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Abstract

We prove some limit theorems for continuous time and state branching processes. The non-degenerate
limit laws are obtained in critical and non-critical cases by conditioning or introducing immigration
processes. The limit laws in non-critical cases are characterized in terms of the canonical measure of
the cumulant semigroup. The proofs are based on estimates of the cumulant semigroup derived from the
forward and backward equations, which are easier than the"proofs in the classical setting.
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1. Introduction

Limit theorems constitute an important part of the theory of branching processes.
Since the processes are unstable, people have derived limit theorems for them through
devices such as modifying factors, conditioning, supporting immigration, and so on.
A standard reference on the limit theorems for discrete state branching processes is
Athreya and Ney [1]. Recently, Pakes [12] studied various conditional limit theorems
for the processes in a unified setting by introducing some general conditioning events.
A number of limit theorems for continuous state branching processes have also been
proved in the literature; see for example [4,16-18,20,21].

An important feature of the continuous state branching process is that the conver-
gence to a non-degenerate limit law can occur in supercritical, critical and subcritical
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[2] Asymptotic behaviour of branching processes 69

cases, in contrast to the discrete state processes. Suppose that [x, : t > 0} is a con-
tinuous time and state branching process with x0 = 1 defined on a probability space
(£2, &, P). Let r0 = inf{f > 0 : x, = 0} denote the extinction time of {x, : t > 0}
and let q0 = P(r0 < oo) be the probability of extinction. The asymptotic behavior
of {x, : t > 0} when q0 < 1 was studied by Grey [4]. Under certain hypotheses, the
author showed that there are positive constants {r)t : t > 0} such that r),x, converges
almost surely to a non-degenerate random variable as t —> oo, and it holds under some
moment condition that r), ~ ceml for constants c and m. These give the analogue of
the classical results of Seneta and Vere-Jones [21] in the discrete time situation. In
the subcntical case, the hypotheses of [4] imply that the process {x, : t > 0} never
becomes extinct. Indeed, Pakes and Trajstman [18] showed that, under the restriction
m((0, 1]) < oo, a random time r exists after which the process decays exponentially.
That is, there exist a constant c > 0 and a random variable £ > 0 such that x, — e"c/ £
almost surely for all t > r. Some limit laws of the process conditioned on {r > t]
and on [x, > s] were studied in [17,18]; see also [2] for related work.

In this paper, we prove some conditional limit theorems for the continuous time
and state branching processes which extinguish with positive probability. In the non-
critical cases, we shall see a symmetry between subcritical and supercritical processes
for the conditional limit theorems, which follows from the fact that a supercritical
branching process conditioned on extinction is equivalent to a subcritical one. In the
critical case, we consider two simplestspecial cases of the conditioning events of Pakes
[12] and show that suitable modifications of the process lead to some universal limit
laws independent of the explicit form of the branching mechanism. The analogues of
those results in the discrete state situation form the core of the classical conditional limit
theorems for branching processes. The continuous time and state versions are usually
more complete and their proofs are more enlightening. In the non-critical cases, the
conditional limit laws can be characterized in terms of the canonical measure of the
cumulant semigroup. In this sense, the continuous time and state model provides a
more economical way to establish the nicest conditional limit theorems for branching
processes. The greater tractability of these processes arises because both their time and
state space are smooth, and the distributions which appear are infinitely divisible. The
proofs of the limit theorems are based on the asymptotic estimates of the cumulant
semigroup derived from the forward and backward equations, which should be of
interest in their own right. As an additional application of those estimates, we prove
a limit theorem for the continuous time and state process with immigration, giving an
analogue of the results of Foster [3] and Yamazato [22].
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2. Preliminaries

Throughout this paper we consider a conservative continuous state branching pro-
cess X = (fi, S?, §?,, x,, QJC) with branching mechanism determined by the function

(2.1) F(z) = -bz -cz2+ f (1 - e-za -zu) m(du), z > 0,

where c > 0 and b are constants, and (M A M2) m(du) is a finite measure on (0, oo). For
notational convenience, we define <t>{z) = —F(z), which is a non-negative function
when the branching mechanism is critical or subcritical. Let (Q,)>o denote the
transition semigroup of X. Then

