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Abstract Motivated by some non-local boundary-value problems (BVPs) that arise in heat-flow prob-
lems, we establish new results for the existence of non-zero solutions of integral equations of the form

u(t) = γ(t)α[u] +
∫

G
k(t, s)f(s, u(s)) ds,

where G is a compact set in R
n. Here α[u] is a positive functional and f is positive, while k and γ may

change sign, so positive solutions need not exist. We prove the existence of multiple non-zero solutions of
the BVPs under suitable conditions. We show that solutions of the BVPs lose positivity as a parameter
decreases. For a certain parameter range not all solutions can be positive, but for one of the boundary
conditions we consider we show that there are positive solutions for certain types of nonlinearity. We
also prove a uniqueness result.
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1. Introduction

We discuss nonlinear non-local boundary-value problems (BVPs) for equations of the
form

−u′′(t) = f(t, u(t)), t ∈ (0, 1), (1.1)

where f is a non-negative function, with one of the two non-local boundary conditions
(BCs)

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1], (1.2)

u(0) = α[u], βu′(1) + u(η) = 0, η ∈ [0, 1]. (1.3)

We are particularly interested in positivity properties of non-trivial solutions.
Both BVPs are handled here by studying the same type of perturbed Hammerstein

integral equation.
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As in [4,9], these BVPs arise in the study of the steady states of a heated bar with a
thermostat, where a controller at t = 1 adds or removes heat according to the temperature
detected by a sensor at t = η. A special case of the BC (1.3) also occurs in studying the
membrane response of a spherical cap [1,3,17,18].

We shall take α[u] to be a non-negative affine functional given by

α[u] = A0 +
∫ 1

0
u(s) dA(s),

involving a Stieltjes integral, which includes the particularly natural BCs

u′(0) + αu(0) = 0 or u(0) = U (1.4)

which, in the heated bar case, correspond, respectively, to natural heat loss at t = 0 (or
another controller at t = 0) or to the left-hand end of the bar being maintained at a
fixed temperature. It also includes multi-point problems when α[u] =

∑m
i=1 αiu(ξi) and

a continuously distributed case when α[u] =
∫ 1
0 α(s)u(s) ds.

One motivation is that the linear problem

−u′′(t) = y(t), (1.5)

with BCs

u′(0) = 0, βu′(1) + u(0) = 0, (1.6)

which is a special case of BC (1.2) with η = 0, has been studied by Guidotti and Merino [4]
when β > 0 (their version is equivalent to ours via a change of variable). They were
interested in loss of positivity as β decreases towards 0 and showed that (in our notation)
the solution u of (1.5), (1.6) is positive for every y � 0 if and only if β � 1. However,
if β � 1

2 and the symmetric and antisymmetric parts of y (relative to the midpoint) are
both positive, then u is again positive.

We allow the sensor to be placed at an arbitrary point η ∈ [0, 1] and we exhibit loss
of positivity for the nonlinear problems by showing the existence of non-zero solutions
that may change sign, and the subinterval of [0, 1] on which they are positive decreases
in size as β decreases.

We adopt the view that the parameter β is under our control, while the other param-
eters are fixed, and we shall discuss all possible ranges of values of β.

In particular we show that, for β � 1 − η, positive solutions exist under suitable
conditions on f (such as sublinearity or superlinearity). But, in contrast to the linear
case, multiple positive solutions exist when f has a suitable oscillatory behaviour.

When 0 < β < 1 − η there cannot exist positive solutions for all positive right-hand
sides, but we show that there are (multiple) non-zero solutions that are positive on the
interval [0, b] for any b with η < b < β + η < 1. This shows, by the shrinking of the
interval [0, b], the loss of positivity as β decreases.
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For β < 0 and β + η > 0 we show that there are solutions that are negative on an
interval [a, 1] for β + η < a < 1.

For β < 0 and β + η < 0 for BC (1.2), there are solutions that are negative on [0, 1]
but, for BC (1.3), it turns out that there again exist positive solutions; this is because
β + η = 0 is a singular case for this BVP.

In [9] we showed a regain-of-positivity result for the BC u′(0) = 0 when, for example,
f(t, u) = f(u) is decreasing and bounded. If β satisfies

1
2 (1 − γη2) � β < 1 − η,

with γ = fmin/fmax, then a solution exists that is actually positive on all of [0, 1]. In the
present paper we extend this to a special case of BC (1.2) but we have no such result for
BC (1.3).

We also prove some uniqueness results and show, by elementary arguments, that
if f(t, u) is decreasing in u, then solutions of (1.1) and (1.2), and (1.1)–(1.3), are unique
if α[u] is constant.

The problems we discuss include examples of so-called three-point and multi-point
BVPs, and we treat these in a unified way. Several such non-local problems have been
extensively studied recently (see, for example, [6, 8, 12, 15, 19] and the papers cited
therein). In particular, Karakostas and Tsamatos [10] study BCs given by Riemann–
Stieltjes integrals.

The methodology used to treat such problems has been to write the BVP as a Ham-
merstein integral equation,

u(t) =
∫ 1

0
k̃(t, s)f(s, u(s)) ds := Su(t), (1.7)

and find a solution as a fixed point of the operator S by means of the theory of fixed-point
index for compact mappings.

