
Sex-limited expression of genetic or environmen-
tal factors occurs in two basic forms. First, the

effects of a factor may be larger on one sex than on
another, which is known as scalar sex limitation.
Second, some factors may have an effect on one
sex but not on the other, which is called nonscalar
sex limitation. In the classical twin study, scalar sex-
limited effects cause same-sex male and same-sex
female twin correlations to differ. Nonscalar sex-
limited effects would cause the correlations
between opposite-sex pairs of relatives to be lower
than would be expected from the correlations
between relatives of the same sex. One approach to
modeling such effects is to allow the genetic corre-
lation between opposite-sex dizygotic twins to be
less than one-half; another is to allow the common
environment correlation for opposite-sex pairs to be
less than unity. Extension of this approach to the
multivariate case is not straightforward. Direct
extension of the Cholesky decomposition such that
each Cholesky factor is allowed to correlate less
than one-half in opposite-sex pairs yields a model
where the order of the variables can change the
goodness-of-fit of the model. It is shown that similar
problems exist with a variety of multivariate and lon-
gitudinal models, and in a variety of models of
genotype � environment interaction. Several solu-
tions to these problems are described.

Sex limitation has long been a focus of quantitative
genetic studies in both animals and plants (Mather &
Jinks, 1977). It occurs when the effects of genetic or
environmental factors differ between males and females.
Two forms of sex limitation are generally considered.
First is scalar sex limitation, where the differences are
purely quantitative, in that the same factors affect both
sexes, but their impact on the phenotype is greater in
one sex than the other. Scalar sex limitation of genetic
factors alone will cause the covariances between biolog-
ical relatives to differ between females and males. In
terms of a statistical model, the regression coefficient
of the phenotype on the standardized (unit variance)
genotype for males, which we term am, would not
equal that for females, af . Under scalar sex limitation,

the genetic covariance between dizygotic (DZ) male
twin pairs is .5a2

m, between DZ female pairs it is .5a2
f ,

and between opposite-sex pairs it is predicted to be the
geometric mean of these quantities, .5af am. Second is
nonscalar sex limitation, which is qualitative, such that
there exist one or more factors that influence trait vari-
ation in one sex but not the other. Both scalar and
nonscalar sex limitation are a specific form of hetero-
geneity model; other forms subsume models of
genotype � environment interaction.

Models for sex limitation in outbred populations
such as humans have been available for decades (Eaves
et al., 1978), and practical methods for fitting such
models in the univariate case are well-known (Neale &
Cardon, 1992). Although extensions to the multivari-
ate case have been presented elsewhere (Maes et al.,
1999; Neale et al., 1994), these accounts are limited in
that they do not consider difficulties with the applica-
tion of the Cholesky decomposition to multivariate sex
limitation. The goals of this article are to identify the
cause of these problems, and to provide solutions that
circumvent them.

Univariate Models of Sex Limitation: 
The Twin Study

In the context of the classical twin study, it is possible
to estimate components of variance, such as additive
genetic (A), specific environment (E), and either domi-
nance (D) or common environment (C). These
estimates could be obtained for male–male and
female–female twin pairs and the results could be
‘eyeballed’ for differences. This simple approach has
at least three serious limitations (Neale & Cardon,
1992): it does not have a statistical assessment of the
magnitude of the differences; it omits opposite-sex
twin pairs; and it does not discriminate between types
of sex limitation.
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Data from DZ opposite-sex twin pairs (DZOS)
provide the information to estimate a reduced additive
genetic correlation for opposite-sex pairs, such that
their predicted genetic covariances of .5amaf becomes
.5rgmf amaf , where rgmf is the correlation between the addi-
tive genetic factors in males and those in females.
However, DZOS do not provide sufficient information
to estimate an additional parameter for reduced corre-
lation between genetic dominance factors (rd), nor for
reduced correlation between their common environ-
ment factors (rc). The absence of opposite-sex
monozygotic (MZ) twins precludes the estimation of
these additional parameters. The DZ opposite-sex pairs
effectively provide only one new statistic, their covari-
ance, which provides the information to estimate one
and only one new parameter. Other research designs,
such as the study of the offspring of MZ and DZ twins,
permit simultaneous estimation of more than one para-
meter for reduced genetic and environmental
correlation. No reduced correlation for specific envi-
ronmental factors can be estimated, because these are
assumed to be uncorrelated between the members of
twin pair.

