–Aris and Taylor regime can be interpreted
as weak, intermediate and strong hydrodynamic flow regimes, respectively. In the
next section, we compare the colloid transport in these regimes predicted from the
macrotransport equations ((2.2) and (2.10)) with that from direct numerical simulation
of the two-dimensional transport equations ((2.1) and (2.3)).

3. Results and discussion

In this section, we test the present macrotransport theory ((2.2) and (2.10)) by comparing
its prediction with that from direct numerical simulation of the two-dimensional transport
equations ((2.1) and (2.3)). We solve the macrotransport and the two-dimensional
equations using the ‘Coefficient Form PDE’ and the time-dependent, implicit ‘backward
differentiation formula (BDF) solver’ in COMSOL. The equations are discretized with free
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triangular (for two-dimensional equations) and uniform (for macrotransport equations)
elements with a maximum size 5 × 10−3L. Adaptive time stepping is selected to
capture the flow dynamics on the fast, radial diffusive time scale. Convergence of
solutions are acquired with a relative tolerance δ = 10−4 between successive solutions.
Zero-concentration boundary conditions are set at the channel inlet, z = 0, and outlet,
z = L, for both the solute and colloids. In all comparisons below, both solute and colloidal
species are sufficiently far away from the inlet and outlet over the course of their time
evolution, mimicking an infinitely long channel. Because of the different strengths of
hydrodynamic flow examined, different initial locations of the solute and colloid centroid
are used across §§ 3.1–3.4. The log-sensing relation is used to model the chemical flow.
A small background solute concentration Sb = 10−3max[S(t = 0)] is imposed to prevent
the unphysically large velocity as S → 0, that is we write u = M∇ log(S + Sb). We have
tested that, as long as the same Sb is used between the macrotransport theory and the
direct numerical simulation of the two-dimensional transport equations, it does not alter
the excellent agreements between the two sets of results that we will show in §§ 3.1–3.4.
We focus our analyses on a non-decaying colloidal species, Γ = 0; readers are referred
to e.g. Subramanian & Gill (1974); Shapiro & Brenner (1986) for detailed discussions
of the dispersion of decaying colloids. The averaged solute and colloid concentrations
from the two-dimensional equations are obtained from cross-sectionally averaging the
(two-dimensional) concentration fields upon solving the equations. In §§ 3.1–3.3, we
consider Dc/Ds = 1, which is typical for chemotaxis (Ford & Lauffenburger 1991; Lewus
& Ford 2001; Tindall et al. 2008; Shim et al. 2019). In § 3.4, we consider Dc/Ds < 1,
which is general to probe diffusiophoresis (Cussler 2009; Shin et al. 2016). In § 3.5, we
discuss the generality of the macrotransport theory to non-log-sensing chemical flows and
non-circular channels.

3.1. Convective axial diffusion regime: weak hydrodynamic flow
By observing (2.14), for Dc/Ds = 1 we choose ε = 5 × 10−3 and Pe = 1 to compute
the solute and colloidal species transport in the convective axial diffusion regime.
Figure 3 shows the time evolution of the normalized averaged solute and colloid
concentration profiles. Dotted lines correspond to results obtained from the macrotransport
theory, whereas solid lines are from the two-dimensional transport equations. The
initial conditions are the same between two sets of results, namely S/(Qs/L)|t̂=0 =
exp[−(ẑ/f̂ − ẑs/f̂ )2]/(f̂

√
π) and C/(Qc/L)|t̂=0 = exp[−(ẑ/ĝ − ẑc/ĝ)2]/(ĝ

√
π), where

Qs and Qc are the solute and colloid mass per unit cross-sectional area of the
channel, respectively (arbitrary here); f̂ = f /L = 0.05 and ĝ = g/L = 0.025 control
the initial width of the solute and colloid distribution, respectively; and ẑs = zs/L =
0.2 and ẑc = zc/L = 0.1 are the initial location of the solute and colloid centroid,
respectively. Since the colloid evolution depends on the solute dynamics, let us
first examine figure 3(a). At times longer than the solute radial diffusive time,
there is an excellent agreement in the predictions between the macrotransport and
the two-dimensional equations. The agreement is supported and quantified by the
small difference in the centroid Δμs (and variance Δσ 2

