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SUMMARY

With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to
compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and
Echinostoma caproni in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by
2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a
reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and
screened against sera from hamsters infected withS. haematobium andE. caproni following 2-dimensionalWestern blotting.
Differential protein expression between the three species was observed with circa 5% of proteins from S. haematobium
showing expression up-regulation compared to the other two species. There was 91% similarity between the proteomes of
the two Schistosoma species and 81% and 78·6% similarity between S. haematobium and S. bovis versus E. caproni,
respectively. Although therewere some common cross-species antigens, species-species targets were revealed which, despite
evolutionary homology, could be due to phenotypic plasticity arising from different host-parasite relationships.
Nevertheless, this approach helps to identify novel intervention targets which could be used as broad-spectrum candidates
for future use in human and veterinary vaccines.

Key words: Schistosoma, S. bovis, S. haematobium, Echinostosma caproni, trematode, proteomics, immunology, DIGE,
DIA, vaccine development.

INTRODUCTION

Schistosomes are important blood-fluke parasites of
humans and domestic livestock (Rollinson et al.
1997). These trematodes are divided into 4 main
groups: Schistosoma mansoni group, S. haematobium
group, S. indicum group and S. japonicum group
(Secor and Colley, 2005). Echinostomes are also
trematodes but, unlike schistosomes, they develop
and are restricted to the intestinal lumen of the
definitive host and do not have a tissue invasive phase
(Toledo and Fried, 2005; Toledo et al. 2009).

Human schistosomiasis is a neglected tropical
disease and a major public health concern in Africa,
the Middle East, Asia and South America. Some
200 million people are infected with schistosomes,
with a further 700 million at risk of infection in
tropical and subtropical regions (Engels et al. 2002).
As there is currently no available vaccine for this
disease in people (Bergquist et al. 2008), the foun-
dation of control is based upon provision of chemo-
therapy to afflicted communities, in particular mass
drug administration of the anthelmintic praziquantel
(Doenhoff et al. 2009). However, the search for an
effective vaccine continues to be a key priority (Secor
and Colley, 2005).
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Urinary schistosomiasis, caused by Schistosoma
haematobium, is the most prevalent form of schisto-
somiasis in Africa and the Middle East. Children
carry the heaviest burden of infection with as many
as 100% of primary school children infected in
areas such as our study sites in Zimbabwe (Midzi
et al. 2008). Children younger than school-age can
also be infected and begin to exhibit disease (Garba
et al. 2010). As a result, schistosome-related morbid-
ities include both non-immunological forms (blood
in the urine, pain during urination, anaemia, growth
retardation, poor cognition and memory) and im-
mune-mediated forms (tissue damage and organo-
megaly) (Midzi et al. 2008). Immuno-pathological
reactions against schistosome eggs trapped in the
tissues leads to inflammatory and obstructive dis-
ease in the bladder, ureter and kidney as well as
fibrosis. Urinary schistosomiasis likely predisposes
to bladder cancer and HIV infection (Stoever et al.
2009).

To develop vaccines protective against infection
and/or pathology based on natural immune responses
against schistosomes, there is ongoing research both
in humans and animals in a context of experimen-
tal and natural schistosomiasis (Hagan et al. 1991;
Dunne et al. 1992; Demeure et al. 1993; Grogan
et al. 1997; Mutapi et al. 1998). Several studies
have demonstrated similarities between different
Schistosoma species in terms of life-histories and
immunological aspects (Verjovski-Almeida et al.
2003; Capron et al. 2005; Berriman et al. 2009;
Zhou et al. 2009), but little is known about molecular
phenotypic differences that may be involved in
host adaptation which might affect the efficacy of
future vaccines. Despite the demonstration that
antibody-mediated responses can protect against
schistosome infection in experimental models, cur-
rent human schistosome vaccine research, based on
antibody-mediated protection, has stalled with the
failure of many of the vaccine candidate antigens
to enter Phase III clinical trials (Hagan and Sharaf,
2003). Limitations in our current understanding
of the development of protective anti-schistosome
responses against specific antigenic proteins as
well as the parasite’s biology (particularly antigen
expression patterns) may be contributing to the
slow development of effective anti-schistosome
vaccines.

