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STRONGER MAXIMAL MONOTONICITY PROPERTIES
OF LINEAR OPERATORS

H.H. BAUSCHKE AND S. SIMONS

The subdifferential mapping associated with a proper, convex lower semicontinuous
function on a real Banach space is always a special kind of maximal monotone opera-
tor. Specifically, it is always "strongly maximal monotone" and of "type (ANA)". In
an attempt to find maximal monotone operators that do not satisfy these properties,
we investigate (possibly discontinuous) maximal monotone linear operators from a
subspace of a (possibly nonreflexive) real Banach space into its dual. Such a linear
mapping is always "strongly maximal monotone", but we are only able to prove that
is of "type (ANA)" when it is continuous or surjective — the situation in general is
unclear. In fact, every surjective linear maximal monotone operator is of "type (NA)",
a more restrictive condition than "type (ANA)", while the zero operator, which is
both continuous and linear and also a subdifferential, is never of "type (NA)" if the
underlying space is not reflexive. We examine some examples based on the properties
of derivatives.

0. INTRODUCTION

Let E be a real Banach space with dual E* and S : E i-» 2E". Write

G(S):= {(x,x*): x € E, x* eSx}.

S is said to be monotone if

(x,x') and (s,s*) e G(S) => (x - s,x* - s*) ̂  0.

5 is said to be maximal monotone if S is monotone and: if x € E, x* s E" and

for all (s, s') G G(S), (x -s,x* - s') > 0

then

{x,x')eG(S).

It is the purpose of this paper to discuss four subfamilies of the maximal monotone
operators, in particular in relation to the (single-valued) linear operators. This is a good
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164 H.H. Bauschke and S. Simons [2]

place to point out that if we want to assume that a linear operator is bounded, we shall

state that fact explicitly.

We now introduce the first subfamily of the maximal monotone operators that we

wish to discuss.

DEFINITION 0.1: Let E be a real Banach space with dual E* and S : E H-> 2E' be
monotone. We say that 5 is strongly maximal monotone if S is monotone and: if A" is a
nonempty weakly compact convex subset of E, x* G E* and

for all (s, s*) G G(S), there exists x € K such that (x - s,x* — s*) ^ 0

then

there exists x € K such that (x, x*) E G(S)

and, further, if L is a nonempty weak* compact convex subset of E*, x E E and

for all (s, s") 6 G(S), there exists i ' 6 L such that (x - s, x* - s*) ^ 0

then
there exists x* € L such that (x,x*) € G(S).

It is clear (by taking K or L to be a singleton) that every strongly maximal monotone
multifunction is maximal monotone.

Here is our motivation for introducing strongly maximal monotone operators. A well
known result of Rockafellar (see [6]) asserts that i / / : £ 4 l U {oo} is proper, convex

and lower semicontinuous then the associated subdifferential mapping df : E t-> 2E' is

maximal monotone. It was proved in [9, Theorems 6.1 and 6.2, p.1386] and, in a different
way in [11, Theorem 32.5, p.128] that, in fact, df is strongly maximal monotone. This
leads naturally to the following problem:

PROBLEM 0.2. Find a maximal monotone multifunction 5 : E <-> 2£* that is not
strongly maximal monotone. (As we have already observed, 5 cannot be a subdifferential.
We shall show in Theorem 1.1 that S cannot be a monotone linear operator either.) This
problem is open even if E = R2.

By way of introduction to the other subclasses of the maximal monotone operators
that we wish to discuss, we mention the following result that was proved in [11, Corollary
10.4, p.36]: Let E be reflexive and S : E H-» 2£* be monotone. Then S is maximal

monotone if, and only if. for all (x,x*) € E x E* \ G(S), there exists (w, w*) G G(S)

such that

(0.2.1) w^x,w*^x* and {w — x,v)* - x*) =-\\w — x\\\\w* — x*\\.

We now formalise the above result into a definition.
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D E F I N I T I O N 0.3: Let E be a real Banach space with dual E* and 5 : E \-¥ 2E' be

monotone. We say that S is of type (NA) if, for all (x, x*) € E x E* \ G(S), there exists

(w,to*) e G(S) satisfying (0.2.1). (NA) stands for "negative alignment".

