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Abstract. The Galactic fountain is driven by the hot inter-cloud medium (ICM). 
The ICM itself is heated by successive supernova explosions. This process introduces 
sufficient irregularities to prevent the fountain flow from being smooth. Instead it 
leads to the formation of a frothy medium above the disk (Avillez, Berry & Kahn 
1997). This paper describes the effect of successive supernova explosions, in a rather 
idealised case. The real case is still more complicated, but the present approach 
shows why it is so. 

1 Introduction 

Most of the Galactic interstellar matter is present in a disk, a relatively thin 
layer extending to some 100 pc on either side of the Galactic plane. This 
material is largely contained in cool clouds where hydrogen, the dominant 
constituent, is present either in atomic (H) or (H2) molecular form. The 
atomic hydrogen or HI clouds have the kinematical properties of extreme 
Population I: they follow the rotation of the Galactic disk and have random 
speeds large enough to raise them to a maximum distance of 100 pc or so 
from the plane. The typical temperature in an HI region may be taken to 
be 100 K and the smoothed-out density 2 x 10 - 2 4 gm cm - 3 . The adjective 
smoothed-out is important here: the cool gas in reality fills only a few per 
cent of the available volume. 

The inter-cloud medium (ICM) fills the space between the clouds. The 
ICM is hot, at typically 106 K, in contrast to the HI clouds. Its density is 
typically 10~26 gm c m - 3 so that its pressure is typically 10~12 dyne cm - 2 . 
An important physical parameter is the sound speed in the ICM 

cs = (^\ ~ 1.3 x 107 cm s-1 (1) 

an order of magnitude larger than the typical random speeds of extreme 
Population I objects. (In this formula P0 and ph are respectively the pres­
sure and the density in the ICM, and 7 is the ratio of specific heats.) The 
gravitational field of the Galaxy confines Population I objects to a disk with 
a half-thickness of 100 pc; the hot ICM should consequently rise to a height 
c2/<72 which is larger by two orders of magnitude. Here gz is the component 
of the Galactic gravitational field perpendicular to the disk; it has a value 
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10~8cm s~2 at points well away from the Galactic plane. Clearly then the 
ICM should extend into a volume much thicker than that of the disk. 

The dynamical relaxation time will be 

tdyn = - 1 (2) 

in any equilibrium structure attained by the ICM; for comparison, the rate 
of radiative heat loss is given by the cooling law 

which is applicable in the range of temperatures 105 < T < 3 x 107 K (Kahn 
1976). In this relation 

K = P/p5'3 (4) 

and P and p are respectively the pressure and the density of the ICM. The 
cooling rate is set by the parameter q and itself depends on the composition 
of the gaseous medium concerned. For solar abundances, that is no depletion 
to dust grains, its value is 4 x 1032cm6 gm_ 1 s~4. The resulting cooling time, 
due to radiative loss, is 

tcoo[~ q ~ qp5/* {} 

and the hot ICM can reach a hydrostatic equilibrium only if 

^cool > £dyn (6) 

or 

4 » -1 (7) 
With the present values of the physical parameters, the left hand side in this 
inequality is smaller, by a factor 4, than the right hand side, with the result 
that the ICM can never attain equilibrium unless it is heavily depleted in 
metals. The hot gas consequently escapes from the thin Population I disk, 
but it eventually falls back because its thermal energy is too small for escape 
from the Galaxy. 

In the most familiar models this flow is described as a fountain, or a 
fountain with some loss into a wind (Bregman 1980, Breitschwerdt, McKenzie 
& Volk, 1993, Kahn 1994). The medium is generally treated as though it 
were smooth, having no structure on small scales. The upward flow either 
remains subsonic throughout (in Bregman's version) or starts subsonic and 
then passes through a critical level above which it is supersonic (in Kahn's 
version). The continuing radiative heat loss creates conditions which allow 
the transit through the sonic level. In all cases the gas is cold on its return 
flow. 
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At first sight such models provide a very reasonable solution to the prob­
lem posed by the existence of a reservoir of hot gas in the Galactic disk with 
so much thermal energy that it cannot be held. The residence time of the 
ICM is only of order Z0/ch « 106 years, and here Z0 is the half-thickness 
of the disk. Supernovae of type II continually heat more interstellar gas to 
replenish the ICM. According to the usual estimates, there are three such 
events per century in the Galaxy, or 3 x 104 every million years. The Galactic 
disk has an area of some 3 x 108 pc2, so that there is one explosion per million 
years for every 104 pc2 of disk. In any period of a million years, that is within 
the characteristic escape time of the ICM gas, the typical distance between 
neighbouring explosions is therefore 100 pc, similar to the thickness of the 
disk. 