We also use fixed-point-index theory on a suitable cone K in C[0, 1], but our new
approach is to use an equivalent equation of the form

u(u) = γ(t)α[u] +
∫ 1

0
k(t, s)f(s, u(s)) ds := Au(t) + Fu(t). (1.8)

Here γ(t) = β + η − t for BC (1.2), which changes sign on the interval [0, 1] when
0 < β + η < 1, and the kernel also changes sign. We suppose that α[u] � 0 for u ∈ K.

The advantage of our method is that we deal with a simpler kernel in (1.8) than we
would have to deal with using (1.7), at the cost of having the perturbation. We develop
some new theory to deal with this type of perturbed Hammerstein integral equation in
a more general setting, with [0, 1] replaced by a compact subset G of R

n. We use our
knowledge from [7], which treated integral equations with sign-changing kernels, to deal
with this perturbed situation and obtain new results for the fixed-point index on various
sets that exploit the decomposition.
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2. Existence of non-trivial solutions of perturbed Hammerstein
integral equations

We study fixed points of the operator

u(t) = γ(t)α[u] +
∫

G

k(t, s)f(s, u(s)) ds := Tu(t), (2.1)

where G is a compact set of positive measure in R
n. We set

Au(t) := γ(t)α[u] and Fu(t) :=
∫

G

k(t, s)f(s, u(s)) ds,

so that T = A + F .
We work in the space C(G) of continuous functions endowed with the usual supremum

norm, and shall use the well-known classical fixed-point index for compact maps. We
recall some facts here and refer the reader to [2] or [5] for further information.

Let K be a cone in a Banach space X, that is, K is a closed convex set such that
λx ∈ K for x ∈ K and λ � 0 and K ∩ (−K) = 0.

If Ω is a bounded open subset of K (in the relative topology), we denote by Ω̄ and
∂Ω the closure and the boundary relative to K. When D is an open bounded subset
of X we write DK = D ∩ K, an open subset of K. The following result is well known in
fixed-point-index theory (see, for example, [2,5]).

Lemma 2.1. Let D be an open bounded set with DK �= ∅ and D̄K �= K. Assume that
T : D̄K → K is a compact map such that x �= Tx for x ∈ ∂DK . The fixed-point index
iK(T, DK) then has the following properties.

(i) If there exists e ∈ K \ {0} such that x �= Tx + λe for all x ∈ ∂DK and all λ > 0,
then iK(T, DK) = 0.

(ii) If 0 ∈ DK and Tx �= λx for all x ∈ ∂DK and all λ > 1, then iK(T, DK) = 1.

For example, (ii) holds if ‖Tx‖ � ‖x‖ for x ∈ ∂DK .
We now make assumptions on f , α, γ and the kernel k, which will enable us to define

a suitable cone and show that our integral operator is compact.
Recall that f is said to satisfy the Carathéodory conditions if, for each u, s �→ f(s, u)

is measurable and, for almost every s, u �→ f(s, u) is continuous.

(C1) Suppose that, for every r > 0, f : G × [−r, r] → [0,∞) satisfies Carathéodory
conditions and there exists a measurable function gr : G → [0,∞) such that

f(s, u) � gr(s) for almost all s ∈ G and all u ∈ [−r, r].

(C2) k : G × G → R is measurable, and for every τ ∈ G we have

lim
t→τ

∫
G

|k(t, s) − k(τ, s)|gr(s) ds = 0.
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(C3) There exist a closed subset G0 ⊂ G with meas(G0) > 0, a measurable function
Φ : G → [0,∞) and a constant c1 ∈ (0, 1] such that

|k(t, s)| � Φ(s) for t ∈ G and almost every s ∈ G,

k(t, s) � c1Φ(s) for t ∈ G0 and almost every s ∈ G.

(C4) For each r > 0 there exists an Mr < ∞ such that∫
G

Φ(s)gr(s) ds � Mr.

(C5) γ : G → R is continuous and there exists a constant c2 ∈ (0, 1] such that

γ(t) � c2‖γ‖ for t ∈ G0.

(C6) α : K → R
+ is a continuous functional with

α[u] = A0 +
∫

G

u(s) dA(s),

where dA is a Lebesgue–Stieltjes measure with A1 :=
∫

G
dA(s) < ∞.

(C7) The function t �→ k(t, s) is integrable with respect to the measure dA, that is

K(s) :=
∫

G

k(t, s) dA(t)

is well defined.

Under these hypotheses we can and shall work in the following cone

K = {u ∈ C(G) : min{u(t) : t ∈ G0} � c‖u‖}, where c = min{c1, c2}. (2.2)

This type of cone was introduced by the authors in [8] and later used in [7]. This is
similar to, but larger than, the cone of non-negative functions used in [12,14]. The latter
type of cone goes back to Krasnosel’skĭı [11], and Guo [5]. Note that functions in K are
positive on the subset G0 but may change sign on G. Henceforth, in this paper, K will
denote the cone in (2.2).

Definition 2.2. We write Kr = {u ∈ K : ‖u‖ < r}, K̄r = {u ∈ K : ‖u‖ � r}, and
define

Γ =
∫

G

γ(t) dA(t).