To shed light on these issues, comparison of the
protein expression of S. haematobium adult worms
with other trematode parasites could be illuminat-
ing especially in reference to S. bovis which is a
‘molecular’ analogue of S. haematobium and an
experimental model for vaccine research (Capron
et al. 2005). Comparison with other more distantly-
related trematodes, e.g. Echinostoma caproni, is
also useful by providing inferences into putative
responses to different life history tracts, i.e. echinos-
tomes do not have a tissue phase in the definitive host,

and present an opportunity to investigate host-related
adaptations in protein expression patterns. Although
S. bovis and S. haematobium differ in their definitive
hosts and in their niches within the host vasculature
(Vercruysse and Gabriel, 2005), being sufficiently
closely related in terms of evolutionary distance
(Bowles et al. 1995; Webster et al. 2006), they have
an ability to hybridise (Huyse et al. 2009). As S. bovis
is much easier to keep in laboratory passage in rodents
(Agnew et al. 1989) as well as eliciting similar
cross-immunogenic profiles (Losada et al. 2005),
makes study of S. bovis particularly informative.
However, significant differences are known: for
example, early studies of the S. haematobium vaccine
candidate glutathione-S-transferase (28 kDa GST)
showed inter-species variation in the coding regions
of S. haematobium vs. S. bovis vs. S. japonicum
28 kDa GST. This variation gives rise to phenotypic
differences associated with host immunity (Trottein
et al. 1992).

To date, several studies using proteomic ap-
proaches have compared protein expression patterns
between different helminth life stages (Curwen et al.
2004; Jolly et al. 2007; Wang et al. 2010), including
parasites of different sexes and parasite develop-
ment in different hosts (Toledo et al. 2004; Cheng
et al. 2005). There have been no comparative
proteomic studies on different trematode species
which could lead to novel intervention targets with
broader spectra and a better understanding of
parasite-related host immune modulation (Harnett
and Harnett, 2010). Previous evolutionary and
ecological studies have been carried out using genetic
techniques such as micro-array (transcriptome) or
genome sequencing (Cieslak and Ribera, 2009) and
these have given important insights into the biology
of the parasites. These techniques do not take into
account post-transcriptional regulation of protein
expression (López, 2007; Schrimpf and Hengartner,
2010) and cannot determine the degree of epitope
cross-reactivity between parasite species. Moreover,
the proteomic approach is particularly useful in
non-model organisms (López, 2007; Ramm et al.
2009). Comparative proteomic approaches have been
successfully used in other more general molecular
studies: for example, assessing the divergence be-
tween different rodent species (Aquadro and Avise,
1981).

In this study, we have used a proteomic approach
to compare phenotypic differences between the three
different parasite species in terms of protein ex-
pression and immunogenicity. We compared protein
expression patterns and immune cross-reactivity
between S. haematobium, S. bovis and E. caproni
which may indicate proteins involved in the ad-
aptation to different hosts and different niches
potentially warranting further scrutiny as potential
vaccines targets for schistosomiasis as well as several
other trematode diseases.
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MATERIALS AND METHODS

Parasites and experimental infections

The techniques used for the maintenance of
Echinosotoma caproni in the laboratory have been
described in detail elsewhere (Toledo et al. 2004).
Briefly, encysted metacercariae of E. caproni were
removed from the kidneys and pericardial cavities of
experimentally infected Biomphalaria glabrata snails
and used to infect golden hamsters (Mesocricetus
auratus). Outbred male golden hamsters, weighing
45–60 g, were infected through a stomach tube with
75 metacercariae each of E. caproni. The worm egg
release by each animal was monitored daily as
described previously (Toledo et al. 2003). Soluble
adult worm antigens (SWAP) were prepared from
adult worms collected from the intestine of hamsters
6 weeks post-infection with 100 metacercariae of
E. caproni following previously published protocols
(Toledo et al. 2003). For S. haematobium infections
used for the serological studies, parasite eggs
obtained from urine of S. haematobium-infected
children in Zanzibar (Stothard et al. 2002) were
hatched and used to infect Bulinus wrighti snails with
5 miracidia per snail. Upon infection patency 150
cercariae were pooled from these shedding snails and
used to infect golden hamsters by the paddling
technique; all experiments were in accordance with
ethical principles in animal research andHome Office
(UK) approvals.
Adult S. haematobium SWAP was obtained freeze