(2.2) / e~ky Q,(x, dy) = exp{-xv,(k)}, k>0,x>0,
Jo

where v,(k) is the unique positive solution to the backward equation

(2.3) — v,(k) = -4>(v,(k)), vo(k) = k, t>0,k>0.
dt

From (2.3) we can derive the forward equation --

(2.4) ^-v,(A.) = -tf>(A.)^-v,(k), vo(k) = k, t > 0, k > 0.
at ok

We may write v',(k) for (d/dk)v,(k) in the sequel. Note that our moment condition
on m(du) implies that Exx, < oo for all x > 0 and t > 0. Since v,(k) is the cumulant
of an infinitely divisible non-negative random variable with finite mean, it has the
canonical representation

/.OO

(2.5) v,(k) = d,k+ I (1 - e-Xu)l,(du), t > 0, k > 0,
J

where d, > 0 and ul,(du) is a finite measure on (0, oo). It is well-known that the
functions (v,)r>o on [0, oo) form a semigroup under composition, called the cumulant
semigroup of X. By (2.1) and (2.3) we have (3/9t)vt(k) < -bv,(k) and (3/30^(0) =
-bv',(0). It follows that v,(k) < e~6' X and u;(0) = e~*' for all k > 0 and t > 0; see
for example [1, page 259].

Let us consider the following condition on the branching mechanism:

[H] There exists 6 > 0 such that <j>(z) > 0 for all z > 0 and /e°° <t>{z)~*dz < oo.

Clearly, under this condition <p(z) is a strictly convex function of z > 0. In the
sequel, we shall write b = | \imxUf (x) to mean that f (x) decreases to b as x
increases to a. The arrows in f limx^a, | lim^|a and f l i m ^ should be interpreted in
similar ways. The following result was proved in [4].
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THEOREM 2.1 (Grey, 1974). For any x > 0 and t > 0, Q* {x, = 0} > 0
if [H] ZioWs. Under this condition, we have

, = 0} = exp{— xv,} and

, = 0 for some t > 0} = exp{— xv},

where v, :=f linutoo v,(k), and v :=i l im,^ v, is the largest root of<j){z) = 0, so
v > 0 if and only ifb = <j>'(0+) < 0.

Note that [H] is satisfied if <f>(z) = czl+fi for c > 0 and 0 < fi < 1, a special case
excluded in [17] and [18]. In the sequel of the paper we shall always assume [H]
holds. By the above theorem, we have d, = 0 and 0 < /,(0, oo) = v, < oo in (2.5),
that is,

(2.6) u,(A) = / (1 - e-ku)l,(du), t > 0, A. > 0.
Jo

By (2.3), for t > 0 and A. > v we have

(2.7) /" 0 ( z ) - ' ^ = t.

Letting A. —• oo in the equation (2.7) gives

(2.8) / <t>{z)' dz = t, t > 0.

Therefore, v, = u,(oo) solves the equation

d
(2.9) —v, = -<t>(yt), v0 = oo, f > 0.

COROLLARY 2.2. For any t > 0, the function v,(k),fork > 0 w strictly increasing
and concave, and v is the largest solution to the equation v,(k) — k. For 0 < A, < v
we have v = t Hm,t00 v,(k), and for k > v we have v =1 lim,t00 vr(A.).