It should be noted that while the context of the
present discussion is sex limitation, the arguments apply
equally to gene � gene, gene � environment, or environ-
ment � environment interaction. For example, twin
pairs might be grouped according to their exposure to a
stressor, in which case we could see six types of twin
pair, MZ or DZ by concordant exposed, concordant
unexposed, or discordant exposed. The following discus-
sion concerning the use of the Cholesky decomposition
for multivariate analysis of sex limitation applies equally
to multivariate models of gene � environment or envi-
ronment � environment interaction.

Multivariate Genetic Models

Early accounts of multivariate genetic analysis of
data collected from human twin pairs focused on the
estimation of genetic and environmental correlation
and covariance matrices (Martin & Eaves, 1977;
Vandenberg, 1965). Analyses of this type provided a
‘Gestalt’ impression of the degrees of genetic and
environmental communality between traits. In a
second step, exploratory factor analysis was some-
times used to examine the factor structure of these
genetic and environmental covariance matrices.
However, as pointed out by Martin and Eaves
(1977), two-stage analysis of this sort has the
problem that it makes testing hypotheses about the
number of factors difficult because the precision of
the correlations in a genetic correlation matrix is not
readily available. This problem led to the development
of modeling methods in which the genetic and environ-
mental factors were specified directly during the
model-fitting process. Effectively, the confirmatory factor
analysis approach in which a factor pattern is prespeci-
fied and fitted to the observed data, has replaced the
exploratory approach, where the factor structure is

surmised from inspection of the estimates of factor load-
ings under a generic model. This change of emphasis has
occurred in both genetic and nongenetic modeling of
covariance structure.

In this article, we wish to consider the case of a sat-
urated model for genetic covariances in the sex-limited
case. Our focus should not be taken to imply that satu-
rated models for genetic covariances are the best, or
that we are recommending a strategy of estimating
these statistics and subsequently conducting explor-
atory factor analyses or otherwise drawing conclusions
from their inspection. The estimation of this saturated
model has a different purpose, which is to provide a
baseline model against which the fit of alternative
genetic factor models can be compared. A second use
of the saturated model for sex limitation is to provide a
multivariate test, which, if significant, would justify
testing for sex limitation in one or more members of
the set of traits in the multivariate analysis.

A technical problem with estimating genetic covari-
ance matrices is that it is desirable to restrict the
solutions to those that are realistic. Several issues must
be considered when generating covariance matrices,
and these issues are slightly different for component
covariance matrices (additive genetic, specific environ-
ment, etc.) than for the phenotypic covariance matrix
that results from their sum. First, any process that
causes individual differences, be it the effects of a locus
on mean values of a phenotype, or the effects of envi-
ronmental conditions on the same, must cause a
positive amount of variance in the phenotypes. Second,
it will not be possible for these processes to produce a
predicted correlation between two phenotypes that is
greater than unity. Third, it should not be possible to
generate correlation matrices that are inconsistent, for
example if A correlates 1.0 with B, the correlation
between A and C must equal the correlation between B
and C. Fourth, the predicted phenotypic covariance
matrix (formed by the sum of the genetic and environ-
mental covariance matrices) must be positive definite
(see Appendix 1 for definition).