dried from the Theodor Bilharz Institute (Giza,
Egypt). To prepare this fraction, worms were
perfused in saline buffer from hamsters, washed in
PBS (pH 7·4), homogenized, centrifuged to obtain
the soluble fraction and freeze-dried in aliquots
(5 mg/mL). These were reconstituted with distilled
water as required. Freeze-dried adult S. bovis SWAP
from sheep was prepared as previously described in
detail elsewhere (Oleaga and Ramajo, 2004). SWAP
preparations were prepared following similar proto-
cols to reduce proteome variations due to different
preparation approaches.

Rodent sera

For the immunological cross-reactivity assays, the
antigen recognition patterns of sera from hamsters
infected with S. haematobium and E. caproni were
determined. For E. caproni, a pool was made from
sera collected at 5, 6 and 10 weeks post-infection
(hamsters normally make parasite-specific antibodies
from 5 weeks) from 5 hamsters. After clotting
overnight at 4 °C, serum was separated from the
clot by centrifugation. All the sera and the antigens
were stored at −20 °C until use. For sera from
schistosome infected hamsters, Syrian golden ham-
sters were infected with 150 cercariae by paddling
and bled 12 weeks post-infection. After clotting,

blood collected from each hamster was centrifuged
at 1400 g for 5 min to collect sera which were snap
frozen in liquid nitrogen for long-term storage in
liquid nitrogen. A pool of sera was made from
5 hamsters for use in this study. There were no
experiments of hamsters infected with S. bovis
parasites.

Preparations for CyDye labelling for DIGE

CyDye DIGE Fluor minimal dyes (GE Healthcare)
were reconstituted following the manufacturer’s
instructions. 50μg protein of each sample were
labelled with either Cy3 or Cy5. The sample volumes
were adjusted to 18μLwith labelling buffer (7M urea,
2M thiourea, 4% CHAPS, (w/v), 25 mM Tris Base;
pH 8·5), followed by addition of 1μL dye (400 pmol)
to each individual sample. The samples were left on
ice for 30 minutes in the dark, followed by adding
1μL of 10mmol/L lysine to stop the reaction.

Two-dimensional differential in gel electrophoresis
(2D-DIGE)

To compare the parasite proteomes in 2D-DIGE
assays, three gels were ran – one for each pair of
samples. Differentially labelled samples were mixed
into the same tube with 210μl of rehydration buffer
(7M urea, 2M thiourea, 4% CHAPS, 5% DTE
(dithioerythritol), 0·8% IPG buffer 3–10 pH and
bromophenol blue). Thereafter, the first dimension
i.e. isoelectric focusing (IEF) and second dimension
were run following previously described protocols
(Mutapi et al. 2005) using the IEF protocol for 13 cm
IPG strips; rehydration for 14 h at 20 V, 500 V for
1 h, 1000 V for 1 h and 8000 V for 3 h and performing
the second dimension using 12% polyacrylamide gels
with SDS buffer. Images from these gels were
subsequently analysed as described below.

Image analysis and mass spectrometry

Gels were scanned on a Typhoon spectrophotometer
(GE Healthcare) at the appropriate excitation/emis-
sion wavelength for each fluorophore Cy3 (532/
580 nm) and Cy5 (633/670 nm) at 50 microns
resolution. The images were analyzed using the
Difference In–gel Analysis (DIA) module of
Decyder software version 7.0 (GE Healthcare). The
protein spots showing greater than 5-fold differences
in relative abundance between parasite preparations
were considered as differentially expressed proteins.
The 5-fold difference was used to reduce the like-
lihood of detecting spurious differences. Proteins
from the different trematodes were identified by
comparing DIGE images with the proteomic map of
S. haematobium (Mutapi et al. 2005) and E. caproni
(Sotillo et al. 2010) since there is no complete genome
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Fig. 1. 2D-DIGE images comparing pairs of different helminth species’ adult worm proteomes.