Successive supernova explosions introduce a rather rugged structure into 
the interstellar medium. The outer parts of a SNR are shocked, compressed, 
and heated but not enough to stay hot for a million years. The gas on the 
outside cools off again, and then condenses into HI clouds with random speeds 
which are too small to smooth out the irregularities before the next explosion. 
The gas from the inner part of the SNR, by contrast, stays hot. If each 
remnant yields some 200 MQ of hot gas, then there is an adequate supply to 
compensate for the outflow to the fountain. But the question remains whether 
this flow can be smooth. 

Recently Avillez et al. (1997) have tackled this problem in a computer 
simulation. Their results, presented in Figures 1 and 2 (see description in 
Avillez et al. (1997), show what the Galactic disk and halo can be expected 
to look like after evolving some hundreds of million years. 

The simulation starts with the interstellar gas distributed in a smooth thin 
disk. Successive explosions cause the formation of a frothy disk, with typical 
half-thickness 1 kpc. Once disrupted by the explosions, the disk never returns 
to its initial state. Instead it seems to approach a state where there is cool 
gas present predominantly in a thin but irregular layer around the Galactic 
plane. The ICM is shown to extend into a thicker irregular layer where it is 
mixed with some of the cool gas, and where the mixture is in some sort of 
turbulent equilibrium. A smoother fountain flow appears to exist at greater 
heights. There seem also to be chimneys present (in Figure 2 (a) located at 
x = 200 pc, z = —150 pc), where high pressure gas has forced its way out 
through relatively narrow channels (for a recent observation of a chimney, see 
Normandeau, Taylor & Dewdney 1996.). The froth in the thick disk consists 
of bubbles of hot gas separated by thin regions of cold gas. 

One great problem at present with such a calculation is that the compu­
tational grid is still rather coarse. The resolution is limited to 10 pc. It is 
therefore impossible to resolve clearly any cool sheets present. Typically such 
sheets are expected to be no more than one or two parsecs thick. Clearly there 
are important parts of the physics which the computation can only handle in 
an approximate way. Nevertheless the model developed by Avillez constitutes 
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Fig . 1. Density distribution in a vertical section perpendicular to the Galactic plane 
for times 280, 283, 286, and 289 Myr after start of calculations; (see Plate 5). 

https://doi.org/10.1017/S0252921100071487 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100071487


The Galactic Fountain 487 

Fig. 2. Temperature distribution in a vertical section perpendicular to the Galactic 
plane for times 280, 283, 286, and 289 Myr after start of calculations; (see Plate 6). 
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an important step forward and agrees very much better with observation than 
the more primitive calculations, based on a smooth fountain flow. There may 
well be interesting magnetic effects in the flow, but the present calculation 
does not include them. Much better resolution would be needed for that in 
the computation. 

2 The Late Evolution of Supernova Remnants 

A supernova releases some 1053 erg of energy, mostly in the form of neutrinos; 
a smaller amount E, typically 3 x 1051erg, is released in the form of kinetic 
energy of baryonic matter and destroys the parent star. It is important to 
discover how much of this energy is passed to the interstellar medium, and 
in what form. It is therefore worth while to follow the evolution of a remnant 
into its later stages. 

The standard results are that the shock radius and the shock speed are, 
respectively, 

and 
2 [2E\ 

at time r after the explosion; here p0 is the density of the interstellar medium, 
assumed to be homogeneous. The adiabatic parameter K immediately post-
shock is given by 

~3 p 3 / 5 
K3/2 = 0 > 0 2 l 2 . = 0 002f^_T-9/5. ( 1 Q ) 

P° pj 

for comparison the mass of gas which has been shocked at that time is 

so that there is a simple relation 

KSMS = O.IO-IJ (12) 

between the mass of gas engulfed by the shock, at any time, and the value 
of the adiabatic parameter immediately post-shock. The mass enclosed is 
conserved following any spherical shell, and so is the adiabatic parameter on 
the surface of that shell, as long as radiative heat loss has not yet become 
significant, that is during Phase II. It follows that relation (10) remains valid 
without the suffixes, until serious cooling sets in. 
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A parcel of gas that was shocked at time r will have cooled completely at 
time 

( = T + » r _ , / S ; ( 1 3 ) 

qp° 
the first element of gas to do so must have passed through the shock at time 

0.13E3/14 .... 
T = T*= 5/14 4/7 ( 1 4 ) 

and will be completely cold when 

0.20E3/14 

' = ' " = ^ ^ ; < 1 5 ) 

this time marks the end of Phase II. Relation (6), which is still reasonably 
accurate then, shows that the radius of the SNR is 

0-60£2/7 , _ 
TU = 1/7 3/7 ( 1 6 ) 

at that time. With the parameters assumed here n i = 9.7 x 1019 cm and 
tn = 1-7 x 1012 s. Much later, well into Phase III, only the gas for which 