We first show that T : K → K is compact, that is, T is continuous and T (Q) is
compact for each bounded subset Q ⊂ K.

Theorem 2.3. Assume that (C1)–(C6) hold for some r > 0. Then T maps K̄r into K

and is compact. When these hypotheses hold for each r > 0, T is compact and maps K

into K.
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Proof. The compactness of F follows from [16, Proposition 3.1, Chapter 5]. A is
compact since it maps a bounded set into a bounded subset of a one-dimensional space
and thus T = A+F is compact. To see that T : K̄r → K, for u ∈ K̄r and t ∈ G, we have

|Tu(t)| � |γ(t)|α[u] +
∫

G

|k(t, s)|f(s, u(s)) ds

so that

‖Tu‖ � ‖γ‖α[u] +
∫

G

Φ(s)f(s, u(s)) ds.

Also,

min
t∈G0

{Tu(t)} � c2‖γ‖α[u] + c1

∫
G

Φ(s)f(s, u(s)) ds � c

[
‖γ‖α[u] +

∫
G

Φ(s)f(s, u(s)) ds

]
,

where c = min{c1, c2}. Hence, Tu ∈ K for every u ∈ K̄r. �

Let q : C(G) → R denote the continuous function q(u) = min{u(t) : t ∈ G0}. We shall
use the open set Vρ = {u ∈ K : q(u) < ρ}. Vρ is equal to the set called Ωρ/c in [7], but we
believe the notation Vρ is more natural and also makes it clear that choosing c as large
as possible yields a weaker condition to be satisfied by f in Lemma 2.4.

We first prove a lemma which implies that the index is zero. This is new because we
exploit the fact that, in some cases, α[u] is bounded below by a positive constant rather
than being merely non-negative.

Lemma 2.4. Assume that there exists ρ > 0 such that u �= Tu for u ∈ ∂Vρ and that
the following condition applies.

(I0ρ) There exists a measurable function ψρ : G0 → R+ such that

f(s, u) � ρψρ(s) for all u ∈ [ρ, ρ/c] and almost all s ∈ G0,

α[u] � α0ρ for u ∈ ∂Vρ, α0 � 0,

and
c2‖γ‖α0 + inf

t∈G0

∫
G0

k(t, s)ψρ(s) ds � 1. (2.3)

We then have iK(T, Vρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ G. Then e ∈ K. We prove that

u �= Tu + λe for u ∈ ∂Vρ and λ > 0.

In fact, if this is not the case, there exist u ∈ ∂Vρ and λ > 0 such that u = Tu + λe. We
then have, for t ∈ G0,

u(t) = γ(t)α[u] +
∫

G

k(t, s)f(s, u(s)) ds + λ

� c2‖γ‖α0ρ + ρ

∫
G0

k(t, s)ψρ(s) ds + λ.
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By (I0ρ), this implies that q(u) � ρ + λ > ρ, contradicting u ∈ ∂Vρ. Hence, Lemma 2.1(i)
gives iK(T, Vρ) = 0. �

Remark 2.5. When G = [0, 1], G0 = [a, b], f(t, u) = g(t)h(u), where Φg ∈ L1 and
h is continuous, we have

ψρ(s) = g(s)hρ,ρ/c, where hρ,ρ/c = inf{h(u)/ρ : ρ � u � ρ/c}.

Then (2.3) reads more simply:

c2‖γ‖α0 + hρ,ρ/c
1
M

� 1, (2.4)

where
1
M

= inf
t∈[a,b]

∫ b

a

k(t, s)g(s) ds. (2.5)

This shows that Lemma 2.4 is an extension of results in [7,8].

We next prove a result that implies that the index is 1.

Lemma 2.6. Suppose Γ < 1 and assume that there exists ρ > 0 such that u �= Tu

for u ∈ ∂Kρ and

(I1ρ) there exists a measurable function φρ : G → R+ such that Kφρ ∈ L1(G),

f(s, u) � ρφρ(s) for all u ∈ [−ρ, ρ] and almost all s ∈ G

and

A0‖γ‖
(1 − Γ )ρ

+
‖γ‖

(1 − Γ )

∫
G

K(s)φρ(s) ds + sup
t∈G

∫
G

|k(t, s)|φρ(s) ds � 1. (2.6)

We then have iK(T, Kρ) = 1.

Proof. We show that Tu �= λu for every u ∈ ∂Kρ and for every λ > 1. In fact, if
there exists λ > 1 and u ∈ ∂Kρ such that Tu = λu, then

λu(t) = γ(t)α[u] +
∫

G

k(t, s)f(s, u(s)) ds. (2.7)

Therefore, we have

λ

∫
G

u(t) dA(t) = α[u]Γ +
∫

G

K(s)f(s, u(s)) ds. (2.8)

Hence,

(λ − Γ )α[u] = λA0 +
∫

G

K(s)f(s, u(s)) ds.

Substituting into (2.7) gives

λu(t) =
λA0γ(t)
λ − Γ

+
γ(t)

λ − Γ

∫
G

K(s)f(s, u(s)) ds +
∫

G

k(t, s)f(s, u(s)) ds.
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Taking the absolute value and then the supremum for t ∈ G yields

λρ � λA0‖γ‖
λ − Γ

+
‖γ‖

λ − Γ

∫
G

K(s)f(s, u(s)) ds + sup
t∈G

∫
G

|k(t, s)|f(s, u(s)) ds.