A. S. haematobium (green spots) vs. S. bovis (red spots).
B. S. haematobium (red spots) vs. E. caproni (green spots).
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or protein sequence available for any of the three
species studied. S. haematobium protein identities on
the proteome map were obtained from a Coomassie
Blue-stained reference gel which had been prepared
and processed to obtain MS/MDS data which were
submitted for an MS/MS ion search via the Mascot
search engine (Matrix Science), and non-redundant
National Center for Biotechnology Information
(NCBI) database (Mutapi et al. 2005). Briefly,
plugs of 1·4 mm were excised from the reference
Coomassie Blue-stained gel and subjected to in-gel
trypsin digestion in an Ettan Spot Handing
Workstation (GE Healthcare), in accordance with
standard protocols (Amersham).
The resulting tryptic peptides were solubilized in

0·5% formic acid and were fractionated by nanoflow
high-performance liquid chromatography on a C18
reverse phase column (GE Healthcare), and elution
was performed with a continuous linear gradient of
40% acetonitrile for 20min. The elutants were
analyzed by online electrospray tandem MS (MS/
MS) by use of a Qstar Pulsar mass spectrometer
(Applied Biosystems). A 3 sec survey scan preceded
each MS/MS data-collection cycle of 4 product ion
scans of 3 sec each, and this gave a duty cycle of
15 sec. Data were submitted for an MS/MS ion
search via theMascot search engine (Matrix Science),
and both locally established databases for S. mansoni
EST sequences and the present non-redundant
National Center for Biotechnology Information
(NCBI) database were searched.

Two-dimensional electrophoresis and Western blotting

In order to determine cross-reactive antigens, 2D gel
electrophoresis (2DE) was conducted on 7 cm gels as
above, with some modifications. 100 μg of protein
were solubilised in rehydration buffer (7M urea, 2M
thiourea, 4% CHAPS (w/v), 65 mM DTE and trace
bromophenol blue) and 0·8% IPG buffer (pH 3–10)
to make a total volume of 125μL. Each protein
preparation was then added to a 7 cm linear pH 3–10
IPG strip and the IEF was performed following the
following protocol (1) passive rehydration for 14 h ;
(2) 500 V for 30min; (3) 1000 V for 30min;
(4) 8000 V for 4 h followed by equilibration in 2mL
of 1%DTE for 15min and 2mL of 4% iodoacetamide
in equilibration buffer containing 6 M urea, 0·375 M
Tris pH 8·8, 2% SDS and 20% glycerol. The second
dimension was performed using 10% polyacrylamide
precast gels from Invitrogen. Proteins from SDS–
PAGE were stained with Coomassie blue or trans-
ferred onto nitrocellulose membranes in 25ml 20X
transfer buffer (Invitrogen), methanol 10% (v/v).

After confirming transfer by staining with 0·1%
Ponceau S (Sigma), membranes were blocked with
TBS Start Block buffer T20 (Invitrogen) for 1 h at
room temperature. After washing with TBS contain-
ing 0·05% Tween-20 (TBST), blots were incubated
overnight at 4 °C with a pool of 10 serum samples
of E. caproni-infected hamsters, or S. haematobium-
infected hamsters or negative control sera at 1:200
dilution in TBS Start Block buffer. The membrane
was then washed three times for 10min each time in
TBS, 0·05% Tween 20, 0·5% Triton-X100 (TBS/
TT). Bound antibodies were detected by incubating
blots for 1 h at RT with horseradish peroxidase
(HRP)-conjugated rabbit anti-Syrian hamster IgG
(Abcam), in blocking buffer. After washing four
times for 10min each time in TBS/TT and once
in TBS alone, recognised antigens were visualized
using ECL Plus (Amersham) following the manu-
facturer’s instructions, and exposed to X-OMAT
film (Kodak) for 10 sec. Images from Western
blotting and Coomassie blue staining were digitalised
and matched by using ImageMaster software (GE
Healthcare).