It obviously follows from the result mentioned above that if E is reflexive then every

maximal monotone operator on E is of type (NA). The following simple example shows

that there is no hope of getting this result if E is not reflexive.

E X A M P L E 0.4. Let E be a nonreflexive Banach space. Let 5a; := {0} (x € E). From

James's theorem, there exists x* € E* that does not attain its norm on the unit ball of

E. Then 5 is maximal monotone and {0,x*) € E x E* \ G(S), but there does not exist

(to,to*) 6 G(S) satisfying (0.2.1): since {w,w*) € G(S) = > to* = 0, (0.2.1) would imply

that (to,x*) = ||to|| ||x*||. Setting b := tu/||to||, we would have ||6|| = 1 and (b,x*) — \\x*\\,

contradicting our choice of x*.

The above considerations lead us to the following weakening of Definition 0.3:

D E F I N I T I O N 0.5: Let E be a real Banach space with dual E* and 5 : E i-> 2E' be

monotone. We say that 5 is of type (ANA) if, whenever (x, x*) G E x E* \ G(S) then,

for all n ^ 1, there exists (wn, to*) € G(S) such that wn ^ x, to' ^ x* and

(ton - x, w*n - x*)

wn-x\ w'-x'
—> —1 as n -4 co.

(ANA) stands for "almost negative alignment". If S is of type (ANA) then S is maximal
monotone. Further, it is clear that every monotone multifunction of type (NA) is of type
(ANA). The converse of this statement is false — the operator 5 defined in Example 0.4
is not of type (NA) but, from Theorem 2.1 below, it is of type (ANA).

Our motivation for introducing multifunctions of type (ANA) again stems from the
properties of subdifferentials, since it was proved in [10, Theorem 13, p.229 and Theorem
26, p.237], that if f : E >-* I U {oo} is proper, convex and lower semicontinuous then the
associated subdifferential mapping 9 / : £ H 2E' is maximal monotone of type (ANA).
This leads naturally to the following problem:

PROBLEM 0.6. Find a maximal monotone multifunction S : E ^ 2E' that is not of
type (ANA). (As we have already observed, E must be nonreflexive and 5 cannot be
a subdifferential.) If such an example can be found, find a subspace D of E and a
linear maximal monotone T: D i-> E* that is not of type (ANA). (We shall show in
Theorems 2.1 and 2.3 that T would have to be unbounded and not surjective.)

We shall use the following minimax theorem, which follows from a result of Fan (see
[1]). (See also [3] and [8] for simple generalisations of Fan's result.)

THEOREM 0 . 7 . Let A be a nonempty convex subset of a vector space, B be a
nonempty convex subset of a vector space and B also be a compact Hausdorff topological
space. Let h : A x B >-> R be convex on A, and concave and upper semicontinuous on
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B. Then

inf max/i = maxinf h.
A B B A

1. T H E STRONG MAXIMALITY OF LINEAR MAXIMAL MONOTONE MAPS

It is clear from (b) and (c) of Theorem 1.1 below that every linear maximal monotone

operator is strongly maximal monotone.

THEOREM 1 . 1 . Let D be a subspace ofE and T: D >-> E* be linear and maximal

monotone. Then

(a) The function from D into R defined by s >-> (s, Ts) is convex.

(b) If K is a nonempty weakly compact convex subset of E, x* 6 E* and

(1.1.1) for all s € D, there exists x e K such that (x - s,x* - Ts) ^ 0

then

(1.1.2) there exists x e K such that (x,x*) 6 G{T).

(c) If L is a nonempty weak* compact convex subset of E*, x € E and

(1.1.3) for all s e D, there exists x* e L such that (x -s,x* - Ts) ^ 0

then

(1.1.4) there exists x* € L such that (x,x*) € G{T).

PROOF:

(a) follows from the observation that if s, t € D, A, \i > 0 and A + /J, = 1 then

\{s,Ts) + n(t,Tt) - (As + fit,T(\s + fit)) = Xfi(s - t,Ts - Tt) ^ 0.

(b) Define h : D x K ^ E by

h(s, y) := (y - s, x* - Ts) = (y, x°) - (y, Ts) - (s, x') + (s, Ts).

From (a), h is convex on D. h is also affine and weakly continuous on K. From
(1.1.1), inf max h > 0 hence, from Theorem 0.7 maxinf h ^ 0, that is to say,

D K K D

there exists x £ K such that, for all s € D, (x — s,x* — Ts) ^ 0.