PROOF. By (2.6), v,(A.) is a strictly increasing and concave function for A. > 0.
Using the semigroup property of (v,),>o one may check that v,+r = v,{vr). Letting
r ->• oo we get v = v,(v). Then v is the largest solution to the equation. If
b > 0, then we have v = 0. If b < 0 and 0 < A. < v, then A. < v,(k). Iterating
this inequality we see that v,(k) is an increasing function for t > 0 bounded above
by v. Let ^(A.) =f lim^oo v,(k). By the relation v,(vs(k)) = v,+s(k) we have
f,(v<x>(A.)) = Vao(k), and hence i>oo(A.) = v since v is the unique solution to v,(k) = A.
in (0, oo). The assertion for A. > v can be proved similarly. •
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3. Asymptotic estimates of the cumulant semigroup

Recall that lim,_*.oo «/(A.) = 0 for all k > 0 in the critical and subcritical cases.
In this section, we investigate the rate of this convergence, which is useful in the
discussions of limit theorems. By virtue of the backward and forward equations (2.3)
and (2.4) and the canonical representation (2.6), the proofs in our setting are easier
and more enlightening than the classical results as developed in [1]. We start with the
subcritical case.

THEOREM 3.1. Assume that b > 0. Then for any A. > 0, the limit g(k) :=f
linv^oo v~lv,(k) exists andO = g(0) = g(0+) < g(k) < g(oo~) = 1. Consequently,
v"1/, converges as t —>• oo to a probability measure n0 on (0, oo) with Laplace
transform 1 — g.

PROOF. Let g,(k) = v~lv,(k) and h,(k) = k~lv,(k). Then we have 0 < g,(k) < 1
and

(3.1) gt+,(k) = v s ( v , r l v s ( v , ( k ) ) = h s ( v , ) - l h s ( v t ( k ) ) g , ( k ) , s > 0 , t > 0 .

Since v,(O) = 0 and v,(k) is a concave function of k > 0, we have h't(k) =
k~2[v't(k)k — v,(k)] < 0, and hence h,(k) is non-increasing in k > 0. Thus g,(k) is
non-decreasing in t > 0, so the limit g(k) = t lim,-,^ ,̂(A.) exists and 0 < g(k) < 1
for all k > 0. Since g,(oo~) = 1, we have g(oo~) = 1. Observe that

(3.2) g,(v.(k)) = gt+t(k)h,(v,), s > 0, t > 0,

and lim^oo hs(v,) = v's(0) = e~bs. Then letting / -> oo in (3.2) we get

(3.3) g(vs(k)) = e - f a g(k), k>0,s>0.

It follows that g(0+) = g(0) = 0. From the relation

/.OO

lim / e-x" v7xl,{du) = 1 - lim vTlv,(k) = 1 - g(k)
'->°° Jo '-»°°

we see that vjxl, converges as t -> oo to a probability measure TC0 on (0, oo) with
Laplace transform 1 — g. •

Based on (2.3) and (2.4) it is easy to check that

(3.4) ^ [log v't(k)] = -(/>'(v,(k)).
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Since v'0(k) = 1, we have

(3.5) v',(k) = exp j - J (f>'(vs(k))ds\.

Let q,(k) = ebl v,{k) for t> 0 and A. > 0. By (3.5) it follows that

\ I" , 1
(3.6) q.(A.) = exp { — / <f>Jvs(k))ds ) ,

[ Jo J
where <f>o(z) = <t>(z) — bz by definition.

THEOREM 3.2. Assume that b > 0. 77J*TI /o r any A. > 0, the limit q'(k) :=4
linv^oo o,'(A.) ejcisfs a/iJO < a'(A.) < a'(0) = 1- Moreover, q'(k) > 0 for some (and
hence all) k > 0 if and only if / , Mlog(M)/n(rf«) < oo. Under this condition, we
have q'(0+) = q'(0) = 1.

PROOF. By (3.6), the first assertion follows with

(3.7) q'(k) = exp j - J <f>'0(vs(k))ds\.

Since Z» > 0 and vs(k) < e~bs k, we see easily that q'(k) > 0 holds if and only if

/

OO />OO />OO

rfs I M(1 — exp{—vs(k)u})m(du) = / uh(u, k) m(du) < oo,
^o Jo

—v

where
*(«, A.) := / (1 - exp{-vJ(A.)M}) ds.