RESULTS

Proteome comparisons

The 2D-DIGE gels were run comparing the 3
proteomes as shown in Fig.1. DIA analysis of the
gels showed both quantitative and qualitative differ-
ences. There was more similarity between the two
schistosome species than between Echinostoma and
Schistosoma. On the first gel comparing S. haemato-
bium and S. bovis, 1701 spots representing different
proteins (including different isoforms) were detected,
with 91% showing similar expression levels (Fig. 2A).
5·4% of the proteins showed increased expression in
S. haematobium by our criteria of 5-fold or greater
difference in abundance on the gel while 3·6% showed
increased expression in S. bovis. On the second gel,
comparing S. haematobium vs. E. caproni, 1967 spots
were detected with 81% showing similar expression
levels. 8·4% of the protein spots showed increased
expression in S. haematobium and 10·6% showed
increased expression in E. caproni while 81% were
present in similar amounts on both gels (Fig. 2B).
On the final gel, comparing S. bovis vs. E. caproni,

1757 spots were detected with 78·6% showing
similar expression levels. 9·1% of the protein spots
showed increased expression in S. bovis and 12·3%
showed increased expression in E. caproni (Fig. 2C).
It was possible to identify some of the proteins
present on the adult worm proteomes by comparing
DIGE images with the proteomic maps of

C. S. bovis (red spots) vs. E. caproni (green spots).Identified proteins are indicated by solid arrows (for S. haematobium),
dashed arrows (for E. caproni) and encircled (for both).
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Fig. 2. Pair-wise comparison of protein expression patterns in adult worm proteomes of pairs of parasite species from
DIA plug-in analysis. This analysis co-detects the spots from the image and, after normalization, compares the volume
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S. haematobium and E. caproni. Details of
S. haematobium protein identities from mass spec-
trometry of proteins have already been published
(Mutapi et al. 2005) while those from E. caproni have
not previously been published and are given in
Table 1 and annotated in Fig. 3.
The expression patterns of pairs of proteins spots

between different parasite species are compared in
Table 2. The heat shock protein HSP70 was more
highly expressed in S. haematobium compared to
S. bovis or E. caproni. Between the Schistosoma
species, there were similar expression levels of meta-
bolic enzymes, signal transduction molecules and
detoxification enzymes, but expression levels of these
proteins differed between the latter species and
E. caproni. Three homologous proteins were ident-
ified in S. haematobium and E. caproni; protein
disulfide isomerase, enolase and GST, but the gel
migration showed that they differed in molecular
weights between the two species.

Immune cross-reactivity

Using sera from hamsters infected with S. haemato-
bium and E. caproni, we performed 2D Western-
blot analyses. As expected, homologous pairs of
sera and antigen showed the highest levels of

recognition (Fig. 4). Interestingly, heterologous sera
also detected spots in the gels, confirming cross-
reactivity among these trematode species. In this
context, S. haematobium sera recognised more anti-
genic spots in the S. bovis proteome than in
E. caproni. There was some cross-reactivity, be-
tween E. caproni and S. haematobium. Three spots in
the E. caproni proteome which were identified as
isoforms of GADPH reacted with sera from both
E. caproni-infected and S. haematobium-infected
hamsters. However, sera from E. caproni-infected
hamsters did not react against GADPH in the
S. haematobium proteome.

DISCUSSION

Trematodes are an evolutionarily distinct group
of parasites of importance to both human and
veterinary medicine in the diseases that they cause.
Understanding similarities and differences in their
phenotypic molecular biology is important in several
areas such as drug target discovery, vaccine design
and development of helminth-derived therapeutic
agents for immune disorders; also in the context of
when infections are acquired during childhood and
beyond. Here, a comparative analysis of the proteome
of three species of trematode: S. haematobium,

of a spot from the two samples as a volume ratio. Spots were detected as different if the volume ratio threshold difference
was 5 5 fold. Each gel image shows different expression patterns on individual species gels.

A. Gels showing the DIA analyses of S. haematobium vs. S. bovis on the gels from each of the two species. Green marks
represent proteins over-expressed in S. haematobium. Red marks represent proteins over-expressed in S. bovis. Blue
represents spots expressed to similar levels in the two species.
B. Gels showing theDIA analyses ofS. haematobium vs.E. caproni on the gels from each of the two species. Greenmarks
represent proteins over-expressed in S. haematobium. Red marks represent proteins over-expressed in E. caproni. Blue
represents spots expressed to similar levels in the two species.
C. Gels showing the DIA analyses of S. bovis vs. E. caproni on the gels from each of the two species. Green marks
represent proteins over-expressed in E. caproni.Red marks represent proteins over-expressed in S. bovis. Blue represents
spots expressed to similar levels in the two species.The histograms represents spot frequencies plotted against logarithm
volume ratio.