Thus, since λ > 1, we have

ρ <
A0‖γ‖
1 − Γ

+
‖γ‖

1 − Γ

∫
G

K(s)ρφρ(s) ds + sup
t∈G

∫
G

|k(t, s)|ρφρ(s) ds. (2.9)

This contradicts (2.6) and proves the result. �

A simpler variant of Lemma 2.6 is the following.

Lemma 2.7. If the hypothesis (2.6) in Lemma 2.6 is replaced by

A0‖γ‖
ρ

+ A1‖γ‖ + sup
t∈G

∫
G

|k(t, s)|φρ(s) ds � 1, (2.10)

then the same conclusion holds, that is, iK(T, Kρ) = 1.

Proof. Use the inequality α[u] � A0 + A1‖u‖ in (2.7). �

Remark 2.8. In (2.10) it is implicit that A0‖γ‖/ρ + A1‖γ‖ < 1.

Remark 2.9. When G = [0, 1], f(s, u) = g(s)h(u) with g measurable, h continuous
and Φg ∈ L1(0, 1), we have φρ(s) = g(s)h−ρ,ρ, where

h−ρ,ρ = sup
{

h(u)
ρ

: u ∈ [−ρ, ρ]
}

.

Equation (2.6) then reads more simply:

A0‖γ‖
ρ(1 − Γ )

+
(

‖γ‖
1 − Γ

∫ 1

0
K(s)g(s) ds +

1
m

)
h−ρ,ρ � 1, (2.11)

where
1
m

= sup
t∈[0,1]

∫ 1

0
|k(t, s)|g(s) ds. (2.12)

This reduces to a result in [7] when α[u] = 0.

Later in the paper we shed light on conditions (2.10) and (2.11).
The above results allow us to give the following new result on existence of multiple

non-zero solutions for equation (2.1).

Theorem 2.10. Equation (2.1) has a non-zero solution in K if either of the following
conditions hold.

(H1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1ρ1
) and (I0ρ2

) hold, and u �= Tu

for u ∈ ∂Vρ2 .
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(H2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that (I0ρ1
) and (I1ρ2

) hold, and u �= Tu

for u ∈ ∂Kρ2 .

Equation (2.1) has two non-zero solutions in K if one of the following conditions holds.

(S1) There exist ρ1, ρ2, ρ3 with ρ1 < ρ2 and ρ2 < cρ3 such that (I1ρ1
), (I0ρ2

) and (I1ρ3
)

hold, and u �= Tu for u ∈ ∂Vρ2 .

(S2) There exist ρ1, ρ2, ρ3 with ρ1 < cρ2 < cρ3 such that (I0ρ1
), (I1ρ2

) and (I0ρ3
) hold, and

u �= Tu for u ∈ ∂Kρ2 .

Moreover, if, in (S1), strict inequality holds in (I1ρ1
), then equation (2.1) has a third

solution, u0 ∈ Kρ1 (possibly zero).

We omit the proof, as it follows simply from properties of the fixed-point index. For
details of similar proofs see [7,12].

Remark 2.11. It is possible to state results for three or more non-zero solutions by
expanding the lists in conditions (S1) and (S2). We leave these to the reader, who may
consult [13] to see the type of result that may be stated.

We now present a version of Theorem 2.10 for the existence of one solution that may
be checked more easily than the original.

Theorem 2.12. Let f(t, u) = g(t)h(u) be as above and suppose that∫ b

a

Φ(s)g(s) ds > 0.

Equation (2.1) then has a non-zero solution in K if one of the following conditions holds.

(H′
1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that h−ρ1,ρ1 satisfies (2.11) and

hρ2,ρ2/c satisfies (I0ρ2
) with (2.3) replaced by (2.4).

(H′
2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that hρ1,ρ1/c satisfies (I0ρ1

) with (2.3)
replaced by (2.4) and h−ρ2,ρ2 satisfies (2.11).

3. Non-zero solutions of the BVP (1.1), (1.2)

We now consider the BVP

−u′′(t) = f(t, u(t)) a.e. on [0, 1], (3.1)

with boundary conditions

u′(0) + α[u] = 0, βu′(1) + u(η) = 0, η ∈ [0, 1], (3.2)

The solution of −u′′ = y under these BCs can be written as

u(t) = (β + η − t)α[u] + β

∫ 1

0
y(s) ds +

∫ η

0
(η − s)y(s) ds −

∫ t

0
(t − s)y(s) ds.

https://doi.org/10.1017/S0013091505000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000532


646 G. Infante and J. R. L. Webb

By a solution of the BVP (3.1), (3.2) we mean a solution u ∈ C[0, 1] of the corresponding
integral equation

u(t) = (β + η − t)α[u] +
∫ 1

0
k(t, s)f(s, u(s)) ds,

where
k(t, s) = β + (η − s)H(η − s) − (t − s)H(t − s), (3.3)

and

H(x) =

{
1, x � 0,

0, x < 0.