Jo
Observe that

—/i(0, A.) = I vs(k)ds < k/b,
du Jo

and hence h(u, k) < constant A.M for sufficiently small u > 0. Now by our assumption
on the branching mechanism we get f0 uh(u, k) m(du) < oo. On the other hand, by
(2.3) we may change the integral variable to see that

t\ /*oo />X

—h(u. A.) = I u.s(A.)exp{—vs(k)u}ds = I v<p(v)~l exp{—vu}dv.
ou Jo Jo

Noticing that (f>'(0) = b we have

lim u—h(u, A.) = lim / (slu)d>(s/u)~* expf—s\ds = lib
u-*oo oU u~*°° Jn

for any A. > 0. Then l'Hospital's rule implies that limB_oort(M, A.)/logM = \/b.
Therefore, (3.8) holds if and only if f™ ulog(u)m(du) < oo. The last assertion
follows immediately by dominated convergence. •
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COROLLARY 3.3. Assume that b > 0. Then uebt l,(du) converges as t -*• oo to a
probability measure rj(du) on (0, oo) if and only iff™ u log(«) m(du) < oo. Under
this condition, t] (du) has Laplace transform q'.

PROOF. By the representation (2.6) we have

(3.9) qt(k) = f (1 - e-x") e* l,{du),
Jo

and hence

(3.10) q'l(k)= f ue-ku e*'l,(du).
Jo

We first regard ue~bt l,(du) as a probability measure on [0, oo]. Then Theorem 3.2
asserts that uebt l,(du) converges as t —> oo to a probability measure r) on [0, oo]
such that

(3.11) [
J[0,oo]

Since q[{oo~) = 0, we have q'(oo~) — 0 by the monotone convergence, and hence
r?({0}) = 0. Therefore, r](0, oo) = 1 holds if and only if ^,'(0+) = 1, and the results
follow by further applications of Theorem 3.2. •

In the next theorem, we make the convention that q,(oo) = e*' v, for t > 0.

THEOREM 3.4. Assume that b > 0. Then for any 0 < k < oo, the limit q(X) :=J,
lim^oo <7,(A) exists. Moreover, q(X) > 0 for some {and hence all) 0 < k < oo if and
only iff™ u log(«) m(du) < oo.

PROOF. By Theorem 3.2 and dominated convergence, we have q(X) ^ l i n V x x ^ A . )
for all 0 < A. < oo, where

q(k) := / q\u)du.
Jo

Since g(oo) > q(k) for all 0 < k < oo, the second assertion is immediate. •

As an easy consequence of Theorems 3.1 and 3.4, we get

COROLLARY 3.5. Assume that b > 0. Then ebl l,{du) converges as t ->• oo to
q(oo)n0(du), which is non-degenerate if and only iff™ u log(«) m(du) < oo.
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Now we consider the critical case. By virtue of the backward equation (2.3), the
proof of the following result is much simpler than the one in the Galton-Watson setting
given by Kesten et al [7].

THEOREM 3.6. Assume b = 0 and a1 = <£"(0) < oo. Then as t -+ oo we have

—at lv,(X) X J 2

uniformly on 0 < X < oo with the convention l/oo = 0.

PROOF. For 0 < X < oo and t > 0, we may use (2.3) and (2.9) to see that

1 3

By l'Hospital's rule,

(3.13) Iim0(z)/z2 = lim<p"(z)/2 = a212.
ziO zlO

But by Theorem 2.1, we have lim^oo v, = 0, and hence lim^oo v,(A.) = 0 uniformly
on 0 < X < oo. Then the assertion follows from (3.12) and (3.13). •

COROLLARY 3.7. Assume b = 0 and a2 = 0"(O) < oo. Then we have

(3.14) ^ ™ W ' ) = ( 1 + ; W X>0.

PROOF. From (2.3) and (2.4) we have v',(X/t) = (j){X/t)-l4>{v,{X/ty). Then (3.14)
follows from Theorem 3.6. •

4. Conditional limit theorems for the non-critical case

Let T0 be the extinction time of the continuous state branching process {x, : t > 0}.
By Theorem 2.1, in the non-supercritical cases we have T0 < oo almost surely. In this
section we give some conditional limit theorems of {x, : t > 0} based on the random
time r0.