Since T is maximal monotone, it follows from this last inequality that {x,x*) € G(T),

which gives (1.1.2).
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(c) Define h : D x L^Rby

h(s, y*) := (x - s, y* - Ts) = (x, y') - (x, Ts) - (s, y') + (s, Ts).

From (a), h is convex on D. h is also affine and weak* continuous on L. From
(1.1.3), inf max/i Ji 0 hence, from Theorem 0.7 maxinf h ^ 0, that is to say,

there exists x* € L such that, for all s € D, (x - s,xm - Ts) ^ 0.

Since T is maximal monotone, it follows from this last inequality that (x,x*) 6 G(T),

which gives (1.1.4). D

2. BOUNDED AND SURJECTIVE MONOTONE LINEAR MAPS

THEOREM 2 . 1 . Let T : E >-> E* be linear and monotone. Then T is maximal
monotone of type (ANA).

PROOF: We first note from the local boundedness theorem for monotone multi-

functions (see, for instance, [4, Theorem 2.28, p.28]) that T is bounded. Suppose that

(x,x*) e E x E*\ G(T). Then Tx ^ x*. For all n ^ 1, we can find zn 6 E such that

Ikll = 1 and

(2.1.1) (zn,Tx - X*)->-\\Tx - x*\\ a s n - » o o .

For all n ^ 1, let wn := x + zn/n ± x. Then \\Twn - Tx\\ = \\Tzn\\/n < \\T\\/n hence

(2.1.2) \\Twn - Tx\\ -> 0 and \\Twn - x'\\-¥ \\Tx - x*\\ ^ 0 asn-^oo.

Now, for all sufficiently large n ^ 1, Twn ̂  x* and we have the inequality

\{wn-x,Twn-Tx)\ ^ | |T^n-rx| |
IK - x\\ \\Twn — 37*|j "" \\Twn -x'W

Combining this with (2.1.2), we obtain that

(wn - x, Twn - Tx)
(2.1.3) T7-J} hr^r- 77-^0 asn->oo.

' |Kz| | | |Tu;z ' | |

= —1 as n -> oo.

On the other hand, from (2.1.1) and (2.1.2),

(wn-x,Tx-x*) _ (zn/n,Tx-x') -\\Tx - x*\,
\\wn-x\\\\Twn-x*\\

Adding this to (2.1.3), we obtain that

(wn - x, Twn - x*)
\\wn-x\\\\Twn-x'\\

-> —1 as n -4 oo.
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This completes the proof that T is of type (ANA). As we have already observed, this
implies that T is maximal monotone. D

As we stated in Problem 0.6, we would like to have an example of a linear maximal
monotone operator that is not of type (ANA). It is clear from Theorem 2.1 that any
such example must be unbounded. One common way of constructing unbounded linear
operators is to use differentiation. In Example 2.2 below, we discuss a simple case of the
differentiation technique (which, unfortunately, does not provide the example that we
want).

EXAMPLE 2.2. Let Lip[0,1] be the set of all real Lipschitz functions on [0,1]. If / 6
Lip[0,1] then / ' exists almost everywhere on [0,1], and its absolute value is bounded (by
the Lipschitz constant of / ) . Let

£>:={[/] : / e L i p [ 0 , l ] , /(0) = 0},

where [/] is the equivalence class of / in L^O, 1]. If x € D then there exists a unique

element fx of Lip[0,1] such that fx{0) = 0 and [fx] = x. Define T : D >-> L°°[0,1] by

Tx:=[fx] (x€D),

where [/.£] is the equivalence class of fx in L°°[0,1]. T is clearly linear. Further, if x S D

then
2 o,= J /*/; =-

from which T is monotone. Despite the fact that T is not continuous, it is nevertheless
maximal monotone of type (ANA). This follows from Theorem 2.3 below and the fact
that R(T) = L°°[0,l] = E*. (R(T) is the "range" of T, that is, T(D).) So, as we have
already observed, T will not provide us with the example that we want. We refer the
reader to [5, Example 4.2], for many other properties of T.

Theorem 2.3(a) extends [5, Proposition 3.1(j)]. We shall actually prove a result
stronger than Theorem 2.3(b) in Corollary 3.7. We introduce the following notation: if
x € E, x stands for the canonical image of x in the bidual E** of E\ further, we write

N(T) :={xeD:Tx = 0}.