s ) between the two sets
of results, where Δμs ≡ |(∫ 1

0 zS̄ dz/
∫ 1

0 S̄ dz)macro − (
∫ 1

0 zS̄ dz/
∫ 1

0 S̄ dz)2D| and Δσ 2
s ≡

|(∫ 1
0 z2S̄ dz/

∫ 1
0 S̄ dz) − μ2

s )macro − (
∫ 1

0 z2S̄ dz/
∫ 1

0 S̄ dz) − μ2
s )2D| (Aris 1956; Chu et al.

2020a). The difference in the centroid of the colloid distribution Δμc (and variance
Δσ 2

c ) between the macrotransport and two-dimensional equations, which will be used in
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Figure 3. Time evolution of the normalized averaged (a) solute S̄/(Qs/L) and (b,c) colloidal species C̄/(Qc/L)

concentration profiles for Dc/Ds = 1, ε = 5 × 10−3 and Pe = 1. In (b), M/Ds = 5; in (c), M/Ds = 25. Dotted
lines: macrotransport theory, (2.2) and (2.10); solid lines: two-dimensional transport equations, (2.1) and (2.3).

figure 3(b,c) and following figures, share a similar definition but with S̄ in the integrals
replaced by C̄.

As the solute distribution evolves in time, so does the solute concentration gradient.
This induces a chemical flow of the colloidal species. The evolutions of the colloid
concentration profile are shown in figure 3(b,c) for M/Ds = 5 and M/Ds = 25,
respectively. These values are typical for chemotaxis (Ford & Lauffenburger 1991; Tindall
et al. 2008) where a larger positive M/Ds represents a stronger attraction between the
solute and the colloid. Such a large M/Ds is rare in diffusiophoresis but is potentially
attainable in some physico-chemical systems, such as near a liquid–liquid demixing
critical point (Sear & Warren 2017; Ault et al. 2018; Chu et al. 2020a). Let us first
inspect figure 3(b). We see an excellent agreement between the two sets of results [an
equally good agreement is also obtained for t/(R2/Ds) = 1 but it is not shown here
for clarity]. Specifically, by comparing figure 3(a,b), colloids are attracted towards the
solute. Initially, the separation distance between the solute and colloid centroids is 0.1.
After 50 radial diffusive times, the two centroids coincide. Thus, chemical flow causes
a significant colloid movement when hydrodynamic flow is weak and the macrotransport
theory captures this attraction response. In fact, a scaling criterion can be obtained from
the normalized colloid macrotransport (2.10), which determines when chemical flow is
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Figure 4. Normalized concentration profiles of the solute Ŝ = S/(Qs/L) and colloidal species Ĉ = C/(Qc/L)

obtained from two-dimensional transport equations, (2.1) and (2.3). Parameters for computation are the same
as figure 3(a,b).

comparable to the hydrodynamic flow,

εPe ≈ ε2 M
Ds

1

f̂
. (3.1)

The factor 1/f̂ arises from the axial length of the solute gradient although the strength of
a log-sensing chemical flow is independent of the solute concentration by recognizing that
∂(log S)/∂z = (∂S/∂z)/S. In this case, the strength of the chemical flow, the right-hand
side of (3.1), is comparable to the hydrodynamic flow, the left-hand side of the equation.

Figure 4 shows the (two-dimensional) normalized concentration profiles of the
solute and colloidal species obtained from the two-dimensional transport equations for
figure 3(a,b). Since the concentration profiles are axisymmetric about the centreline
of the channel, only half of the profile is shown in each contour plot with the top
face of the plot corresponding to the centreline of the channel. Hydrodynamic flow
is from left to right. In figure 4, from t̂ = t/(R2/Ds) = 0 to t̂ = 10, the initial solute
and colloid distributions are deformed and they follow the parabolic hydrodynamic flow
profile. The parabolic profile is more obvious in the colloidal species due to its narrower
initial distribution. At t̂ = 10, there is a slight radial non-uniformity in C. This is a
consequence of the hydrodynamic flow and the non-uniform solute attraction owing to
the axially varying solute concentration gradient. Note how the colloid profile spans over
different concentration (colour) gradients of the solute distribution. However, the effect of
such a slight non-uniformity is insignificant to the macrotransport description, since the
predictions of the macrotransport and the two-dimensional equation agree well (figure 3b).
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Figure 5. Time evolution of the normalized averaged (a) solute S̄/(Qs/L) and (b-c) colloidal species C̄/(Qc/L)

concentration profiles for Dc/Ds = 1, ε = 5 × 10−3, and Pe = 1. In (b), M/Ds = 0; in (c), M/Ds = −1. Dotted
lines: macrotransport theory, (2.2) and (2.10); solid lines: two-dimensional transport equations, (2.1) and (2.3).