We first consider a transformation of the continuous state branching process. It is
easy to check that R,(x,dy) := eblx~ly Q,(x, dy) defines a Markov semigroup on
(0, oo). By differentiating both sides of (2.2) we see that

(4.1) f e~ky R,(x,dy) = exp{-xvl(X)}q'l(X), X>0.
Jo
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By (3.6) the Laplace transform of (/?,),>0 is given by

(4.2) J e~ky R,(x,dy) = exp I - xv,(k) - j <P'0(vs(k))ds\, k > 0.

Using (4.2) we may extend (/?()r>o to a transition semigroup on [0, oo), which corre-
sponds to a special form of the continuous state branching processes with immigration
studied by Kawazu and Watanabe [6], Pinsky [19], and others. In the Galton-Watson
case, it was introduced by Spitzer (unpublished) and Lamperti and Ney [8]. The
following theorem states that in the critical and subcritical cases Rt(x, •) is intuitively
the law of x, conditioned on large extinction times.

THEOREM 4.1. Assume that b > 0. Then for any x > 0 and t > 0, the distribution
ofx, under Q*{|f + r < r0} converges as r —>• oo to Rt(x, •)•

PROOF. By the Markov property we have

Ox
(4.3) CL [exp{-Ajc,}|r + r < T0J =

- exp{-xv,+r\

Recall that vl+r = v,(vr) and v't(0) = e~br~.' Under the hypotheses, we have
lim^oo vr = 0 by Theorem 2.1. It follows that

lim Q, [exp{—kx,}\t + r < rol = lim jc~1uru/(ur)~
1QJC \x, exp{—AJC,}1

=x-leb'QJC[xlexp{-kx,}],

giving the desired result. •

THEOREM 4.2. Assume that b > 0. Then R,(x, •) converges as t -*• oo to a
probability measure n on (0, oo) if and only if f™ u log(«) m{du) < oo. Under this
condition, r]{du) is also the limit distribution ofu ebt l,{du) described in Corollary 3.3.

PROOF. Since b > 0, we have v,(k) -+ 0 as t -*• oo. By (4.1) and Theorem 3.2 we
see that

lim /
'~>0° Jo

R,(x, dy) = lim e* v'Xk) = q'(k),
' > 0 0

which together with Corollary 3.3 yields the desired results. •

Let (Q°)t>o denote the restriction to (0, oo) of the semigroup ( Q,),>Q. The following
theorem states that (<2?)r>o has a e~fc-invariant measure in the subcritical case. This
confirms an observation of Pakes [17, page 86]. It is also closely related to the work
of Pakes and Trajstman [18].
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THEOREM 4.3. Assume that b > 0. Then for any x > 0 and r > 0 the distribution
of x, under Qx{-\t + r < T0] converges as t —*• oo to a probability measure nr on
(0, oo) independent ofx. Moreover, n0 is also the limit distribution ofv~ll,(du) and
*o Q° = e~*' n0for all t > 0.

PROOF. Taking r = 0 in (4.3) we see that

(4.4) Q,[exP{-;u,}| , < ro] = 1 -
1 — exp{— xv,}

By Theorem 3.1 and (4.4) it follows that

(4.5) lim QJexp{-X*,}|f < r0] = 1 - lim v;lv,(k) = 1 - g(k),
t-HX t->0O

so we get 7r0 = lim^oo Qjc{-\t < r0}. In view of (3.3) we have

/ (1 - exp{-v,(k)u}) no(du) = / (l - e-x") e'"'
Jo Jo

and hence n0Q° = trbt n0. By (4.3)

exp[-xvt(X.)}-exp{-xv,(X
(4.6)

^ 1 - exp{-xvt+r]

As t -*• oo, the right hand side of (4.6) is equivalent to

V;+r(v,(k + Vr) - V,(k)) = VtiVr^iVtik + Vr) - V,(X)).