Note that k(t, s) in (3.3) is the kernel for the special case u′(0) = 0 studied in [9]. Here
we discuss the case β > 0 and β + η < 1. When β + η � 1, similar calculations lead to
the existence of positive solutions.

3.1. Upper bounds

Note that

‖γ‖ =

{
β + η, for β + η � 1

2 ,

1 − (β + η), for β + η < 1
2 .

In [9] it was shown that, when β > 0 and β + η < 1, k(t, s) changes sign and one may
take

Φ(s) =

{
β + η, for β + η � 1

2 ,

1 − (β + η), for β + η < 1
2 .

3.2. Lower bounds

We take [0, b] with η < b < η + β. Note that, in [η, b], γ(t) is a decreasing function of t

and
min

t∈[0,b]
γ(t) = β + η − b.

A simple calculation shows that k(t, s) � β + η − b for t ∈ [0, b]. This leads to

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β + η − b

β + η
, for β + η � 1

2 ,

β + η − b

1 − (β + η)
, for β + η < 1

2 .

(3.4)

Hence we work on the cone

K =
{

u ∈ C[0, 1], min
t∈[0,b]

u(t) � c‖u‖
}

,

with c as in (3.4).
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Remark 3.1. For the four-point BVP corresponding to α[u] = αu(ξ) with 0 � ξ � b,
α > 0, note that α[u] � 0 for u ∈ K. We may take A0 = 0, and dA(s) to be the Dirac
measure of weight α at ξ. Then

Γ =
∫ 1

0
γ(t) dA(t) = αγ(ξ) = α(β + η − ξ)

and K(s) = αk(ξ, s). For the case f(s, u) = g(s)h(u), iK(T, Kρ) = 1 if Γ < 1 and[
α‖γ‖
1 − Γ

∫ 1

0
k(ξ, s)g(s) ds + sup

t∈[0,1]

∫ 1

0
|k(t, s)|g(s) ds

]
h−ρ,ρ � 1. (3.5)

Alternatively, we may use (2.10). Then iK(T, Kρ) = 1 if

α‖γ‖ +
[

sup
t∈[0,1]

∫ 1

0
|k(t, s)|g(s) ds

]
h−ρ,ρ � 1. (3.6)

Of course (3.6) can only be valid if α‖γ‖ < 1, which is more stringent than Γ < 1 in the
first part. Equation (3.6) is simpler to apply but (3.5) can be less restrictive on f .

Since 0 � k(ξ, s) � max[0,1] |k(t, s)|, (3.5) is satisfied if(
α‖γ‖
1 − Γ

+ 1
)

h−ρ,ρ � m.

In particular, when ξ = 0 and β + η � 1
2 , so that ‖γ‖ = γ(0) = β + η, we get (3.6).

Example 3.2. Consider the BVP

−u′′(t) = h(u(t)) a.e. on [0, 1], (3.7)

with boundary conditions

u′(0) + αu(ξ) = 0, βu′(1) + u(η) = 0, 0 � η � 1, 0 � ξ � b < β + η. (3.8)

As above, iK(T, Kρ) = 1 if[
α‖γ‖

1 − αγ(ξ)

∫ 1

0
k(ξ, s) ds + sup

t∈[0,1]

∫ 1

0
|k(t, s)| ds

]
h−ρ,ρ � 1. (3.9)

We calculate

sup
t∈[0,1]

∫ 1

0
|k(t, s)| ds.

For t � β + η, k(t, s) � 0 for every t and s, so
∫ 1

0
|k(t, s)| ds =

∫ 1

0
β ds +

∫ η

0
(η − s) ds −

∫ t

0
(t − s) ds = β + 1

2η2 − 1
2 t2

and the maximum occurs at t = 0.
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For t > β + η, k(t, s) changes sign, so∫ 1

0
|k(t, s)| ds

=
∫ η

0
[t − (β + η)] ds +

∫ t−β

η

(t − s − β) ds +
∫ t

t−β

β − (t − s) ds +
∫ 1

t

β ds

= [t − (β + η)]η + 1
2 (t − (β + η)2) + 1

2β2 + (1 − t)β.

This quadratic has its maximum at one of the endpoints, that is either when t = β + η

or when t = 1. Hence, the maximum on [0, 1] is for either t = 0 or t = 1, and thus

sup
t∈[0,1]

∫ 1

0
|k(t, s)| ds = max{β + 1

2η2, β2 − β + 1
2 (1 − η2)}.

The maximum is β + 1
2η2 if and only if β � 1 − ( 1

2 + η2)1/2. From the equation above we
obtain ∫ 1

0
k(ξ, s) ds = β + 1

2η2 − 1
2ξ2.

Hence, all numbers in (3.9) can be calculated.
We calculate some numbers with which to compare (3.9) with the simpler expression

that arises from (3.6), namely

α‖γ‖ +
[

sup
t∈[0,1]

∫ 1

0
|k(t, s)| ds

]
h−ρ,ρ � 1. (3.10)

Take η = ξ = 1
2 , α = β = 1

4 , ‖γ‖ = β + η = 3
4 . Then β � 1 − ( 1

2 + η2)1/2 so

sup
t∈[0,1]

∫ 1

0
|k(t, s)| ds = β + 1

2η2 = 3
8 .