Table 1. Proteins identified in the adult soluble worm preparation of Echinostoma caproni using MASCOT
search engine (Matrix Science)

Sample NCBI accession # Protein (Species) MW Hit_score

1 gi|3891573 Chain A, Fasciola hepatica Glutathione S-transferase isoform 1 in
complex with glutathione

25217 77

2 gi|3891573 Chain A, Fasciola hepatica Glutathione S-transferase isoform 1 in
complex with glutathione

25217 83

3 gi|16406594 Glyceraldehyde phosphate dehydrogenase (Fasciola hepatica) 23687 247
4 gi|16406594 Glyceraldehyde phosphate dehydrogenase (Fasciola hepatica) 23687 201
5 gi|226475754 Aldolase (Schistosoma japonicum) 39800 134
6 gi|29841453 Similar to GenBank Accession Number AF026805 fructose

bisphosphate Aldolase (S. mansoni and S. japonicum)
32063 162

7 gi|268535422 Hypothetical protein CBG15039 (Caenorhabditis briggsae) 20029 58
8 gi|112950027 Enolase (Echinostoma caproni) 46568 588
9 gi|226489288 Tubulin beta-2C chain (Schistosoma japonicum) 50056 666
10 gi|3392892 Protein disulphide isomerase (Fasciola hepatica) 55587 69
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S. bovis and E. caproni using 2D-DIGE was con-
ducted. S. haematobium and S. bovis are closely
related species and can undergo hybridisation (Huyse
et al. 2009), the results obtained here show that there
are also significant proteomic differences, even among
conserved proteins. These species-specific differences
could be due to phenotypic plasticity arising from
different host-parasite relationships (Schrimpf and
Hengartner, 2010). Evolutionary and phylogenetic

studies have demonstrated that highly expressed
genes tend to evolve more slowly (Hirsh and Fraser,
2001; Schrimpf and Hengartner, 2010), nonetheless
here we demonstrate that some of these conserved
proteins differ inmolecular weight, most likely due to
post-translational modifications which should be
explored further particularly as vaccine candidates.

It was possible to identify some of the proteins
present in the proteomes by searching public

Table 2. Proteins differentially expressed between the different trematodes identified on the 2-dimensional
gel in Differential in Gel Electrophoresis (DIGE)

S. haematobium vs. S. bovis

INCREASED in S. haematobium
Heat shock protein /chaperone NCBI accession # MW
70,000mol wt antigen/hsp70 gi|10168 68331

SIMILAR
Metabolic enzyme NCBI accession # MW
Triosephosphate isomerase gi|1351281 28447
Fructose 1,6 bisphosphate aldolase gi|605647 39963
Protein disulfide isomerase gi|312018 54463
Phosphoglycerate kinase gi|556413 44508
Enolase gi|3023710 47421
Heat shock protein/chaperone
Heat shock protein HSP60 gi|21634531 58740
Signal transduction
14−3-3 epsilon gi|6649234 28754
Detoxification protein
28 kDa glutathione-S transferase gi|161013 2407

S. haematobium vs. E. caproni

INCREASESD in S. haematobium
Metabolic enzyme NCBI accession # MW
Triosephosphate isomerase gi|1351281 28447
Fructose 1,6 bisphosphate aldolase gi|605647 39963
Protein disulfide isomerase gi|312018 54463
Phosphoglycerate kinase gi|556413 44508
Enolase gi|3023710 47421
Heat shock protein /chaperone
70,000mol wt antigen/hsp70 gi|10168 68331
Heat shock protein HSP60 gi|21634531 58740
Signal transduction
14-3-3 epsilon gi|6649234 28754
Detoxification protein
28 kDa glutathione-S transferase gi|161013 24071

INCREASED in E. caproni
Metabolic enzyme NCBI accession # MW
Protein disulphide isomerase gi|3392892 55587
Enolase gi|112950027 46568
Glyceraldehyde phosphate dehydrogenase gi|16406594 23687
Detoxification protein
Glutathione S-Transferase gi|3891573 25217