Using the canonical representation we may write this into

Q°° (1 -e-s'")l,(du)\

which converges as t —> oo to

(4.7) (I (l-e-^noidu)] j

giving the Laplace transform of a probability 7tr on (0, oo). •

COROLLARY 4.4. Assume that b > 0 and let n0 be given by Theorem 4.3. Then we
have /0°° u7T0(du) = ̂ (oo)"1. Thus n0 has finite mean if and only iff™ u log(«) m(du)
< oo.

https://doi.org/10.1017/S1446788700001580 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001580


78 Zeng-HuLi [11]

PROOF. By the proof of Theorem 4.3, the measure n0 has Laplace transform 1 —
g(X). Letting X -> oo in (3.3) we have g(vs) = e~bs. It follows that

f°
/

UTT0(du) = g'QO) = lim v;1 e-"s = lira q,(oo)~l = q(oo)~l,

which together with Theorem 3.4 gives the desired conclusion. •

The above conditional limit theorems are not restricted to the subcritical cases. In
fact, there is a symmetry in the limit theorems between the subcritical and supercritical
processes if we use suitable conditioning. In the supercritical case, we have b < 0
and

(4.8) Q,[exp{-Ajc,}|T0 < oo] = exp{-xu;,(A.)}, A. > 0,

where if,(A.) = v,(k + v) — v. Setting (f>a(X) = <j)(k + v) one may see that w,(k)
satisfies

(4.9) —w,(k) = -to(.w,(k)), wo(k) =k, t>0,X>0.
at

It is not hard to check that — 0j(A.) := cp(v) — <j>{X + v) has the representation (2.1)
with parameters b$ := <f>'(v), c$ := c and niiidu) := e~vu m(du). Recall that v > 0
is the largest root of <j>(z) = z, so we have b^> 0. Therefore, (4.8) implies that
[x, : t > 0} conditioned on r0 < oo is a subcritical continuous state branching process
with cumulant semigroup (io,),>0. In particular, w,(k) has the representation (2.6) with
canonical measure e~vu l,(du). Using Theorem 4.1, Theorem 4.2 and Theorem 4.3 we
get the following

THEOREM 4.5. Assume that b < 0. Then for any x > 0 the distribution ofx, under
Qjc{-\t + r < To < oo} converges as r -> oo to a probability measure T,(x, •) on
(0, oo). Moreover, T,(x, •) converges as t -*• oo to a probability measure r)(du) on
(0, oo), which is also the limit distribution ofuebi' e~"u l,(du).

THEOREM 4.6. Assume that b < 0. Then for x > 0 and r > 0 the distribution of
x, under Qx{-\t + r < To < oo} converges as t —*• oo to a probability measure nr on
(0, oo) which is independent ofx. Moreover, jro(du) is also the limit distribution of
(v, - v)-1 e"5)-1 e"5«

5. Conditional limit theorems for the critical case

Now we consider the critical case. The following theorems show that suitable
conditioning of the critical process may lead to some universal limit laws independent
of the explicit form of the branching mechanism. We first give an analogue of the
result of Harris [5].
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THEOREM 5.1. Assume that b = 0 and a2 = 0"(O) < oo. Let {y, : t > 0} be
a Markov process with transition semigroup (/?,),>o. Then the distribution of y,/t
converges as t -*• oo to the one on [0, oo) with density Ax exp{—2x/o2}/aA.

PROOF. Since b = 0, we have q',(X) = v',(k) by (2.6) and (3.10). By (4.1) and
Corollary 3.7 we see that

lim / e-ky/l R,(x,dy) = lim q'(k/t) = (1 + o2k/2y2,

which is the Laplace transform of the desired limit distribution. •

A number of conditional limit theorems for Galton-Watson processes were proved
in [12] by introducing some general conditioning events, which unify the known
results. The following theorems treat two simplest special cases of those conditional
events. The results will be used in the next section to draw a limit theorem for the
branching process with state dependent immigration. We shall give the sketches of
their proofs, for they are simpler than those of [12] in the more sophisticated situation.