Formula (3.10) requires 3
8 + 3

8h−ρ,ρ � 1, or h−ρ,ρ � 5
3 , and (3.9) requires

[ 38 (1 − 1
4 ( 1

4 ))−1 · 1
4 + 3

8 ]h−ρ,ρ � 1 or h−ρ,ρ � 40
19 .

This shows that, for this case, (3.6) is weaker than (3.5).

We state a result for the existence of one non-trivial solution when f(t, u) = g(t)h(u),
for which the hypotheses are easier to check. Of course there are more general results,
including existence of multiple non-zero solutions, analogous to Theorem 2.10.

Theorem 3.3. Let [a, b] = [0, b], with η < b < η + β, where η + β < 1, and suppose
that ∫ b

0
Φ(s)g(s) ds > 0.

Let c be as in (3.4). Let m be as in (2.12) and M as in (2.5). Then the BVP (3.1), (3.2)
has at least one non-zero solution, positive on [0, b], if either (H′

1) or (H′
2) of Theorem 2.12

hold.
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Remark 3.4. These techniques allow us to discuss positivity of solutions as β changes.
We have given above the details for case (ii) below. The other cases are treated with
similar methods; we omit the details of these cases.

(i) When β � 1 − η, we have γ(t) � 0 and k(t, s) � 0. Thus, Tu(t) � 0 and, with the
same methods, we can prove the existence of positive solutions on all of [0, 1].

(ii) When 0 < β < 1 − η, both γ(t) and k(t, s) change sign and we have shown the
existence of solutions that are positive on an interval [0, b].

(iii) When β < 0 and β + η > 0, k(t, s) is negative for t ∈ [β + η, 1]. This case can
be dealt with by considering v(t) = −u(t) as in [8]. We achieve the existence of
solutions that are negative on an interval [a, 1] for β + η < a < 1.

(iv) When β < 0 and β + η < 0, k(t, s) is negative for all t and s and we may show, as
in case (iii), the existence of negative solutions on all of [0, 1].

4. Non-zero solutions of the BVP (1.1)–(1.3)

We now consider the BVP

−u′′(t) = f(t, u(t)) a.e. on [0, 1], (4.1)

with boundary conditions

u(0) = α[u] � 0, βu′(1) + u(η) = 0, η ∈ [0, 1]. (4.2)

The solution of −u′′ = y under these BCs is

u(t) =
(

1− t

β + η

)
α[u]+

βt

β + η

∫ 1

0
y(s) ds+

t

β + η

∫ η

0
(η − s)y(s) ds−

∫ t

0
(t− s)y(s) ds.

By a solution of the BVP (4.1), (4.2) we shall mean a solution u ∈ C[0, 1] of the corre-
sponding integral equation

u(t) =
(

1 − t

β + η

)
α[u] +

∫ 1

0
k(t, s)f(s, u(s)) ds,

where
k(t, s) =

βt

β + η
+

t

β + η
(η − s)H(η − s) − (t − s)H(η − s). (4.3)

When β � 0,

k(t, s) and
(

1 − t

β + η

)
α[u]

both change sign when 0 < β + η < 1, but are positive on the strip 0 � t � b, b < β + η.
This is the case for which we give details and apply the results of § 2, taking [a, b] = [η, b]
for a suitable b with η < b < β + η.

https://doi.org/10.1017/S0013091505000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000532


650 G. Infante and J. R. L. Webb

4.1. Upper bounds

First note that

‖γ‖ =

⎧⎪⎪⎨
⎪⎪⎩

1, for β + η � 1
2 ,[

1 − (β + η)
β + η

]
, for β + η < 1

2 .

Second, we are looking for Φ(s) such that

|k(t, s)| � Φ(s).

If s � η and s � t,

k(t, s) =
s(β + η − t)

β + η

is decreasing in t, so |kmax| is either k(s, s) or −k(1, s). Therefore,

k(t, s) � max
{

s(β + η − s)
β + η

,
s[1 − (β + η)]

β + η

}
.

We omit the calculations for the other cases.
The result is that we may take (for simplicity)

Φ(s) =

⎧⎪⎪⎨
⎪⎪⎩

s, for β + η � 1
2 ,[

1 − (β + η)
β + η

]
s, for β + η < 1

2 .

4.2. Lower bounds

We take [η, b] with η < b < η + β.
Note that in [η, b], γ(t) is a decreasing function of t and

min
t∈[η,b]

γ(t) =
β + η − b

β + η
.

If β + η � 1
2 , Φ(s) = s and we check that we may choose

c = min
{

βη

β + η
,

β + η − b

β + η

}
. (4.4)

If β + η < 1
2 ,

Φ(s) =
[
1 − (β + η)

β + η

]
s,

and, for example, when s � η and s � t,

k(t, s) =
s(β + η − t)

β + η
� s(β + η − b)

β + η
,

https://doi.org/10.1017/S0013091505000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000532


Nonlinear non-local boundary-value problems 651

so we need
c � β + η − b

1 − (β + η)
.

Other regions are treated similarly. Hence, we obtain

c = min
{

βη

1 − (β + η)
,

β + η − b

1 − (β + η)

}
, (4.5)

for β + η < 1
2 .