THEOREM 2 . 3 . Let D be a subspace of E andT: D <-¥ E* be linear and mono-

tone and R(T) = E*. Then

(a) T~l exists as a single-valued monotone linear operator from E* into E.

(b) T is maximal monotone of type (ANA).

PROOF: Define S: E* i-» 2E" by G{S) := {(Tx,x): x € D}. S is monotone and,

since R{T) = E*,

x* e E' = • Sx* # 0.
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It follows from the local boundedness theorem (again, see [4, Theorem 2.28, p.28]) that
there exist 6 > 0 and M ̂  0 such that

(2.3.1) (*',*") £G{S) and \\x'|| < 5 => \\x"\\^M.

We now prove that

(2.3.2) N(T) = {0},

from which (a) follows easily. So suppose that x G N(T). Let n ̂  1. Then nx 6 N(T)

and so
(0,nz) = (T(nx),nx) € G(S).

Since ||0|| < S, it follows from (2.3.1) that ||nx|| < M, that is, ||x|| ̂  M/n. Letting
n -» oo, we obtain x = 0, which establishes (2.3.2) and completes the proof of (a).

(b) Define the monotone linear map V: E* >-> E" by Vx* := T~lx*. It is clear
from Theorem 2.1 that V is of type (ANA), from which it follows easily that T is of type
(ANA) also. As we have already observed, this implies that T is maximal monotone. D

3. ULTRAMAXIMAL MONOTONE LINEAR OPERATORS

Since Theorem 2.3 tells us that a linear solution to Problem 0.6 cannot be surjec-
tive, we now consider a modification of the differentiation technique already discussed in
Example 2.2 that yields a non-surjective operator.

EXAMPLE 3.1. Let

£>:={[/] : / 6 L i p [ 0 , l ] , /(0) = / ( I ) } ,

where [/] is the equivalence class of / in LL[0,1]. If x € D then there exists a unique
element } x of Lip[0,1] such that /x(0) = fx{\) and [fx] = x. Define T : D >->• L°°[0,1] by

Tx:=[f'x] (xeD),

where \f'x\ is the equivalence class of f'x in L°°[0,1]. T is clearly linear. Further, if x € D
then

ti = -fx(lf--fx(Oy = O,

from which T is skew, and so certainly monotone. (This example is taken from [5,
Example 6.2].) Since T is unbounded and not surjective, it is a reasonable candidate to
be a linear maximal monotone operator that is not of type (ANA). However, we shall
see that T does not provide the example that we want. On the contrary, it will follow
from Corollary 3.9 that T is even of type (NA). It will be convenient to introduce some
additional notation in order to establish this.
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DEFINITION 3.2: Let D be a subspace of E and T: D *-* E* be linear and
monotone. We say that T is ultramaximal monotone if the following is true: if

{v*,v**) S E* xE** and

(3.2.1) seD = > (Ts-v*,s-v**)2 0

then

(3.2.2) there exists w 6 D such that {v*,v") = (Tw,w).

(This is equivalent to the statement that the multifunction 5 introduced in the proof of
Theorem 2.3(a) is maximal monotone.) It was proved in [5, Theorem 6.4], that if T is an
ultramaximal monotone linear map then T is maximal monotone of type (D) and locally
maximal monotone, and T* is monotone. Also, an example of a bounded monotone linear
operator T was given in [5, Example 6.5] such that T is not ultramaximal monotone but
all the other conditions mentioned above are satisfied.

Here, our main result about ultramaximal linear operators is Theorem 3.5. Before
embarking on that, we give two preliminary results.

LEMMA 3 . 3 . Let x e E and x* e E*.

(a) Then

(3.3.1) \\xf + \\x*\\2 + 2(x,xt)^0.

(b) If we have equality in (3.3.1) then \\x\\ - \\x*\\ and so (x,xm) = - ||x|| | |i*||.