Meanwhile, the colloids are attracted towards the solute with time. As noted in the previous
paragraph, the centroids of the solute and the colloid coincide at t̂ = 50.

Next, let us look at figure 3(c), where M/Ds = 25 and it shares the same solute
evolution figure 3(a) with figure 3(b). In this case, the colloids are attracted towards
the solute much faster compared to figure 3(b), as expected. Contraction of the colloid
profile is also more prominent. The macrotransport and the two-dimensional equations
are in good agreement. The slight deviation between the two sets of prediction is due to
numerical artifacts of mass ‘leakage’ – a consequence of the propagation of discretization
errors in solving the convection-dominated transport equation, which is numerically
unstable (Ferziger & Peric 2002). These discretization errors are physically irrelevant
and increase with the dimension of the system. This highlights the advantage of using
the (one-dimensional) macrotransport equation as opposed to direct numerical simulation.
Further, the computational runtime for the macrotransport equation is at least O(103) times
shorter than the two-dimensional equation.

The macrotransport equation also captures repelling chemical-driven transport, i.e.
M < 0, as shown in figure 5. The solute and colloid initial conditions are the same as
before, except that ẑc = 0.3. On comparing figure 5(b,c), the translation of the colloid
downstream with chemical-driven repulsion (figure 5c) is more significant than that
without chemical flow figure 5(b). In figure 5(c), the asymmetry of the colloid distribution
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is due to the fact that, for a Gaussian solute distribution, the log-sensing chemical flow is
linearly proportional to the distance from the peak of the solute distribution (Chu et al.
2020a). Thus, in log-sensing chemotaxis/diffusiophoresis, a Gaussian solute distribution
induces a spatially non-uniform velocity to the colloid distribution and thus gives rise
to an asymmetric distribution. The asymmetry in colloid distribution is not apparent
in the attractant case (figure 3) because the colloid distribution is contracted and the
non-uniformity in chemical flow is present over a narrow profile only. In contrast, the
asymmetric in colloid distribution is more prominent in the repellent case (figure 5c)
because the colloid distribution is broadened and there is a large non-uniformity of
chemical flow velocity over the wide profile.

Beyond the above validation, we remark that the convective axial diffusion regime
is a quasi-one-dimensional regime of macrotransport that we had implicitly assumed
in our previous study of spreading of diffusiophoretic colloids due to transient solute
gradients (Chu et al. 2020a). Specifically, the colloids translate with the mean speed of
the hydrodynamic flow. Colloid spreading, or macrotransport, is solely governed by the
chemical flow and the intrinsic colloid diffusion, while spreading enhancement due to
hydrodynamic dispersion is negligible. In other words, our previous study has to observe
the rather tight constraint on Pe set by (2.14) for the convective axial diffusion regime.
Otherwise, for larger Pe, the hydrodynamic dispersivity becomes comparable to or larger
than the intrinsic diffusivity. Then, ignoring dispersivity would yield significant errors,
particularly in the variance of the colloid profile.

3.2. Taylor–Aris regime: intermediately strong hydrodynamic flow
In this section, we analyse the performance of the macrotransport theory ((2.2) and
(2.10)) in capturing the two-dimensional transport ((2.1) and (2.3)) in the Taylor–Aris
regime, where the solute/colloid intrinsic diffusivity is comparable to the corresponding
hydrodynamic dispersivity. By observing (2.14), we choose ε = 5 × 10−4 and Pe = 10.
The solute and colloid initial conditions are the same as figure 3. As shown in figure 6, the
agreements between the two sets of results are excellent. Distinct from the comparisons
in § 3.1, here the separation between the solute and colloid centroids remain the same
over time. This can be understood by referring to the scaling criterion (3.1), where in
this case the chemical flow is much weaker than the hydrodynamic flow. Thus, reduction
in the separation between the solute and the colloid centroids, which is proportional to
the strength of the chemical flow, is negligible compared to the translation due to the
hydrodynamic flow.