THEOREM 5.2. Assume that b = 0 and o2 = </>"(0) < oo. Then for any fixed x > 0
and r > 0,

(5.1) lim Qxix./t > z\t + r.<: T0} = exp{-2z/cr2}, z > 0.
»-»oo

PROOF. By (4.3) we have

(5.2) CL [exp{-kxt/t}\t + r < T0J = ; : =—^ .
1 -exp{-xvl+r]

As t —> oo, the right hand side is equivalent to

By Theorem 3.6 we have l i m , ^ f u,+r = 2/CT2andlim,^oofu,(X//) = (l/k+o2/2)'1.
From the uniform convergence we get

CT2/2 = lim - | — 1—\ = lim[tv,(k/t + vr)]~\
'-•oo / \_V,(k/t + Vr) k/t + Vr] »-*oo

Then it follows that

lim Q, [exp{-kx,/t}\t + r < r0] = (1 + a2k/2)~l,
t-KX> L J

yielding the desired result. D

https://doi.org/10.1017/S1446788700001580 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001580


80 Zeng-Hu Li [13]

THEOREM 5.3. Assume that b = 0 and a2 = <p"(0) < oo. Then for any x > 0 and
a > 0 the distribution ofxjt under Qx{-|(l + a)t < r0} converges as t —• oo to the
one on [0, oo) with density

(5.3) 2(1 + a) exp{-2x/CT2}[l - exp{-2x/a2a}]/a2.

PROOF. Taking r = at in (4.2) we get

exp{-xv,(k/t)}-exp[-xv,(k/t + vat)}CL [exp{-kx,/t}\(l+a)t < ToJ =
1 -expf-JtUd-n,),}

which is equivalent to

(v,(\/t + val) — v,(A./f))/U(i+a),

as t ->• oo. Using Theorem 3.6 one can show that

l+a
lira Q, [expf-^/fJKl + o)r < r0] =
(-••OO (1 + CT2A./2)(1 + a + aa2k/2)

which is the Laplace transform of the distribution with density (5.3). •

6. A limit theorem for the immigration process

In this section, we consider a modification of the continuous state branching process,
which allows immigration after the population becomes extinct. Its discrete state
analogues have been studied by Foster [3], Pakes [13-15], Mitov and Yanev [10,11],
Yamazato [22] and many others. Suppose that q > 0 is a constant and G is a
probability measure on (0, oo) satisfying

(6.1) g := / yG(dy) < oo.
Jo

Let{r' : / = 0, 1, 2 , . . .} be a family of independent identically distributed exponential
random variables with parameter q > 0 and let [x'(t) : t > 0; i = 1, 2, . . .} be a
family of independent identically distributed continuous state branching processes
with initial distribution G. We define another continuous state branching process
{x°(t) : t > 0} with the same transition semigroup as [x'(t) : t > 0; i = 1, 2 , . . . } , but
its initial distribution is not specified. Suppose that the families {r' : / = 0, 1, 2 , . . . } ,
{JC''(O : t > 0; i = 1, 2 , . . .} and {x°(t) : t > 0} are independent of each other. Let
r^ := inf{r > 0 : x'(t) = 0} denote the extinction time of {*''(/) : t > 0}. Let

(6.2) an := £[T,$ + r'].
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Then an -*• oo almost surely as n —*• oo. We define the process [y, : t > 0} by

(6.3) » = ( X W

\x"(t — crn_i) foran_i < t < an and/i > 1.

It is not hard to check that {y, : t > 0} is a time homogeneous Markov process,
which will be called an immigration process with waiting parameter q and returning
distribution G. Note that the immigration process started with zero is a special case
of the regenerative process of Mitov et al [9], which was constructed by restarting
independent copies of a general stochastic process after the hitting times to zero.