All four of the above restrictions are imposed if the
genetic and common environmental covariance matri-
ces are constrained to be nonnegative definite, and the
specific environment covariance matrix is constrained
to be positive definite (see Appendix A for proof). The
Cholesky or triangular decomposition provides a con-
venient way to impose these constraints. This approach
may be regarded as factor model (see Figure 1), in
which each of the observed variables Pj, j = 1…m has a
corresponding factor Fj. Each factor Fj may influence
only variables Pj to Pm. A great advantage of this
Cholesky factor decomposition is that it imposes the
positive semi-definite constraint (see Appendix A,
Theorem 1 for proof). A genetic model for the covari-
ance of phenotypes is usually formed from the sum of
several such matrices, for example, VP = VA + VC + VE,
which will also be positive semi-definite. To make the
predicted phenotypic covariance matrix VP strictly
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positive definite, it is sufficient to ensure that the spe-
cific environment matrix is positive definite and that the
additive genetic and common environmental matrices
(VA and VC) are nonnegative definite. This is a reason-
able constraint to impose because the specific
environment matrix includes the effects of measurement
error, at least part of which may be assumed to generate
at least some variable-specific variance. The proof of
Theorem 2 in Appendix A shows that by constraining
the diagonal elements of the Cholesky factor matrix to
be greater than zero, the resulting covariance matrix will
be positive definite. We note here that imposing con-
straints of this sort can give rise to statistical problems,
as discussed by Carey (2005). These ‘Cholesky’ prob-
lems are not the focus of this article, though we return
to consider their implications in the discussion. 

Problems With the Cholesky Decomposition

Modeling scalar sex limitation might appear to be
straightforward for the multivariate case. A five-group
structural equation model can be constructed, in
which latent variables are sex-specific, so that paths to
male twin phenotypes are allowed to differ from those
to female twin phenotypes. One approach to this
model is shown in Figure 2. Here the genetic covari-
ance between the traits is modeled as a bivariate
Cholesky or triangular decomposition. This formula-
tion partitions the genetic factors into two
components: those that are common to both traits,
and those that are specific to the second trait. The
choice of which trait is first should be arbitrary, in
that either order would produce the same fit to the
data. It does so when data from same-sexed relatives
alone are analyzed.

There is, however, a serious problem with this model.
The essential idea of the scalar sex-limitation

model is that the same factors cause variation in males

and females, but that they do so to a different extent.
Indeed, we might suppose that these factors only differ
in mean and variance between the sexes, in accor-
dance with a measurement invariance model (Lubke et
al., 2004; Meredith, 1993). Since the factors are the
same in males and females, they must covary with
each other to the same extent. In other words, the
model requires that there is only one common factor
correlation structure, RA, but different loadings on
these factors for males and females.

It might be thought that a generalization of the
Cholesky approach for sex limitation would involve
defining lower triangular matrices, XM and XF, to
decompose the additive genetic covariances for males
(AM = XMXM) and females (AM = XFXF). The opposite-
sex dizygotic genetic covariance would then be
estimated as .5�XFXM. However, this model does not
retain the required constraint for scalar sex limitation
that the factors correlate equally in males and females.

An additional problem for the purposes of applied
data analysis is that the overall fit of the model will
depend on the order of the variables in the analysis. This
property is easy to demonstrate with a simple example.
Suppose that a bivariate Cholesky model is fitted to data
from male twin pairs, and it is found that there is genetic
variance of 1.0 for both traits, but zero genetic covari-
ance between them. Also suppose that the same analysis
is performed for female twin pairs, and that although the
same genetic variance of 1.0 is found, the genetic covari-
ance is 1.0 instead of zero. This situation is illustrated in
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Figure 1
Cholesky decomposition as a structural equation model.

Figure 2
Path diagram for a model of sex limitation in a pair of DZ opposite-sex
twins, using a Cholesky factor approach. Only the phenotypes P1s ,
additive genetic factors, A1s , and common environment factors, C1s,
are shown, in which 1 refers to trait 1 and subscript s refers to the sex
of the twin.
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Figure 3. In terms of model parameters, the estimates of
the male Cholesky matrix are:

a 0 1 0
X= =[b c] [0 1]

and those of the females are

d 0 1 0
Y = =[e f ] [1 0]