3.3. Taylor regime: strong hydrodynamic flow
In this section, we check the performance of the macrotransport theory in the Taylor
regime, where the solute/colloid hydrodynamic dispersivity dominates the corresponding
intrinsic diffusivity. From (2.14), we choose ε = 5 × 10−5 and Pe = 100. The solute and
colloid initial conditions are the same as figure 3. Figure 7 shows that the predictions of the
macrotransport theory agree well with those by the two-dimensional transport equations.
As in the Taylor–Aris regime, here the separation between the solute and colloid centroids
remain the same over time, since the hydrodynamic flow dominates the chemical flow.
In particular, the colloid evolution is essentially identical for M/Ds = 0 and M/Ds = 1.
The implication of this observation is that under a strong hydrodynamic flow the solute
and colloid equations could be treated as if they were uncoupled. Thus, even though the
colloids are chemotactic, their transport due to the solute gradient is negligible.
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Figure 6. Time evolution of the normalized averaged (a) solute S̄/(Qs/L) and (b) colloidal species C̄/(Qc/L)

concentration profiles for Dc/Ds = 1, ε = 5 × 10−4, Pe = 10 and M/Ds = 1. Dotted lines: macrotransport
theory, (2.2) and (2.10); solid lines: two-dimensional transport equations, (2.1) and (2.3).
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Figure 7. Time evolution of the normalized averaged (a) solute S̄/(Qs/L) and (b-c) colloidal species C̄/(Qc/L)

concentration profiles for Dc/Ds = 1, ε = 5 × 10−5 and Pe = 100. In (b), M/Ds = 0; in (c), M/Ds = 1. Dotted
lines: macrotransport theory, (2.2) and (2.10); solid lines: two-dimensional transport equations, (2.1) and (2.3).
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Figure 8. Time evolution of the normalized averaged (a) solute S̄/(Qs/L) and (b) colloidal species C̄/(Qc/L)

concentration profiles for Dc/Ds = 0.1, ε = 5 × 10−3, Pe = 0.1 and M/Ds = 1. Dotted lines: macrotransport
theory, (2.2) and (2.10); solid lines: two-dimensional transport equations, (2.1) and (2.3).

3.4. Systems with non-unity diffusivity ratio Dc/Ds

In this section, we test the applicability of the macrotransport theory to diffusiophoresis.
Distinct from chemotaxis, the ratio of the colloidal species to solute diffusivity in typical
diffusiophoresis settings is much smaller than unity, Dc/Ds ≤ O(10−2). As a result,
probing colloid transport at long times compared to the radial diffusion time scale (where
the macrotransport theory applies) demands computing the solute and colloid dynamics
for over hundreds of solute radial diffusive times, which is extremely costly. Worse still,
the discretization errors, which grow in time and are especially significant in solving
the two-dimensional equations, will contaminate the long-time solution and affect the
comparison as conducted in the previous sections.

Thus, to show that the macrotransport theory applies to diffusiophoresis and generally
for Dc/Ds /= 1, we perform the comparison for Dc/Ds = 0.1, as shown in figure 8. We
conduct the analysis in the convective axial diffusion regime, since we showed that in
this regime the effect of the chemical flow is comparable to the hydrodynamic flow. From
(2.14), we choose ε = 5 × 10−3 and Pe = 0.1. For typical diffusiophoresis, |M/Ds| ≤ 1
(Prieve et al. 1984; Shin et al. 2016) and we choose M/Ds = 1. The solute and colloid
initial conditions are the same as before, except that ẑs = 0.4 and ẑc = 0.3. As in the
comparisons in the previous sections, the predictions by the macrotransport equations
agree very well with those by the two-dimensional transport equations. Substantial
attraction of the colloids to the solute is also observed, as expected in the convective axial
diffusion regime.

3.5. Generality of macrotransport to other chemical flows and channel geometries
In this section, we show how the macrotransport theory can be generalized to channels
of other cross-sections and to incorporate non-log-sensing chemical flows. Recall that
the macrotransport theory ((2.2), (2.10) and (2.14)) is derived for a uniform circular
tube. However, the same macrotransport equations can be applied to channels of other
cross-sections by simply replacing the dispersion coefficient 48 by a different coefficient
for another channel geometry. For instance, one could easily repeat the averaging
procedure in § 2 for a pressure-driven flow in a parallel-plate channel and arrive at the
same macrotransport equation, with a dispersion coefficient 210 (Wooding 1960) and
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the channel radius R replaced by the channel height h. Dispersion coefficients for other
cross-sections have been derived, for example concentric/eccentric cylinders as a model
for cerebrospinal fluid flows within a spinal cavity (Sankarasubramanian & Gill 1971; Chu
et al. 2020b), non-ideal microchannels with bowing (Dutta, Ramachandran & Leighton
2006), and channels with slowly varying cross-sections or micropatterns (Bryden &
Brenner 1996; Chu et al. 2019).