SIMILAR
Metabolic enzyme NCBI accession # MW
Aldolase gi|226475754 39800

E. caproni vs. S. bovis

INCREASED in E. caproni
Metabolic enzyme NCBI accession # MW
Protein disulphide isomerase gi|3392892 55587
Enolase gi|112950027 46568
Glyceraldehyde phosphate dehydrogenase gi|16406594 23687
Detoxification protein
Glutathione S-Transferase gi|3891573 25217
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databases, but due to the limited sequence infor-
mation available on these three trematodes, a large
number of the proteins remain unidentified (Nowak
and Loker, 2005). Comparing the proteomes of the
two schistosome species, only HSP70 identified from
the Coomassie Blue-stained reference gel showed
increased expression in S. haematobium despite the
10% difference in protein expression levels detected
by the DIA analysis. The DIGE analysis can detect
much lower concentrations of proteins than
Coomassie staining. Thus, a large number of proteins
present on the DIGE gel were present at a concen-
tration too low to be detected from the Coomassie
Blue-stained gel for mass spectrometry. These
proteins accounted for some of the 10% differences
between the two schistosomes. Our results showing
differential expression of HSP70 are consistent with
those from a different trematode genus, Fasciola
where F. hepatica and F. gigantica show different
levels of HSP70 expression (Smith et al. 2008).
Furthermore we have previously reported differences
in HSP70 expression in E. caproni parasites from low
vs. high compatible hosts (Higón et al. 2008).
Therefore, expression levels of HSP70 seem to
depend on the host environment and this could be a
common mechanism used by different parasites in
order to adapt to different hosts. The sequencing of
the genome and subsequent identification of all
proteins present in the proteome of all 3 species
compared in this study will greatly strengthen such
comparative approaches as they will allow more
robust comparison of identified proteins as well as

comparisons of the number of isoforms and the
relative abundance of each isoform to the compared.
There were more differentially expressed proteins

between the two different genera. Most proteins
identified in both E. caproni and S. haematobium
(with known identities) are homologues (protein
disulfide isomerase, enolase and GST). However,
these homologues have different molecular weights.
It is likely that this difference is due to post-
translational modifications rather than changes in
the gene sequence, since these proteins are highly
conserved (Ramajo-Hernández et al. 2007a,b; Sotillo
et al. 2008). Furthermore, these proteins are impor-
tant for the host-parasite relationship (E/S products,
immunogenic properties), so these modifications
could be involved in the host-parasite surface inter-
action. Protein disulfide isomerase (PDI) catalyses
the formation (oxidation), breakage (reduction) and
rearrangement (isomerisation) of disulfide bonds
within proteins, thereby permitting their proper fold-
ing in the endoplasmic reticulum and transit through
the secretory pathway (Ellgaard and Ruddock, 2005).
PDI has been identified in the E/S products of
adult E. caproni, E. friedi and F. hepatica worms,
suggesting that it may be important in host-parasite
interactions (Salazar-Calderon et al. 2003; Bernal
et al. 2006; Sotillo et al. 2010). Moreover, PDI is
immunogenic in human S. haematobium infections
(Mutapi et al. 2005) and experimental F. hepatica
(Moxon et al. 2010) and it has been shown to be
immunologically protective against the hookworm,
Ancylostoma (Epe et al. 2007). Differences in PDI

kDa

Fig. 3. Coomassie blue-stained 2-dimensional E. caproni gel showing spots excised, and identified by MASCOT.
Corresponding protein identities are given in Table 1.
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Fig. 4. Antigen recognition profile of sera from trematode-infected hamsters.

A. S. bovis SWAP antigen recognition by sera from E. caproni-infected hamsters.
B. S. bovis SWAP antigen recognition by sera from S. haematobium-infected hamsters.
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molecular weight between S. haematobium and
E. caproni could be due to post-translational mo-
difications, akin to the PDI glycosylation reported in
Trypansoma brucei where it is related to parasite
defence (Rubotham et al. 2005).
The main function of glutathione S-transferase