«2/2 > qt (17) 

will still be hot; according to eq. (12) it amounts to a mass 

At partial mass M within this distribution of hot gas, assumed to be spher­
ically symmetrical, the adiabatic parameter is 

pj M 

and the specific volume of the gas is 

under pressure P. The volume occupied by the hot gas is therefore, after 
some algebra, 

V=[ \dM = ° - 2 5 E t~^ (21) 
Jo PV 3p3/5qi/15 

and so 

Po ' q4'9 
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for a spherical volume of radius r at time t. It is convenient to introduce 
dimensionless radius R and time 6 by setting 

r = Rru and t = dtu (23) 

and then 
P = Pi,R-56-4/9 (24) 

where 
P ^ O ^ i ^ y / V o 7 5 (25) 

The pressure of the hot gas assists the expansion of the remnant shell even 
after the end of Phase II. The equation of motion 

^-rr + Por
2 = P (26) 

differs from the usual snowplough equation by the presence of the pressure 
term on the right. The equation makes no allowance for the mass of hot gas, 
and is really valid only long after time t\\. It can be written 

is**''-** <27» 
in dimensionless variables and after some transformations becomes 

53/4 *S = ^PAL e-4/9 = O.320-4/9 (28) 
dd2 p0rjj 

with the definition 
S = R4 (29) 

The term on the right in eq. (28) represents the effect of the pressure of 
the hot gas on the dynamics of the shell. Without this term the equation 
describes the motion in the snowplough approximation, and then S is linear 
in 8. Clearly the snowplough treatment is valid at late times, when 6 is 
large. At early times, during Phase II, the motion of the shell is described by 
equation (8), or in dimensionless form 

S = 08 / 5 (30) 

The solution, for late times, which matches smoothly onto that for Phase II, 
at time 6 = 1, is 

S = 2.440 ( l - 0.436I-7/36 - O.160-1...) (31) 

and so the dimensionless radius is 

R = 1.2501/4 ( l - Q.II6-7/36 - O.O410-1 + ...) (32) 

The dimensionless volume of the remnant is 
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V = — R3 = 8.1803/4 (33) 
o 

to adequate accuracy. Expressed in dimensionless terms the rate at which 
supernovae occur is 

N = ur3
utn- (34) 

in this formula 

v = (30years)_1 (6 x 101 0pc3) - 1 = 6 x 1(T76 c m ^ s " 1 (35) 

is the rate in physical variables, and it follows that N = 0.00093. A sim­
ple argument leads to an estimate for the length of time that passes before 
virtually the whole space in the Galactic disk must be filled by old SNR's. 
Suppose that to begin with the interstellar medium is homogeneous and that 
supernovae occur at rate N from time 0 = 0 on. A remnant started by an 
explosion at time 0 — 6 will have grown to volume V at time 0, and so the 
fractional volume occupied at time 0 is 

, e 
/ = 8.18N / 63/4d6 = 4.67N07/4 (36) 

Jo 

The estimate is consequently that the remnants have filled all the available 
space when / = 1 and 0 = 0A1N~4/7 so that 0 = 22.1, equivalent to a 
physical age 3.8 x 1013s or 1.2 x 106 years. The radius of the remnant will 
then be R = 2.17, equivalent to 2.1 x 1020 cm or 70 pc. 

These estimates are simple but have the great drawback that they are 
inappropriate. The simulations described by Avillez, Berry & Kahn (1997) 
show that the interstellar medium never returns to its initial state and that 
all supernova remnants evolve in an inhomogeneous medium. 

Still, in the framework of the simple model, the thermal energy content 
of a remnant in Phase III is 

fther = 27rPr3 = 0.21£<T17/18 (37) 

and always small when compared with E. Typically £ther = 0.024 E and 
0.012 E at dimensionless times 9 = 10 and 20, respectively. With the data 
adopted here the total energy released, per unit time, in dynamical form 
by supernovae amounts to some 3 x 1042 erg s - 1 for the Galactic disk as a 
whole. Of this power about one or two per cent becomes available to drive 
the Galactic Fountain, enough for a mass loss rate of some 10~19 gm cm - 2 

s _ 1 with a speed of 100 km s _ 1 over an area of 6 x 108 pc2. There seems to 
be satisfactory agreement. 
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3 A Supernova Exploding in a Low Density Region 

A second supernova may explode inside an existing SNR, an event much 
more likely to occur during Phase III than Phase II, and later rather than 
sooner. The dynamical energy of the second explosion goes almost entirely 
to the remaining hot gas. Before being shocked again this gas has a density 
distribution of the form 

p = Vrn (38) 

and n = 9/2 in the present application. An expression for i? is found from 
the condition that the mass of hot gas Mh (see relation (18)) is contained in 
a sphere of radius 1.25m6'1''4, so that, with some algebra, 