If the predicted covariance matrix between opposite-
sex twin pairs is set to equal X(.5�IY��) then we
obtain the following:

ad ae 1 1
X.5�IY�� = =[bd be + cf] [0 0]

where I is the identity matrix. This result reflects what
can be found by inspection of the path diagrams in
Figure 4, namely that the first variable in males can cor-
relate with both variables in the female, but the second
variable is independent of them. The independence of
the second variable is maintained regardless of the order
of the variables in the data analysis. It is unlikely that a
model which specifies that, for example, height in males
is uncorrelated with weight in females would fit exactly
the same as one that specifies that weight in males is

uncorrelated with height in females. Thus the order of
the variables in the analysis affects the ability of the
model to account for the opposite-sex data. This is a
very undesirable property of this model, which stems
from misspecification of the original concept, that the
same factors influence males and females, but that they
do so to a different degree.

A further issue with the Cholesky decomposition
has been described by Carey (2005). In brief, this issue
stems from restricting the covariance matrices to be
nonnegative definite. The distribution of the fit statis-
tic used to assess overall model fit does not follow the
χ2 distribution.

Method
We consider two methods to solve the problem. First is
the explicit specification of the model in terms of equal
correlation matrices. Second is the application of non-
linear constraints to the Cholesky decomposition to
impose an equal correlation structure. We consider the
utility of these models for specifying saturated models
for the scalar and for the nonscalar sex limitation cases.

Scalar Sex Limitation

Correlation Approach

A correlational approach to the multivariate sex-limi-
tation model is shown in Figure 5, for a pair of
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Figure 3
Path diagrams for hypothetical results of model fitting of two 
phenotypes in two models of sex limitation to data from twins. 
Top: DZ male twins; bottom: DZ female twins.

Figure 4
Path diagrams for hypothetical results of model fitting of two 
phenotypes in two models of sex limitation to data from twins. 
Top: DZ opposite-sex twins with variable 1 first; bottom: DZ opposite-
sex twins with variable 2 first.
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opposite-sex DZ twins. Note that the correlation
between the additive genetic factors across the twins is
set to equal .5rg where rg is the correlation between the
additive genetic factors for the two phenotypes within
an individual.

The multivariate generalization of this model
follows from considering the covariance matrix of
A1M, A2M, A1F and A2F :

[
A1M A2M A1F A2F

A1M 1 rg .5 .5rg

A2M rg 1 .5rg .5
A1F .5 .5rg 1 rg

A2M .5rg .5 rg 1
]

which can be written as a partitioned matrix:

RG .5�RGG = [.5�RG RG
]

Scalar sex limitation of these factors may be modeled
through the diagonal factor loading matrices f = [a1f a2f]
and m = [a1m a2m]. The predicted genetic covariance for
opposite sex DZ pairs is given by:

[m f]G[m f]��

It is immediately obvious that this revised model speci-
fication cannot generate the radically different
covariance matrices for males (XX��) and females (YY��)

in the Cholesky example. This new specification may
generate different genetic covariance matrices for males
and females, but it cannot generate different genetic
correlation matrices. Therefore, the revised model will
not always fit as well as the Cholesky model, but it is
to be preferred because it is mathematically consistent
with the scalar sex-limitation hypothesis.

A technical problem that remains with this
approach is that it may still be desirable1 to constrain
the correlation matrix RG to be positive definite. This
constraint could be imposed by specifying the genetic
correlation matrix as a (sex-invariant) triangular
decomposition, and adding nonlinear constraints that
force the diagonal elements to be equal to unity.
However, the specification of additional parameters
that this would require would increase computation
time for parameter estimation. An alternative would
be to add nonlinear inequality constraints on the
eigenvalues of the matrix R such that they are all
greater than or equal to zero. Either approach may be
implemented in Mx.