(GST) is detoxification of oxygen and endogenous
free radicals (Torres-Rivera and Landa, 2008). It is
present in Echinostoma spp. and S. bovis tegument
and E/S products (Bernal et al. 2006; Perez-Sanchez
et al. 2006; Sotillo et al. 2010). It is also the leading
schistosome vaccine candidate (Capron et al. 2005;
McManus and Loukas, 2008). There is a difference in
the theoretical and observed molecular weights for
GST. Ramajo-Hernandez et al. (2007a) reported no
glycosylation of GST in S. bovis. Enolase is a multi-
functional glycolytic enzyme (Pancholi, 2001), also
present in E/S products (Bernal et al. 2006; Perez-
Sanchez et al. 2006; Sotillo et al. 2010). In S. bovis as
well as E. caproni, enolase has been identified as a
human plasminogen-binding protein; this protein
may be involved in preventing blood clotting during
feeding in Schistosoma (Ramajo-Hernández et al.
2007b) or inmucosal erosion inEchinostoma (Marcilla
et al. 2007).
To investigate some of the biological differences

arising from differences in the proteomes, the im-
munogenicity of the adult worm antigens was
compared. There was cross-reactivity between the
three trematode species, but the intensity and antigen
pattern recognition patterns differed. The most im-
mune cross-reactivity occurred between the two
schistosomes which is consistent with the DIGE
results. We have identified a novel antigen for
E. caproni, 3 isoforms of GADPH. E. caproni
GAPDH was also recognized by sera from
S. haematobium-infected hamsters. Interestingly,
S. haematobiumGADPH antigen was not recognized
by sera fromE. caproni-infected hamsters. GAPDH’s
immunogenicity has been reported from other
studies and is one of theWorld Health Organisation’s
human schistosome vaccine candidates (Bergquist
et al. 2002; El Ridi et al. 2010). Nevertheless it has
not previously been reported as an antigen in
Echinostoma spp. Toledo et al. (2004) discovered an
immunogen of 37 kDa, 6 weeks post Echinostoma
infections in rats, but the intensity of this response
declined during the infection, suggesting that the
protein could be released in the juvenile stages of
the parasites. This immunogen is likely to be
GAPDH and this present study and that of Toledo

et al. (2004) suggest that the kinetics of antigen
release and antibody production against GAPDH
require further investigation, especially in the future
context of screening against human sera from infected
people.
Schistosomiasis continues to be a major public

health problem in several tropical and sub-tropical
countries. There are now several studies (e.g. Garba
et al. 2010), showing that children as young as 1 year
old are infected and can harbour levels of infection
comparable to those in the adults in their commu-
nities and the search for an effective vaccine continues
to be a key priority (Secor and Colley, 2005). One
promising approach being pursued is to treat people,
children in particular, repeatedly with praziquantel
to induce immune-mediated resistance to re-infec-
tion (Black et al 2010a). However, studies using this
protocol indicate that the number of PZQ treatments
required to reduce re-infection is significantly vari-
able and can take several rounds of PZQ treatment
(Black et al. 2010b). This suggests that an integrated
approach using treatment and a recombinant vaccine
as proposed by the World Health Organisation
(Berquist, 2004) might lend predictability and
consistency as well as improved efficacy to future
schistosome control programmes. Thus the molecu-
lar phenotypic differences shown in this study, par-
ticularly those which appear to be post-translational,
may influence the development and production of
recombinant vaccines (e.g. bacterial expression sys-
tems may not process the proteins appropriately
after translation) and affect the efficacy of future
vaccines.
Overall this study has demonstrated that, despite

several biological and phylogenetic similarities be-
tween the three trematode species S. haematobium,
S. bovis and E. caproni, there are quantitative and
qualitative differences in protein expression patterns
in their adult worm proteomes. The differences
could be due to phenotypic plasticity arising from
different host-parasite relationships. Some of these
differences translate to differences in immunogeni-
city. Further studies characterizing the differentially
expressed proteins will be important in determining
the identity of proteins involved in host-parasite
adaptation and the nature of the interaction be-
tween the host and parasite. This is particularly
important for identifying vaccine candidates and
predicting the effects vaccination, especially in child-
hood, would have on the parasite population
structure.

C. S. haematobium SWAP antigen recognition by sera E. caproni from infected hamsters.
D. S. haematobium SWAP antigen recognition by sera from S. haematobium-infected hamsters.
E. E. caproni SWAP antigen recognition by sera from E. caproni-infected hamsters.
F. E. caproni SWAP antigen recognition by sera from S. haematobium-infected hamsters.
A novel E. caproni antigen GAPDH is encircled.
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