Theorem 4.1. Let [a, b] = [η, b], with η < b < η + β, where β + η � 1
2 , and suppose

that ∫ b

0
Φ(s)g(s) ds > 0.

Let c be as in (4.4). Let m be as in (2.12) and M as in (2.5). Then the BVP (4.1), (4.2)
has at least one non-zero solution, positive on [0, b], if either (H′

1) or (H′
2) of Theorem 2.12

holds.

An analogous result holds for β + η < 1
2 but with c as in (4.5).

Remark 4.2. The ranges of β and the type of solutions obtained are the same as in
Remark 3.4, with the exception of the case when β < 0 and β + η < 0. In fact, for these
particular ranges, for BC (1.2) there are solutions that are negative on [0, 1] but, for
BC (1.3), it turns out that again there exist positive solutions; this is because β + η = 0
is a singular case for this BVP. In fact, when β < 0 and β + η < 0, a routine calculation
shows that k(t, s) � 0.

5. Positivity results

We study a positivity problem for the BVP

−u′′(t) = f(t, u(t)) (5.1)

with a special case of the type of boundary condition we are studying, namely

u′(0) + αu(ξ) = 0, βu′(1) + u(η) = 0, (5.2)

where 0 � α < 1 and 0 � ξ � β + η < 1.
In [9] we showed a regain-of-positivity result for the special case u′(0) = 0 that was

motivated by previous work of Guidotti and Merino [4].
When 0 < β < 1 − η there cannot exist positive solutions for all positive right-hand

sides. Nevertheless, under additional conditions on the nonlinearity f , we can achieve
positive solutions when β is not far from 1−η (with an explicit estimate). Some examples
given below show that our estimate is sharp.

We make the following assumptions on the nonlinearity:

(f1) 0 � fmin � f(s, u) � fmax for s ∈ [0, 1], u ∈ R, where fmax > 0;

(f2) for 0 � s � 1
2 and u � v, f(s, u) � f(1 − s, v).
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For example, (f2) holds if f(s, u) = g(s)h(u), where g is increasing and h is decreasing.

Theorem 5.1. Under assumptions (f1) and (f2), any solution of (5.1), (5.2) is positive
on all of [0, 1] for

β

(
1 − α|γ(1)|

1 − αγ(ξ)

)
� 1

2

[
1 −

(
1 − α|γ(1)|

1 − αγ(ξ)

)
η2 fmin

fmax
− α|γ(1)|

1 − αγ(ξ)
ξ2 fmin

fmax

]
. (5.3)

Proof. If u is a solution of the BVP, u satisfies

u(t) = γ(t)αu(ξ) +
∫ 1

0
k(t, s)f(s, u(s)) ds := Tu(t). (5.4)

Since Tu(t) is a decreasing function of t, a sign-changing solution is positive on [0, 1] if
and only if u(1) � 0. First, setting t = ξ and, second, setting t = 1 gives

u(1) =
αγ(1)

1 − αγ(ξ)

[∫ 1

0
βf(s, u(s)) ds +

∫ η

0
(η − s)f(s, u(s)) ds −

∫ ξ

0
(ξ − s)f(s, u(s)) ds

]

+
∫ 1

0
βf(s, u(s)) ds +

∫ η

0
(η − s)f(s, u(s)) ds −

∫ 1

0
(1 − s)f(s, u(s)) ds.

Now

∫ 1

0
(1 − s)f(s, u(s)) ds =

∫ 1

0

1
2f(s, u(s)) ds

+
∫ 1/2

0
( 1
2 − s)f(s, u(s)) ds +

∫ 1

1/2
( 1
2 − s)f(s, u(s)) ds,

by changing variable in the third integral and then using (f2) as in [9] we get

−
∫ 1

0
(1 − s)f(s, u(s)) ds � −

∫ 1

0

1
2f(s, u(s)) ds.

So

u(1) �
[(

1 − α|γ(1)|
1 − αγ(ξ)

)
β − 1

2

] ∫ 1

0
f(s, u(s)) ds

+
(

1 − α|γ(1)|
1 − αγ(ξ)

) ∫ η

0
(η − s)f(s, u(s)) ds +

α|γ(1)|
1 − αγ(ξ)

∫ ξ

0
(ξ − s)f(s, u(s)) ds.

If (
1 − α|γ(1)|

1 − αγ(ξ)

)
β � 1

2 ,

then u(1) � 0. Otherwise, we have

u(1) �
[(

1 − α|γ(1)|
1 − αγ(ξ)

)
β − 1

2

]
fmax +

(
1 − α|γ(1)|

1 − αγ(ξ)

)
1
2η2fmin +

α|γ(1)|
1 − αγ(ξ)

1
2ξ2fmin.
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Therefore, u(1) � 0 if

β

(
1 − α|γ(1)|

1 − αγ(ξ)

)
� 1

2 −
(

1 − α|γ(1)|
1 − αγ(ξ)

)
1
2η2 fmin

fmax
− α|γ(1)|

1 − αγ(ξ)
1
2ξ2 fmin

fmax
.

