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In this paper we prove an identity between sums of reciprocals of Fibonacci and
Lucas numbers. The Fibonacci numbers are defined for all n > 0 by the recurrence
relation Fn+l = Fn + Fn_, for n > l , where F{) = 0 and f, = 1. The Lucas numbers L,, are
defined for all n >0 by the same recurrence relation, where L,, = 2 and L, = 1. We prove
the following identity.

THEOREM 1. For the Fibonacci and Lucas numbers we have

V
) n=] r2n-\ („={ \r2n-[) n=\\l-V,,

The above theorem is an immediate corollary of the following result.

THEOREM 2. For real a and /3 such that afi = — 1 and — 1 < /3 < 0 we have

° 1 °° 1+ ?
Theorem 1 is proved by noting that Fn = {a" - fi")/(a - /3) and L,, = a" + ft" where

a = {(\ +V5) and /3 = i(l -V5) , so that a- and /3 satisfy the conditions of Theorem 2.
Before we prove Theorem 2 we require two elementary lemmas.

LEMMA 1. For \q\ < 1 we

f nq" y (2n-l)q2"-]

Proof. Logarithmically differentiate Euler's formula II (\ + q")(\ — q2"'1) = \.
n= 1

LEMMA 2. For \q\<\ we have

Prao/.

where
o"(n)= f 2 ^ d

Now o"(n) - <f(n) = o{n) - 4o(n/2) where o(n) = £ d and CT(*) = 0 for non-integral x.
Therefore (/|"

q ) ,,=
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To prove Theorem 2 we just note that it is an immediate corollary of the following
result, with q = /?, when a and /? satisfy the conditions of Theorem 2.

THEOREM 3. For \q\ < 1 we have

v>
<?4"-2)3

 n

Proof. We use Jacobi's triple product identity [1], which states that for complex q
and z such that |g| < 1 and 2 # 0 w e have

U(l-q2n)(l+zq2-l)(l + z-lq2»-l)= £ 9"V. (1)
n = I /! = —=»

We now transform (1) by applying the following identities, which are effectively
Chebyshev polynomials. For n > 1 and z # 0 w e have

and for /i ^ 0, z =#= 0 we have

From (1), with x = z + z~l and using the Chebshev polynomials to substitute for z" + z~",
then interchanging the order of summation we have

«=i ,,=i

=ii ( - i r y ^ . (n
7
+ yW2-)2+£ £ (-ir+y

/'+ 1

where (2n)/(n +y) is taken to be 1 when n =j = 0. Equating the coefficients of x3 in (2)
gives

4n-2

To evaluate the term on the right hand side of (3) we logarithmically differentiate the
following famous theorem of Jacobi's [1]. For \q\ < 1 we have

El (l-<7")3= 2 {-l)n{2n + \)qn^a. (4)
n=\ n=l)

Then let q : = qs and multiply through by q to give

2 2 = 6q ft (1 - g
x")3 £ - ^ . (5)

n=l n=l1 fl

https://doi.org/10.1017/S0017089500009964 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009964


FIBONACCI AND LUCAS NUMBERS 383

We need two further results, (6) and (7), which are obtained by equating the coefficients
of x and x2 respectively in (2). For the last equality in (6), we again use (4).

ft (1 - <72")(1 + q4-2) £ T^r2 = £ (-1)"(2« + 1)<7<2" + I)2 = q ft (1 - q*"?- (6)

Z(-l)"+[nY"2. (7)
„ = 1

Now let z = —1 in (1) and logarithmically differentiate. Then multiply through by q to
give

ft(wxi-Wi-^-+ i ^ L C H i ( - i r ' * v . (8)
oo (2/1 - 1)<7 2 "~'

Then substitute for £ j ^ — in (8), using Lemma 1, and let q := g4 to give
H = i 1 — <7

ft ( i - A i - n £ 73̂ 1= £ (-lr'ny2. (9)
11=1 11=1 J- q «=i

From Lemma 2 with q : = g4 we have,

°° «^4ll oc M™Hll oc 4ll

y i ? 3 y nq =y —1 no)

With the help of Euler's identity, II (1 + fl")(l - q2"'1) = 1, we can combine (7), (9) and
(10) to give, "=l

>̂ q o v *7

Multiply (3) by £ q
 4;[_2. Substitute for £ (-l)"+1n(/x + l)(2/i +1)<7(2"+1)2

oo oo nln~x

from (5) and II (1 - o2")(l+ o4""2) £ , 4n_2 from (6). The term q FT ( l - o 8 " ) 3

ii = 1 n = l l + O « = 1

cancels. We then use (11) to substitute for 6 £ ^ in our new expression, and after the

/ a \
termini £ 3^35) convenientlycancelsoutweareleftwithTheorem3.Sothiscompletes

\n=11 + q I

the proof of Theorem 3 and hence that of Theorems 1 and 2.

Conclusion. It was first shown by Landau [2] that
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where for \q\ < 1 we have,

e2(q)= £ q(n + U2)2.
n = — oc

Also it is known that

where for |(?| < 1 we have,

Uq)= Ij-VY2-

There are many other expressions for sums of reciprocals of Fibonacci and Lucas
numbers in terms of the theta functions. See [3] for more examples. Also there are other
known polynomial identities between these sums. For example

,2 " 1

and

Of course we could prove Theorem 1 by showing that,

and then use results (12) and (13). However, such a proof would be less direct than the
proof given.
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