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1. Introduction

If 99 is a real number with \q>\ > 1, then a semiregular continued
fraction development of <p is denoted by

1 1
<p = [ax> a2, a3, • • •] = a3 • • •,

a2~ a3~

where the at are integers such that |«,| 2̂  2. The expansions arise geo-
metrically by considering the sequence of divided cells of two-dimensional
grids (see [1]), and are described by the following algorithm:

1
<Pn = «»+l • K + l l ^ 2 , \<Pn+l\ > !-

<Pn+l

for all n ^ 0, taking q> = <p0. Hence

an+l = I>J Or [<Pn+ll

where in this case the square brackets are used to signify the integer-part
function. It follows that each irrational <p has uncountably many such
expansions, none of which has an constantly equal to 2 (or —2) for large n.

Hurwitz [4] has investigated one particular expansion from this
uncountable set, namely the one for which

(1) -J<-gl

for all n S; 0. This expansion is a development 'to the nearest integer'
in an obvious sense. Hurwitz proved that for any such expansion, if we put

0re = [«„, «n-i, • • ', «i],
then

1-V5 1 3—v/5 ,
_ ^ - < _ < _ ¥ _ when 9n>0,

(2)
1 V 5 1

< - < — ^ — when <pn<0.
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DEFINITION. / / k ^ 1 is any real number, we will denote by E(tp, l/k)
that uniqice semi-regular expansion of q> 5: k, for which

l—k 1 1
(3) —— < — g - , (n ^ 0)

k <pn k
and by E(l/k) the set

We can define a pair of minimal intervals I+(l/k) and I~{\jk), which are
subintervals of [—1, 1], and such that for all expansions of E{\\k) we have

1 ( / + (j) Wkm <Pn>°

J~ I — I when <pn < 0.

Then Hurwitz' result reduces to

I-M = / V 5 ~ 3 V 5 "
' ) •

Davenport [3] and others have utilised this result to obtain results on the
inhomogeneous minima of indefinite binary quadratic forms. In this case
the /±(^) are both of unit length, and so a different type of reduction for
quadratic forms may be defined, by relaxing each of the open intervals
to a half-open interval, and representing each reduced form by a doubly
infinite chain of integers. This gives rise to the notion of a semi-regular
expansion of the 'second kind' (see [4]).

It seemed to be of interest to investigate the intervals 7±(1/^) for other
values of k 5: 1. If we put

L I—-1 = max (length

then we may pose the following question. For what values of k is L (1/k) — 1,
and hence after fixing a suitable convention, define a unique semi-regular
expansion of the second kind?

In section 3 we will establish the following results. Define the sequences
{«r}, {&}, {dT} by

r 3rV(^+4r)
r r+1 Hr 2r
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THEOREM 1. For all r ^ 1,

0 , - 1 , ft-)
(<5r-l, dr)

Similar results hold for 7±(1—ar), 7±(1—ft), 7±(1—<5r), and these are
readily deduced from the theorem.

In section 4 the intervals 7±(l/&) will be discussed for more general
k S: 1. It will be shown that there are uncountably many 'bad' k, that is
k for which L{\fk) > 1. The whole paper could have been presented in the
context of binary quadratic forms, the proofs needing only minor modifica-
tion. I would like to thank the referee for his helpful comments and sugges-
tions on this paper, and to acknowledge the financial support of an 1851
Overseas Scholarship.

2. Preliminary results

In this section we will quote a few results for semi-regular continued
fractions which we will need in what follows. If pjqn is the nth convergent
for <p, that is

Pnkn = [«1.«2. • • ',*»],
then (see [1])

Po = 1> 1o = °> Pi = ai> 1\ = 1>
Pn+l = an+lPn—pn-l>
qn+l = an+l9n— In-l.

and
pn-1qn-qn-1pn = 1 (n ^ 1).

It follows that

(4) — \a a • • • a 1 = y"^"~jS>"-1

LEMMA 1. If q> = [a1( a2, • • •] where a,- > 0 for all j ' 5 ; 1, then whenever
alt a2, • • •, an_x remain constant and an is increased, the value of <p is
increased, whatever the values of an+1, an+2, • • •. It follows that if <pn and Xn are
also both positive, then

[«!, a2, • • •, an, <pn] < \al, a2, • • •, an, —AJ.