The transition semigroup (/?()<>o of {y, : t > 0} can be computed based on the con-
struction (6.3). For any x > 0 the increasing function Q,(x, {0}) of t > 0 determines
a probability measure Q(dt, x, {0}) on (0, oo] with density x<j>(yt) exp{— xv,}. Then

/" f°°
(6.4) h ( t ) = q e - q s ds x e \ p { - x v , ^ } ( f > ( v ^ s ) G ( d x ) , t > 0

Jo Jo

defines the density of a probability measure H(dt) on [0, oo). Indeed, H(dt) gives the
distribution of the random variables [r0' + r1 : i = 1,2,. . .}. We define the renewal
measure U(dt) on [0, oo) by

oo

(6.5) U(dt) = Y^H*n(dt), t > 0,
JI=0

where H*n denotes the n-fold convolution of H with H*° = So by convention. Set
H(t) = H([0, t]) and U(t) = £/([0, /]). Observe that for any t > 0 we have

(66) —-u i-»«-
A characterization for the transition semigroup of the immigration process [y, : t > 0}
is given as follows.

THEOREM 6.1. For any bounded Borel function f on [0, oo) we have

(6.7) RJ (0) = / (0) - [ Uids) [ qe"*' dr f [f (0) - &_,_,/ (y)]G(dy),
Jo Jo Jo

and

(6.8) RJ (x) = QJ (x)- f [f (0) - R,_J (0)] Q(ds, x, {0}), x > 0.
Jo
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PROOF. In the sequel we may write G(f) for /0°°/(y)G(dy). Since an -> oo
almost surely as n —> oo, for any t > 0 we have

P(0 < t < cr0 or ffn_i < t < an for some n > l) = 1.

If/ (0) = 0, an easy computation based on (6.3) leads to

(6.9) RJ (0) = f U(ds) I q e~"r G{ Q,-s-J) dr.
Jo Jo

Similarly we have

(6.10) Rt(0, {0}) = / e«('-'> U(ds).
Jo

For a general bounded Borel function / on [0, oo) we can combine the above to get

RJ (0) = / U(ds) f q e-*r G(Q°_s_rf)dr + I e"^ U(ds)f (0).
Jo Jo Jo

Using this and the renewal equation for U(dt) we can compute that

RJ (0) = / U(ds) f q e-*' G( Q,.,.rf) dr
Jo Jo

- f H(t-s)U(ds)f(0)+ I e«(l-" U(ds)f (0)
Jo Jo

= I U(ds) f qe-"r[G(Ql^J)-f(0)]dr
Jo Jo

+ f[l-H(t-s)]U(ds)f(O).
Jo

By the strong Markov property of the process (y, : t > 0},

RJ (x) = Q°J (x) + f R.sf (0) Q(ds, x, {0}), x > 0.

Then (6.8) is immediate. •

LEMMA 6.1. Assume b = 0 and a2 = 0"(O) < oo. Then, as t - • oo,

t2h(t) -* 2g/(j2 and t[l - H(t)] -

where g is defined by (6.1).
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PROOF. We first rewrite (6.4) as

r°° _ r00

h(t) — I qe qsl{s<i)ds I xe\p{— x«,_,}</>(v,-s)G(dx), t>0.
Jo Jo

By Theorem 3.6 and (3.13) we have t2<f>{v,-s) -> 2/a2 as t -> oo. Then the results
follow by dominated convergence theorem and the 1'Hospital's rule. •

Now we present a limit theorem for the immigration process. The following result
gives a continuous time and space version of the theorems of Foster [3] and Yamazato
[22].

THEOREM 6.2. Assume that b = 0 and a1 = 0"(O) < oo. Let Y = (£2, <g, <£,, y
,,

Rx) be a realization of the semigroup (R,),>0. Then for any x > 0 and 0 < P < 1 we
have

(6.11) l imlMlog^ / log /< /?} = £.
;->oo

PROOF. Under Ro, the process [y, : t > 0} has the same law as the one constructed
by (6.3) with x° = 0 for all t > 0, which is a special form of the regenerative process
studied by Mitov et al [9]. With the results in the previous sections, it is not hard to
check that all the conditions in Theorem 2 of [9] are satisfied. Consequently, we have

where 8(t) := /o'(l - H(s)) ds. By Lemma 6.1 we see that (6.11) holds for x = 0.
Then the desired result follows by (6.8). •
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