�

Remark 5.2. When α = 0, we obtain the conditions of [9, Theorem 4.1].
When ξ = 0, (5.3) reads

β

(
1 − α|γ(1)|

1 − αγ(0)

)
� 1

2

[
1 −

(
1 − α|γ(1)|

1 − αγ(0)

)
η2 fmin

fmax

]
. (5.5)

Thus,

β � 1
2

[
1 − αγ(0)

1 − α(γ(0) + |γ(1)|) − η2 fmin

fmax

]
. (5.6)

Since γ(t) = β + η − t, we obtain

β � 1
2

[
1 − α(β + η)

1 − α
− η2 fmin

fmax

]
,

so the explicit form for β is given by

β � 1 − αη

2 − α
− (1 − α)

2 − α
η2 fmin

fmax
. (5.7)

When ξ = η, (5.3) can be written

β

(
1 − α|γ(1)|

1 − αγ(η)

)
� 1

2

(
1 − η2 fmin

fmax

)
,

so

β

(
1 − α(γ(η) + |γ(1)|)

1 − αγ(η)

)
� 1

2

(
1 − η2 fmin

fmax

)
. (5.8)

Since γ(t) = β + η − t, we get

β

(
1 − α(1 − η)

1 − αβ

)
� 1

2

(
1 − η2 fmin

fmax

)
,

which gives the explicit form

β

(
1 − α

(
1
2

− η +
η2

2
fmin

fmax

))
� 1

2

(
1 − η2 fmin

fmax

)
. (5.9)

The following simple example shows that the estimate on β is sharp.
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Example 5.3. Take

−u′′(t) = 2 with BCs u′(0) + αu(ξ) = 0, βu′(1) + u(η) = 0,

where 0 < α < 1, ξ ∈ [0, η].
The solution is u(t) = A + Bt − t2, where

B + α(A + Bξ − ξ2) = 0,

β(B − 2) + (A + Bη − η2) = 0.

The solution changes sign at

t1 := 1
2B + ( 1

4B2 + A)1/2,

and so it is positive on all of [0, 1] if and only if A + B � 1.
When ξ = 0, B + αA = 0 and β(−αA − 2) + (A − αAη − η2) = 0. Thus, A + B � 1 if

2β + η2

1 − α(β + η)
(1 − α) � 1.

Hence,

β � 1 − αη

2 − α
+

1 − α

2 − α
η2. (5.10)

This agrees with (5.7) and shows that (5.7) is optimal.
When ξ = η, B + α(A − αAη − η2) = 0 and β(B − 2) + (A − αAη − η2) = 0. Thus,

B = − 2αβ

1 − αβ
and A = η2 +

2β(1 + αη)
1 − αβ

.

The condition A + B � 1 leads to

β(1 − α( 1
2 − η + 1

2η2)) � 1
2 (1 − η2). (5.11)

This agrees with (5.9), so the estimate is sharp.

6. Uniqueness results

We prove some uniqueness results under the familiar assumption that f is a decreasing
function of u, in the special case when the parameter β is positive and the boundary
condition at 0 is particularly simple.

Theorem 6.1. Suppose that f(t, u) is continuous and strictly decreasing in u for every
fixed t. Then, for constants U ∈ R, p ∈ R and η ∈ [0, 1], the equation

−u′′ = f(t, u(t)), t ∈ (0, 1),
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subject to one of the following BCs,

(i) u(0) = U , βu′(1) + u(η) = 0, β > 0,

(ii) u′(0) + p = 0, βu′(1) + u(η) = 0, β > 0,

has at most one solution.

Proof. (i) Suppose u and v are two solutions and let w = u − v. Then

w′′(t) = f(t, v(t)) − f(t, u(t)),

so that, for t ∈ (0, 1),

w(t) > 0 =⇒ w′′(t) > 0 and w(t) < 0 =⇒ w′′(t) < 0, (6.1)

that is, w is convex (respectively, concave) when w > 0 (respectively, w < 0). Also, w

satisfies the BCs
w(0) = 0, βw′(1) + w(η) = 0. (6.2)

If w is not identically zero then it must have either a positive maximum or a nega-
tive minimum on [0, 1]. These cannot occur in (0, 1) since at such a local extremum we
contradict (6.1).

If w has a positive maximum at 1, then we have w(t) � 0 on [0, 1] and so w is convex.
Also w(1) > 0 and w′(1) � 0. From the BC in (6.2) we obtain w(η) � 0, and hence
w(η) = 0 and w′(1) = 0. By convexity we have w(t) ≡ 0 on [0, η], and hence w′(η) = 0.
By convexity once more, this yields constant w(t) for t ∈ [η, 1]. Hence, w(t) ≡ 0 on [0, 1]
in this case.

The case when w has a negative minimum at 1 is proved similarly.

(ii) Suppose that u and v are two solutions and let w = u − v. Then (6.1) holds and
w satisfies the BCs

w′(0) = 0, βw′(1) + w(η) = 0. (6.3)

As in case (i), w cannot have a positive local maximum or negative local minimum.
First, consider the case w(0) > 0. Then w is convex and increasing on [0, 1]. The

maximum of w then occurs at 1 and we have w′(1) � 0, which implies that w(η) � 0: a
contradiction.

The case w(0) < 0 is treated similarly.
The final case, w(0) = 0, is treated in (i). �
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