Cholesky Decomposition Approach

The Cholesky decomposition has the advantage that
it automatically generates positive semi-definite
covariance matrices. That is, the correlations among
the genetic factors and among the environmental
factors are all bounded to lie in the closed interval
–1 ≤ r ≤ 1, and do not violate reasonable ranges
when considered in combination. It is also easy to
specify in Mx and other programs that allow matri-
ces to be declared as lower-triangular. The main
problem is that it does not force the correlations
between the factors to be equal for males and
females. However, this constraint is quite easy to
impose using Mx. To do so it is necessary to con-
strain the genetic and environmental correlation
matrices to be equal. In order to constrain the pre-
dicted phenotypic covariance matrices of twins to be
strictly positive definite, the diagonal elements of the
specific environment Cholesky factor matrix should
be constrained to be greater than zero.

To summarize, scalar sex limitation may be
handled effectively with either the correlational
approach or the modified Cholesky approach that
constrains the genetic correlation matrices of males
and females to be equal. Equivalently, this model
may be thought of as specifying different sensitivity
of each phenotype to its sources of variance. This dif-
ferential response of the phenotype is forced to be the
same for all sources of genetic variance — be they
shared with other variables or specific to the pheno-
type itself. A further reduction of the model would be
to specify that all sources of variance for a trait —
genetic or environmental — are modulated equally
by sex. We refer to this model as phenotypic scalar
sex limitation. It is an empirical question whether
this model would provide a more parsimonious
explanation of the data.
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Figure 5
Path diagram for a model of sex limitation in a pair of DZ opposite-sex
twins using a correlation approach. Only the phenotypes P1s, additive
genetic factors, A1s, and common environment factors, C1s, are shown,
in which 1 refers to trait 1 and subscript s refers to the sex of the twin.
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Nonscalar Sex Limitation

Correlational Model

One simple approach to nonscalar sex limitation is to
modify the correlational model. This modification is
shown for the bivariate case in Figure 6. In this
model, all six of the correlation paths for the genetic
factors are allowed to be estimated as separate free
parameters, and that the same is true of the common
environment factors. Certain restrictions on these
parameters would reduce the model to one of scalar
sex limitation, per Figure 5.

The .5rg may be replaced by .5rgmf .rg where rgmf

denotes the genetic correlation across males and
females for this pair of traits. If the same genetic
factors influence both males and females, the correla-
tion rgmf = 1 (scalar sex limitation); if they are entirely
different (independent), rgmf = 0 (complete nonscalar
sex limitation); and otherwise 0 < rgmf < 1  (incomplete
nonscalar sex limitation).

Each latent factor for males correlates .5 with its
counterpart in females when sex limitation is scalar. In
fact, the within-person genetic matrix as a whole is
multiplied (Kronecker product) by the scalar .5 to
obtain the m � m block of genetic correlations
between opposite-sex twin pairs. In the event that the
factor structure differs between males and females,
three separate matrices of correlations may be esti-
mated. One, the correlations between factors in males,
two, the correlations between factors in females, and
three the correlations between male and female
factors. All three matrices are of order m � m but
only the correlations across males and females may be
asymmetric. This model is saturated, but is not guar-
anteed to be positive definite. Nonlinear constraints
on the eigenvalues of the genetic correlation matrix
should be imposed.

Cholesky Model

The constrained Cholesky model for scalar sex limita-
tion may also be revised to allow for nonscalar sex
limitation. Suppose we permit three sets of factors:
FCM, which affect males and have the same correlation
structure as FCF which affect females, and FSF which
are specific to females and do not affect males. In the
event that the data are completely consistent with a
model of scalar sex limitation, the parameter estimates
of FSF would be estimated to be zero. A diagram of
this model is shown in Figure 7 for the bivariate case.
The paths aijm, aijf and asijf would be elements of the
matrices FCM,FCF and FSF, respectively. Should the influ-
ences be completely different in males and females,
that is, all the opposite-sex correlations are zero, the
estimates of the scalar factor loadings FCF would be
estimated to be zero. The positive semi-definite con-
straint is automatically maintained by the Cholesky
decomposition (Appendix A Theorem 3). Also, the
constraint on the scalar part of the model, that the
factor correlations should be equal, is retained from
the scalar case.