P R O O F - l l - r l l 2 • + . I I T * I I 2 - I - 9 / T T * \ > l l r l l 2 4- I I T ' I I 2 — 9 l l - r l l I I T ' I I — H l r l t — l l r * l h 2 F l
IT t \ \ J \ J r . M ' l l ' H ' l l ' ^X^y ̂  / ^ W^W ' 1 1 * 1 1 I I I I N I I — V l l l l — N i l / '

THEOREM 3 . 4 . Let D be a nonempty convex subset of a vector space, F be a

Banach space, / : Z) H M be convex and g : D >->• F be affine. Then (3.4.1) <=$• (3.4.2).

(3.4.1) a (ED => /(a) + ||«7(a)||2^0.

{There exists y* £ F* such that

a e D = • / ( a ) -2 ( f f ( a ) , y*)^ | | j / - | | 2 .

PROOF: See [11, Theorem 7.2, p.27] or [12, Theorem 3]. D

We now come to our main result about ultramaximal monotone linear operators.

THEOREM 3 . 5 . Let D be a subspace of E and T: D i-» E* be linear and ultra-

maximal monotone. Then T is of type (NA).
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P R O O F : Let {x,x*) G E x E* \ G(T). Write F := E x E* with ||(s,a;*)|| :=

, / | | x | | 2 + | |x ' | | 2 , and define / : D .-»• R and g : D >-> F by

f(s):=2(s-x,Ts-x') and g(s) := {s - x,Ts - x") (s G D).

It follows from Theorem 1.1 (a) that / is convex, and g is obviously affine. Thus, from
Lemma 3.3(a), for all s G D,

M + \\9(s)\\2 = \\s - x\\2 + 2(s -x,Ts- x') + ||ra - z*||2 > 0.

Since any element y* of F* can be written in the form (z*,z") for some (z*,z**) e

E* x E** with ||y*|| = \f\\z*\\2 + \\z**\\2, it follows from Theorem 3.4 that there exists
(z*,z")€ E' xE" such that

s€D => 2(s-x,Ts-x*)-2(s-x,z')-2(Ts-x*,z")>\\z*\\2 + \\z"\\2.

Adding 2(z*, z") to both sides, we obtain:

(3.5.1) seD = > 2(Ts-x*-zt,s-x-z**)>\\z'\\2 + 2(z*,z") + \\z"\\2.

Thus, from Lemma 3.3(a),

s&D => (Ts-x*-z*,S-x-z")^0.

Since T is ultramaximal monotone, there exists w € D such that

(3.5.2) {Tw,w) = (x* + z*,x + z").

Substituting s = w in (3.5.1), we obtain ||z*||2 + 2{z*,z") + ||2*'||2 ^ 0 and so, from
Lemma 3.3(b),

(3.5.3) 11̂ 11 = P"H and (z',z") = - \\z'\\ \\z'*\\.

We have from (3.5.2) that z* = Tw - x* and z" = w - x. Consequently, we derive from
(3.5.3) that ||Tio-z*|| = | | ^ - x | | and (Tw-x*,w-x) = - \\Tw - x'\\ \\w - x\\, that is
to say

\\w-x\\ = \\Tw-x*\\ and (w - x,Tw - x*) = - \\w - x\\ \\Tw - x*\\.

Since {x,x*) 0 G(T), at least one of ||iu - a;|| and \\Tw - x*\\ is nonzero. It then follows
from the above that both are nonzero. This completes the proof that T is of type (NA). D

We next give a simple sufficient condition for T to be ultramaximal monotone and
hence, by virtue of the above theorem, of type (NA) also. If F C E, we write

FL := {x* G E': for all x G F, (x,x*) = 0}.

Consequently, if F C E*, then

FL := {x" G E": for all x* G F, (x*,x") = 0}.
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THEOREM 3 . 6 . Let D be a subspace ofE, T: D >-> E* be linear and monotone,
Ar(T)1 C R(T) and ft(T)x C ~N(T). Then T is ultramaximal monotone, and hence of
type (NA).

PROOF: We shall suppose that (v*,v**) £ E* x E" satisfies (3.2.1), and we shall
show that (3.2.2) is satisfied. This proof is in two parts. In the first part, we shall show
that

(3.6.1) v* £ N{T)X.

To this end, let s £ N(T). Let A be an arbitrary element of R. Then As £ N(T) C D

hence, from (3.2.1),

(T{Xs)-v*Xs-v") ^0,

that is to say, A(s,v*) < (v*,v"). Since this hold for all A, it follows that (s,v*) = 0,
which gives (3.6.1). By hypothesis, v* £ R(T), so there exists v £ D such that

(3.6.2) Tv = v*.