The proof may be found in [1].

LEMMA 2. We have, if ax > 0,
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if and only if

where, as usual, the upper bar is used to denote a periodic expansion.
This result follows from (4).
The repetition of a finite sequence of partial quotients will be denoted

by a suitable subscript, and we will incorporate the convention that a zero
subscript means that the corresponding segment be deleted from the chain.
We will use round external brackets to denote an ordinary continued
fraction development.

LEMMA 3.

(r-\-\)q>'—r
[2 r , <p'~\ = , for r ^ 0.

/ / in ordinary continued fractions

then in semi-regular continued fractions

The proof is straight forward and may be found in [2]. This relationship
enables any expansion from the set E(l) to be transformed into the corre-
sponding ordinary continued fraction expansion. Using the above conven-
tions, and inserting an appropriate 20 into the semi-regular expansion,
if necessary, we have for a( > 0,

<p = (a1, a2, a3, ait • • •) if and only if
(o)

It is clear that for k > 1, E{\jk) contains no expansion with a partial
quotient equal to ^ 1 , for if say

1 . l—k 1
q>n = 1 . With — — < < 0,

<Pn+\ k <Pn+l

then 9?n ^ k implies that

1-k 1

a contradiction.
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3. Proof of Theorem 1

We first note that after using (4)

= [2J,

(6) I I/A. = [2^73] ,

1/3, = [2, 2r_1, 3].

It then follows from Lemma 2 that

(7) • • • < A-i < «r-i < *,-i < A < «r

We also have

(8)

-*,) = [r+2].

These expansions may be obtained by an application of the trans-
formation (5), as the following example demonstrates.

- = [2, 2r_2, 3, 2r_1],
Pr

hence by (5)
I

1 = (0, r—1, 1, r),

and

Pr
= ( r - 1 , l , r ) .

Thus, by (5) again, we obtain

Pr , , 1

= [r+1, 20, r+2] = [r+1, r+2].

Consider the set of expansions £(ar). We cannot have for any n,

<P« = [2r, flwL where 9?n+r > 0,
else

p B + r - r r + 1

which contradicts that the expansion belongs to E(a.r). However, if

<pn = [2r_1( 9?B+r_i],

where ^B+r_! > 2, then <??„ > (r+l)/r, as required, Hence, whenever
am+1 > 0, am > 0, we have by (6) and Lemma 1,
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K > [2ZTT3] = 1//?,.
Now if for some n

<Pn = C2r+1- 9WflL

where <pn+r+1 < — 2, then <pn < (r+l)/r, but if

<Pn = [2r> 9Wr]>

where <pn+r < 0, then cpn > (r+ l)/r. Hence it follows from (6) and Lemma 1,
that whenever am+1 < 0, am > 0, that

0m > [2, 2r_X) 3] = l/3r.

If for some expansion from the set £(ar) we have

then we conclude that <pn+1 > 0, and clearly r + 1 is the smallest absolute
value permissible for negative partial quotients. Consequently, by (8) and
Lemma 1, we have for all m for which q>m > 0, and am < 0,

and for all m for which 9?m < 0, and am < 0,

Thus we have shown that

•/+(«,) = 08,-1,/Sr).

/-(«r) = ^ , . - 1 , ar).

Let us now consider the expansions from the set E{(5r). It is again
clear that we cannot have for any n

<Pn = [2,, 9 W l . W h e r e <Pn+r > 0.

but, by Lemma 1, we may have

<pn = [2r_1, (Pn+r^],

provided 9>n+r_1 ^ [3, l/j8r]. In the case when

<Pn = [2r, y'n+r]. w h e r e ^n+r < °-

then by hypothesis
y\<pn+r\ < \-fir,

and so by (6) and Lemma 1,

<pn = [2 r _ 1 ( 2 +
L
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It therefore follows that whatever the sign of <pm, we have for am > 0,

Om > [ V i . 3] = I/ft.

