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A NOTE ON NILPOTENT JORDAN RINGS

BY
WALLACE S. MARTINDALE, 111

ABSTRACT. Let R be a 2-torsion free associative ring with
involution. It is shown that if the set S of symmetric elements is
nilpotent as a Jordan ring then R is nilpotent.

Let R be an associative ring with involution which is 2-torsion free. The set S
of symmetric elements is closed under the Jordan product x o y = xy + yx
and the set K of skew elements is closed under [x, y] = xy — yx. We define
s — g s**th — ¢ ¢ g and say that S is Jordan nilpotent (of degree n) if
s =0 (with n minimal). This definition is equivalent to the condition that
there exists an m such that any Jordan product of m elements of S, no matter
how associated, is equal to 0 (see, e.g., [2], p. 18, Theorem 2.4). In this note we
prove the following result.

THEOREM. If S is Jordan nilpotent of degree n then R is nilpotent of degree
=3-5""1

Our interest in this matter stems from the following question posed in [1]
(p. 195, Question 5.4):

Let G be a finite group of Jordan automorphisms of a ring such that R has no
additive G-torsion. If the Jordan ring RC of fixed elements is Jordan nilpotent,
must R be nilpotent as an associative ring?

The question in general remains open and appears difficult. However, our
theorem does answer in the affirmative a special case of the question, namely
when R is a ring with involution * and G = {1, *}. Here, of course, RY co-
incides with the symmetric elements S. We have subsequently learned from
I. P. Shestakov that O. N. Smirnov (Novosibirsk) in a paper submitted to the
Siberian Math J., has in fact proved more general results, still in the special case
G = {1, *}:

(i) If R is associative and S in solvable (i.e., st — 0 where SK*1 —
Skl o Sy then R is nilpotent.
(i1) If R is alternative and S is solvable, then R is solvable.
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(1i1) If R is alternative and S is nilpotent, then R is nilpotent if S generates R
but in general R need not be nilpotent.

Shestakov has also pointed out the following results of A.P. Semjonov
(Jakustsk), which have been submitted for publication:

If R is a Jordan algebra and G is a finite group of automorphisms of R
then:

(i) RY P.I. implies R P.IL
(ii) RO nil of bounded index implies R nil of bounded index.
(iti) R solvable and char. R = 0 implies R solvable.
P

Before proceeding to the proof of the theorem we make some remarks and fix
some notation.

First we indicate those properties of S and K which are needed for the
theorem, namely, S and K are additive subgroups of R such that

(1) SoS C 8.

(2) S is closed under tetrads {x;x,X3X,} = X1XX3X, + X4X3%pX].

3) IS, K] €8

4 2K € S + SK + KS (just consider 2abc = (abc — cba) + c(bo a) —
(coa)b + a(cob)fora,b, c € K).

3)2RC S + K.

Furthermore, since R may be localized at the powers of 2 in view of R being
2-torsion free, we may assume without loss of generality that 2 is a bijection on
R and accordingly we may replace (4) and (5) by

4y K € S + SK + KS.
5Y R=S + K.

We will also find it useful to define the following sets:
P, (resp. Q,) = the span of products of elements of S U K
which contain at least r factors from S (resp., whose first r factors lie in S).
Uy p (resp. Vi») = the span of products of elements of S k)

which contain at least p factors from Sk+D (resp., whose first p factors lie in
Sk+Dy

LEmma. (S®ym ¢ (sk+Dbyng,
PrOOF. For x|, X,, X3, X4, x5 € S® we have

X1XX3XgXs = X1 0 {XaX3XgXs} — XpX3XgXsX| T XsXgX3XpX| T X|X5X4X3X)

—3x1X3X3%4%5 (mod U )
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where (2) was invoked and repeated use was made of st = —ts (mod S (kt Dy for
s € S® t e §. Therefore X1 XpX3X4Xs € Uy, 1€, (s®y ¢ U1, and
consequently (S(k))s’" € U,,, Repeated use of the relation st = —ts (mod

skt s e s® ¢ e S(kH) shows that U, € ¥, € (s *Y)"R and the
lemma is proved.

PROOF OF THE THEOREM We are given that S™ = 0. Iteration of the lemma
then yields sn= ks € S™WR = 0, and so for k = n — 1 we have

6) SF =0,p=5""

Since R = § + K it suffices to show that xx,...x3, = 0 where each
x; € § U K. Now (4)" assures us that x;x, . ..x;, € B, and after repeated ap-
plication of as = sa (mod S), s € S, a € K we see that x;x,...x;3, € Q.

Therefore (6) forces R¥ = 0 and the proof is complete.
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