In the second part of the proof, we establish that

(3.6.3) . v-v" £R{T)-L.

To this end, let u* e R(T). Fix u € D so that

(3.6.4) Tu = u*.

Again, let A be an arbitrary element of E. From (3.2.1) with s := v + Au,

(T(v + Xu)-v*,v + Xu- v") ^ 0.

Using (3.6.2) and (3.6.4), this simplifies to

\2{u,u*)+\(u*,v-v") ^0.

Since this holds for all A, it follows that (u*,v - v") - 0, which gives (3.6.3). By
hypothesis, v-v** € N{T), hence there exists w £ E such that w = v" and v-w € N(T).
It now follows that w £ D and, from (3.6.2), that Tin — Tv = v*. Thus we have
established (3.2.2), which completes the proof that T is ultramaximal monotone. It now
follows from Theorem 3.5 that T is also of type (NA). D

Our next result strengthens Theorem 2.3(b). (See also [5, Theorem 6.4((a)=>(b))].)
It implies that the operator T of Example 2.2 is actually of type (NA).

COROLLARY 3 . 7 . Let D be a subspace of E and T : D >-» E* be linear and

monotone and R(T) = E*. Then T is ultramaximal monotone, and hence of type (NA).
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P R O O F : This is immediate from Theorem 3.6 since R(T)L - {0}. D

If F CE\ we write

F± := {x € E: for all x* e F, (x,x*) = 0}.

The set F± should not be confused with the set F1 already defined.

COROLLARY 3 . 8 . Let D be a subspace ofE,T:D^E" be linear and mono-
tone, N(T) be weak1 closed in E", and N(T)L C R{T). Then T is ultramaximal
monotone, and hence of type (NA).

PROOF: Since N(T)L C R(T), fl(T)1 C N(T)1L. However, since ~N(T) is weak'
closed in E**,

N(T)LL = (NiT)^1 = WT),

and the result follows from Theorem 3.6. D

Since any finite dimensional subspace of a Hausdorff topological vector space is
closed, the following result follows immediately from Corollary 3.8:

COROLLARY 3 . 9 . Let D be a subspace ofE,T:D\-+E* be linear and mono-

tone, N(T) be finite dimensional, and iV(T)-1 C R(T). Then T is ultramaximal mono-

tone, and hence of type (NA).

If T is as in Example 3.1 then N(T) is the subspace of L^O, 1] consisting of the
equivalence classes of the constant functions. Thus N(T) has dimension one, and it is
easily seen that N(T)X C R{T) also. Consequently, it follows from Corollary 3.9 that T
is ultramaximal monotone and of type (NA).

REMARK 3.10. It is worth noting that certain Banach spaces cannot support contin-
uous linear ultramaximal monotone operators. We first observe that if T : E >-¥ E* is
continuous, linear and ultramaximal monotone then

(3.10.1) v" € E" and T*V* € E* = > v" € E.

To this end, suppose that v" e E" and T"v" — v* for some vm € E*. Let s be an
arbitrary element of E. Then

(Ts,s- v") = (s, T'{s- v")) - (T'(s - v"), s)

and
(v',s- v") = (s- v",v*) = (s-v",T"v") = (T*(s- v"), v").

Thus, by subtraction,

(Ts - v*,$-v") = (T'(s - v"), s - v"),

and so, from the monotonicity of T* mentioned in Definition 3.2, (Ts - u*,s - v") ^ 0.
Since T is ultramaximal monotone, there exists w € E such that (Tw,w) = (v*,v**).
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In particular, v** £ E, which gives (3.10.1). Since (3.10.1) is satisfied, we say that T is
Tauberian— see Wilansky, [13, p. 175]. It follows from [13, Theorem 11-4-2, p.174-175]
that if E is not reflexive then the closure in E* of the image under T of the unit ball
of E is not weakly compact, in E* hence, in the notation of Saab-Saab, [7, Definition 6,
p.378], E does not have "property (w)". Spaces with this property are discussed in [7,
p.378-380 and Proposition 47, p.386]. In particular, E cannot be of the form co(F) or
C(Q) (fi compact Hausdorff). See also the discussion in Bauschke, [2, p.167-169].
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