Now suppose that for some n we have

then clearly q>n+x > 0, and
1

\<Pn\ = r+ -. r

= [r+1, (1-ft)-1]

< 1/(1-/*,),

if and only if 1/(1—ft) > [r+1], by Lemma 2, and by (8) this condition
is clearly satisfied, leading to a contradiction. Now

Vn= l-r-l, q>n+i\

is a permissible expansion, whatever the sign of <pn+1, provided it is large
enough. However we cannot have

<P« = l—r—1, —r—l, <pn+2],

when <pn+2 < 0, since this implies

<Pn+2 > °> t h e n <Pn+2 ^ l I P r

\<pn\=

, r+2, (l-/?r)

< 1/(1-/?,).

by (8) and Lemma 2, since 1/(1—ft.) > [ r + 1 , r + 2 ] .
Hence it follows readily that if am < 0,

Consequently

The result for /±(<5r) follows analogously.
On examining the proofs for the preceding results, we notice that they

remain valid if we replace (3) by

k q>n k
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the only modification required being the occasional interchange of < and
^ . Denote this set of expansions by E'(ljk). Then the set obtained by
negating all the expansions of E'{\\k) is just the set E{\ — ljk). It follows
from Theorem 1 that

7+(l-«r) = (-dr, l-dr)

/ - ( l -O = (-fir. I"/*,)

7±(l-/?r) = (-&, 1-A)

-<5r) = (-dr, l-dr).

4. Further results

In this section we prove the following theorem.

THEOREM 2. For any k satisfying either

1 1
d P— < dr_i, or PT < — < ar,

we have

PROOF. In the first case (6) and Lemma 1 imply that

k = [2r_1( a, • • •], where a ̂  3;
hence

9* = [ 2r- l . «»+r. • • •] . W h e r e an+r > <>

satisfies <pn > k provided an+r is large enough. Now put

k

then by Lemma 2, q> > kj(k—1) provided

k
5 - 1

< [H-l] = 1/(1—<5r_1),

which is satisfied, by the hypothesis.
Now let

If we have for some k* > k, cpn = [—r, k*], then
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= r+ I = <p+ I - I

provided &* is sufficiently close to &. Choose k* to be rational (and if k
is rational, take k* = k), and close enough to k. Expanding k* by (3),
we obtain the finite expansion E(k*, 1/&), say,

k* = [2,_i, &i, • • •, &»], where ^ > 0.

Consider the chain

[a1 ( • • •, at, —r, 2r_x, bx, • • •, bn, b, c, 2r_lt b, • • • ] ,

with at < 0 and c > 0. It is clear that whether k is rational or irrational,
\bjt • • •, bn] cannot equal either k or kj{l—k) for any / (1 ̂  / ^ w), and so,
provided b is sufficiently large and of the correct sign, the chain belongs
to the set of expansions E(llk), for all large ax, • • •, «t-i- Hence we have
for the corresponding subscripts p and m,

|ej)l = [r> | f l t l > ' ' *' ~ai] < r> <Pv>0>

K = [2r_!, C • • •, «i] < [2r_x] = rj{r-\), <pm > 0.

Thus the length of /+(1/A) exceeds unity. Since the ax, • • •, at_x, are
arbitrary, then there are chains in which there are infinitely many paiis
p, m, for which (10) holds.

In the second case, it may be checked readily by methods similar to
the above that

k = [2r, x], where x < 0.

It can be verified that the following expansion belongs to the set E{ljk),
provided that b is large enough, and the ax, • • •, av are chosen judiciously.

[ax, • • •, ap> — r— 1, b, c, 2 r , x],

where ap < 0, b < 0, and c > 0. Thus for some m and t we have

\K\ = [r+l, K l . • • '. - « i ] < r+1, <pm < 0,

0t = [2r, c, • • -, a i ] < L2r] = (r+l)/r, «p( < 0.

Hence the length of I~{\jk) exceeds unity.
By methods similar to those used to obtain (9), we may prove analogous

results for sequences of intervals in [0, £].
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The question of the values taken by L(l/k) when dr_l < 1/k < /3r

has a more complicated answer, and we will not investigate it here. There
are sequences of values of k in this range for which L{\\k) — 1. For example

= [2r-x, 3, (2r_lf 3)ra, 2r_2, 3]

Km,, = tPr-i, 3)m, 2r_lf 3, (2r_2) 3, (2r_1( 3 ) J , ] .

There are also sequences of intervals for which L(\(k) > 1. It seems reason-
able to conjecture that the set of k for which £(l/£) = 1, has measure zero.
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