Maintaining this constraint lends the model the
positive feature that it is invariant to the ordering of
the variables. However, this model is problematic, in
that it will not fit certain datasets as well as the corre-
lational model. It uses fewer parameters and will fail
to account for certain patterns of correlation. That is,
it is not suitable as a ‘saturated’ model. Since a satu-
rated genetic covariance structure is a primary goal of
the approach, it must be concluded that this model is
less useful than its correlational counterpart.

Comparison of Implementations

Of these two implementations of nonscalar sex-limited
effects, the correlational and the Cholesky, only the
former fully saturates the predicted covariances
between opposite-sex twins. When m variables are
measured from opposite-sex pairs, there are m2

observed cross-sex covariances. In practice, this block
of covariances need not be symmetric. For example,
the correlation between height in females and height in
their male co-twins may not be the same as the correla-
tion between weight in females and height in their
male co-twins. The nonscalar sex-limitation models
considered thus far require m2 parameters in the corre-
lation model, and m(m + 1)/2 parameters in the
Cholesky model to account for possible reductions in
resemblance between opposite-sex twin pairs.
Therefore, the correlational model will fit at least as
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Figure 6
Path diagram for a model of sex limitation in a pair of DZ opposite-sex
twins using a correlation approach. Only the phenotypes P1s, additive
genetic factors, A1s, and common environment factors, C1s, are
shown, in which 1 refers to trait 1 and subscript s refers to the sex of
the twin.

https://doi.org/10.1375/twin.9.4.481 Published online by Cambridge University Press

https://doi.org/10.1375/twin.9.4.481


well as the Cholesky model, albeit at the expense of
more parameters.

The conceptual basis of the correlational model is
not without its problems. Different across-sex genetic
correlations may be observed but their interpretation
becomes more difficult. The division into general
factors that affect both sexes and factors that are spe-
cific to only one sex is no longer retained. The
correlational model becomes more of a description of
the observed data rather than a model for the origin
of gender differences. Nevertheless, it is possible to
specify the across-sex correlations as a symmetric
matrix to test hypotheses concerning whether, for
example, the genetic correlation between height in
females and weight in males is the same as that
between weight in females and height in males.

Discussion
Two approaches to the treatment of scalar sex limita-
tion have been considered. One is to specify the model
in terms of factors for males and females and to estimate
correlations within male factors, and within female
factors. These factors are constrained to have the same
correlation matrix in males and females. The factors
then influence the phenotype via path coefficients which
are not constrained to be equal across sexes. Thus the
model specifies that the same factors influence males
and females but that they may do so to different
degrees. The second, equivalent approach specifies a
Cholesky model for factors that differ between the
sexes only in the scale of their effects, not in their cor-
relations. Ordinarily, the Cholesky factor model does

not preserve the equal-correlation constraint, but this
can be imposed by a series of nonlinear equality con-
straints that equate the genetic or environmental
correlations in males with their counterparts in
females. This Cholesky model has the advantage that
the A, C and E covariance matrices are constrained to
be nonnegative definite, and it is simple to ensure that
the E covariance matrix is strictly positive definite,
thereby ensuring positive definiteness of the predicted
covariance matrix between twins (Appendix A,
Theorem 3).