The macrotransport theory is also general to incorporate arbitrary forms of chemical
flows. As shown in § 2.1, derivations of the macrotransport equation did not assume
any particular form of the chemical flow. While the log-sensing relation is standard
to model diffusiophoresis, this relation is just a first approximation to chemotaxis. For
example, it does not account for the shear-induced reorientation of chemotactic bacteria,
which has been shown to significantly impact bacterial concentration profiles (Rusconi,
Guasto & Stocker 2014; Bearon & Hazel 2015; Secchi et al. 2020). Chemotactic flow
models have been derived in this regard, e.g. (Bearon & Pedley 2000), and can be
incorporated in the macrotransport theory. Other chemotactic velocity relations have
been proposed. For instance, Lapidus & Schiller (1976) introduced the receptor-ligand
dissociation constant of the microorganism in their proposed velocity relation, which
gives a better agreement with the experiments by Dahlquist, Lovely & Koshland
(1972) and Mesibov, Ordal & Adler (1973). Rivero et al. (1989) proposed a velocity
relation for describing the population-level microorganism transport based on individual
microscopic variables, such as the single-cell swim speed, persistence time and temporal
receptor occupation. More recently, Menolascina et al. (2017) and Salek et al. (2019)
proposed a finite-range log-sensing model, which captures a hallmark of chemotaxis that
microorganism log-sensing occurs only above a threshold solute concentration. Thus, the
generality of the macrotransport theory to account for arbitrary forms of chemical flows
will enable analysis of more biologically realistic models of chemotaxis.

4. Conclusions

In this work, we have derived a macrotransport equation for predicting the long-time
chemotactic/diffusiophoretic colloidal species transport in a uniform circular tube in which
there is a transient solute gradient and the hydrodynamic flow is uniaxial and steady.
We have compared the predictions obtained from the macrotransport equation with that
from the original, two-dimensional transport equation. The comparisons are conducted in
three regimes where classical macrotransport theory applies: convective axial diffusion
(weak hydrodynamic flow); Taylor–Aris (intermediately strong hydrodynamic flow); and
Taylor (strong hydrodynamic flow) regime. In all three regimes, we have obtained excellent
agreements between the macrotransport and two-dimensional equations. Discretization
errors, which increase with the dimension of the problem, are mitigated in the
reduced-order macrotransport model and the computational runtime for solving the
macrotransport model is in general O(103) times shorter than numerical solution of
the two-dimensional advection–diffusion–reaction equation. We have identified that, in
the convective axial diffusion regime, hydrodynamic dispersion is negligible compared
to intrinsic diffusion. Thus, the evolution of the cross-sectionally averaged colloid
concentration can be described by the macrotransport equation where colloid spreading
is solely due to the chemical flow and the intrinsic colloid diffusion. In addition, we
have presented a scaling criterion for determining when a chemical flow would cause
significant colloid transport amid a hydrodynamic flow. We have also discussed how the
macrotransport equation can be generalized for channels of arbitrary cross-section as well
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as to incorporate other forms of chemical flows necessary for capturing recently revealed
hallmarks of chemotaxis.

For future work, the macrotransport theory can be employed to examine in more detail
the interplay between chemical and hydrodynamic flows on colloid transport. A few
relevant studies exist (Yan, Bouwer & Hilpert 2014; Yan & Hilpert 2014) although their
scopes are restricted due to the high computational cost associated with fully resolving the
two-/three-dimensional solute and colloid transport. The present theory can be leveraged
to efficiently explore the large parameter space involved in a system with hydrodynamic
and chemical flows, particularly comparing predictions with different velocity models
proposed for chemotaxis. For instance, in the macrotransport model an exact solution can
be obtained for deposition of a point source of colloid in a Gaussian distribution of solute,
which we will describe in detail in future work. This seemingly idealized example is in
fact applicable to examine the long-time colloid transport with arbitrary forms of initial
distribution, since any distribution asymptotes to a Gaussian at long times (Bender &
Orszag 1999; Chu et al. 2020a).
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