Nonscalar sex differences occur when different
factors influence variation in the two sexes. To model
differences of this sort is a more challenging task.
One approach is to take the correlational model for
scalar sex limitation, to remove the restriction that
the correlation matrices are equal for males and
females, and then to estimate all of the m � m cross-
sex correlations. In the classical twin study it is
necessary to estimate only one of these cross-sex cor-
relation matrices, either the additive genetic or the
common environment, or the dominance genetic,
because MZ opposite-sex pairs do not exist. The cor-
relational model is a saturated model, in that all of
the cross-sex covariances have a corresponding cross-
sex parameter to be estimated. However, certain
constraints may reasonably be imposed on these
cross-sex covariances. For genetic cross-sex covari-
ances in DZ twins or siblings, it would be natural to
constrain them to lie between –.5 and .5, which corre-
sponds to the reasonable range of –1 to 1 for
within-person genetic correlations. Similarly, it would
be reasonable to expect common environment corre-
lations to lie between –1 and 1. Furthermore, the
overall common environment or genetic covariance
matrices for pairs of twins should be nonnegative def-
inite. Therefore, it may be desirable to impose a series
of nonlinear constraints on the correlational model to
ensure that these restrictions are met. We also note
that even if a fully saturated correlational model for
sex limitation is fitted, it may not describe the data
perfectly. For example, suppose that the set of vari-
ables under analysis comprises two subsets, one
where familial resemblance is due to A, while the
other is due to C. Specifying only genetic or only
common environment correlations would assist in the
prediction of across-sex covariance of only one of the
two subsets. In this case, it would be possible to
specify a multivariate model that contains a different
form of sex limitation for different subsets of vari-
ables, although the investigator should be careful not
to capitalize on chance by first inspecting the data
and results and then specifying the sex-limitation
model accordingly.

An alternative but more restricted form of sex-limi-
tation model may be specified by adding a component
to the Cholesky factorization. The modified sex-limited
Cholesky factor model with equated correlations for
males and females is augmented by a component

487

Figure 7
Path diagram for a model of nonscalar sex limitation in a pair of DZ
opposite-sex twins using a correlation approach. Only the phenotypes
P1s and additive genetic factors, A1s, are shown, in which 1 refers to
trait 1 and subscript s refers to the sex of the twin
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specific to either males or females only. This model
involves fewer additional parameters than the non-
scalar correlational approach; whether it provides a
more parsimonious fit to the data than the correla-
tional model will depend on the dataset being
analyzed. It is also worth noting that the same fit may
not be achieved if the additional factor matrix is
added to the males or the females.

The Cholesky decomposition was originally
intended for use as a robust way to estimate genetic
(or other variance-component) covariance matrices
while constraining them to be nonnegative definite. In
the single-sex case, it is a saturated model for these
covariances, because it has as many parameters as
there are available statistics. Its fit provides a yard-
stick for goodness-of-fit against which other
multivariate models may be compared — albeit with
caveats (Carey, 2005). Two main varieties of multi-
variate model are widely used in genetic
epidemiology. The ‘independent pathway’ or ‘biomet-
ric factor’ model (Kendler et al., 1987; McArdle &
Goldsmith, 1990; Neale & Cardon, 1992) specifies
general genetic and environmental factors that may
have direct effects on all the observed phenotypes.
The ‘common pathway’ or ‘psychometric factor’
model involves an intermediate latent factor between
the genetic and environmental general factors and the
observed phenotypes. Under certain conditions, these
alternative models may also suffer from the problems
with the use of the Cholesky decomposition in
models for sex limitation. The psychometric model
specifies a single latent variable which influences a
number of traits. This latent variable is usually speci-
fied to have genetic and environmental factors. As
such, the model is directly derived from the single
factor model commonly used for the analysis of data
from unrelated individuals. An extension of this
model is to specify two or more such latent variables,
which may be independent (i.e., orthogonal) from
each other, or correlated (i.e., oblique). In the oblique
case, it is possible to decompose the covariation
between latent factors into genetic and environmetal
components. To account for data collected from
same-sex and opposite-sex relatives, this model faces
the same difficulties as those of the scalar and non-
scalar sex-limitation models described in this article.
Essentially, the sex-limitation specification problems
arise at the level of the genetic correlations between
factors, instead of at the level of the genetic correla-
tions between observed variables. The problems, and
the solutions suggested in this article, apply equally
to multivariate genetic and environmental covariance
structures regardless of the level at which they are
found in a model.

One further point to note is that it is possible to
perform a limited version of a test for nonscalar sex
limitation with same-sex twin pairs alone. If the
genetic correlation between two traits is found to
differ between male-male and female-female pairs,

then there is evidence that there are some factors that
operate in only one of the sexes. Using same-sex pairs
alone, there is no way to determine directly which of
the two variables has nonscalar sex limitation, but it
can be useful to establish that at least one of the
traits has this characteristic. Some triangulation as to
which has and which does not could be achieved in
the multivariate case. Suppose that only one trait, x,
in a set A had nonscalar genetic sex limitation. One
could expect to find evidence of sex differences in
genetic correlations in bivariate analyses of trait x
with every other trait in the set. Conversely, analyses
of pairs of traits that exclude trait x would not show
evidence of a female-male difference in genetic corre-
lation. The real world may prove more complex than
this simple example, but it is still interesting that
studies of datasets that do not contain opposite-sex
pairs can, in principle, provide information about
nonscalar sex limitation.

Finally, we note that constraining covariance
matrices to be nonnegative definite may not always
be desirable. Carey (2005) discusses the complex dis-
tributional properties of the test statistics when such
constraints are employed. Most salient in the present
context is the question of whether or not a variance
component could generate nonnegative definite
covariance structures. In principle, any process that
generates a quantitative phenotypic difference (such
as when different mean values are observed for differ-
ent genotypes at a diallelic locus) must generate a
positive amount of variance in that trait. If it affects
two traits, it cannot cause their covariance to be
greater than the root of the product the variance that
it causes in each. That is, it cannot make them corre-
late greater than 1.0 or less than minus one. Should
we observe that unrestricted estimates of genetic
covariance matrices are negative definite more often
than we would expect by chance, it would likely
imply that the model is incorrect. In the univariate
classical twin study, if the additive genetic, shared and
specific environment (ACE) model was the only
model fitted, and if population variance was entirely
due to additive genetic and specific environment
factors (AE), then half the time we would expect to
see a negative estimate of the shared environment
variance. If population variation was also due to non-
additive genetic factors (e.g., under an ADE model),
then asymptotically the estimate of C would always
be negative. Given a sufficiently large sample size, we
would observe significantly negative estimates of C,
which is the simplest example of a negative definite
covariance matrix. Therefore, it seems prudent to
compare the fit of an unrestricted model — without
component matrices constrained to nonnegative defi-
nite — to that of the model that imposes this
constraint, in order to provide a further test of the
suitability of the model for explaining trait variation
and covariation in the population under study.
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Endnote
1 Carey 2005 Cholesky problems notwithstanding.
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Appendix A
Notes on Matrix Algebra

Similar results may be found in Searle (1992).

Theorem 1 Matrices generated from a Cholesky or Triangular decomposition C = LL� are positive semi-definite.

Proof: The definition of positive semi-definite is that the product x�Cx ≥ 0 for all nonnull vectors x. In the
present case we can substitute LL� for C and obtain

x�LL�x = (x�L) (x�L)�

The term on the right is the inner product of the vector x�L and is therefore a sum of squared real numbers,
which has a lower bound of zero.

Theorem 2 Matrices generated from a modified Cholesky decomposition C = JJ�, where the diagonal elements of
J are constrained to be strictly positive, are positive definite.

Proof: From the proof of Theorem 1, we have

x�JJ�x = (x�J) (x�J)�

in which the minimum of any term of the right hand side is zero. Let the dimension of J be n. If the last element
of x (i.e., xn) is not equal to zero, then the ith element of x�J will equal x2

i J2
ii which will be greater than zero since

the element Jnn is constrained to be greater than zero. If element xn is zero, then element n – 1 of x�J would take
its minimum value of zero if and only if xn–1 is zero. By induction, therefore, the product x�(JJ�)x would be zero
only if all elements of x are zero, which is the null vector excluded from the definition of positive definiteness.

Theorem 3 Any matrix formed by the sum of a set of positive (semi-)definite matrices is positive (semi-)definite.

Proof: This follows directly from the observation that matrix multiplication is distributive over addition, i.e.,
A(B + C) = AB + AC. For positive definiteness, since x� (A + B)x = x�Ax + x�Bx and by definition x�Ax > 0 and
x�Bx > 0, the sum x�Ax + x�Bx must be greater than zero, as must x�(A + B)x. For positive semi-definiteness,
the > can be replaced by ≥.
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