Q = O.U8prJj/2e-61/24 (39) 

The effect of the second explosion can be found analytically, but only at the 
cost of some apparently drastic approximations. A similarity solution requires 
the second explosion to occur at the same place as the first, and the energy 
content of the remaining hot gas to be small compared with E. The second 
condition is easily met, but the first seems highly artificial. Nevertheless it 
makes little real difference if the second explosion takes place rather off cen­
tre, for the following reason. The shock from the second blast advances very 
fast through the interior, where the density is low, and slows down consid­
erably later, as it runs into the higher density gas further out. An off-centre 
explosion creates a blast wave whose surface is elongated, to begin with, in 
the direction where the ambient density is lowest, but this period of asym­
metrical expansion is only brief. The shock spends much more time moving 
through the bulk of the mass, which is near the boundary of the first remnant, 
and its surface becomes progressively more spherical. 

Another difference is that a similarity solution strictly applies only when 
the explosion itself ejects a negligible mass. An actual supernova ejects a 
finite mass Mej, say 5MQ; the mass of hot gas in the remnant can be shown 
to be 

Mh = O .32X/ /0- 2 / 3 (40) 

M\\ being about 4000 MQ here. So if the second explosion takes place say 
500,000 years after the first, when 6 « 9, then the similarity solution holds 
if 

5 < 1280/ x 9~2 / 3 (41) 

Here / is the fraction of the hot diffuse gas that has been overrun by the 
second shock; according to (41) it has to exceed about 2 per cent. In general 
the approximation holds. 

The shock path is easily found from the virial theorem 

i / = 2 (£ t h e r + Ekin) = 2E (42) 
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where 

/ = 
r-M* 

I r2dM 
Jo 

(43) 

Here define £ = r/rs and /i = M/Ms where rs and Ms respectively are the 
shock radius and the mass that it encloses. Relation (42) holds provided no 
significant energy loss has occurred by radiation. The mass M* is fixed and 
larger than Ma. The motion of the shock leads to a change Al in the value 
of I because material within radius rs has been displaced outwards, and in 
the case of a general n 

AI = Msr
2
s [ gdn - 4?r/2 / " rn+idr = Msr

2
s [ £2d[i 

Jo Jo uo 

71 + 3 

n + 5 
(44) 

The quantity Msr
2 varies like t2 in a similarity solution; it follows that 

2E = 
2dt2 

Msr
2
s 

t2 I 
1 ;2 , n + 3 

n + 5 
47rJ7r^+5 

(n + 3) t2 f 
Jo 

edfi 
n + 3 

The strong shock condition leads to the boundary condition 

f-4(„ + „ 

n + 5 
(45) 

(46) 

immediately behind the shock at £ = 1. The integral in (45) can then be 
well approximated by assuming that \x increases exponentially with £ as £ 
approaches unity and then (45) leads to 

2E = 
(n + 3) t2 

2 (n + 3) _ n + 3 
2n + 7 n + 5 

and so 

and 

since 

n + 5 (n + 5)(2n + 7 ) M 2 

6TT Q 

2 = 2(2n + 7 ) E (w+3) 
s
 3TT (n + 5) fi s 

2r 
rs 

Here n = 9/2 and so 

(n + 5)t 

.E 
0.36 J? 

15/2 

The second shock reaches the edge of the original remnant when 

rs = 1.25rn9
1/4 

and then, from (38), (39) and (51), 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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rl = 0 . 4 6 - ^ 0 2 / 3 = 0.24 ( ^ ' 6>2/3 (53) 
Porf7 \tnJ

 v ; 

and the shock speed is 28O01/3 km s _ 1 there. The dynamical time, that is 
the time to reach the outer edge after the second explosion, is 

Wn = ^ - = O . 4 3 t / / 0 - 1 / 1 2 (54) 

This time has to be compared with the cooling time icooi of the newly shocked 
gas. When the blast waves reaches the boundary of the old remnant 

K
3/2 n nor3 

tcool = ^ - = ™2± = O.78^0 2 9 / 1 2 (55) 
1 qQrl'2 

and so 
^ L = 1.8205/2 ; (56) 
tdyn 

with the shock speed found above, the post-shock temperature becomes 

Ts = 1O602/3 K (57) 

and can be quite high if 0 is large enough, in other words if the second 
supernova is delayed sufficiently long. 

4 Conclusions 

The analytical approach can hardly be carried any further, since great compli­
cations will arise from the combined effect of many supernovae. The dynam­
ical consequence of any one explosion is sensitively dependent on the state of 
the surrounding interstellar medium. If an explosion takes place in a region of 
low density then the surrounding gas is heated, but takes a long time to cool. 
The energy therefore becomes available to drive further motions. By contrast 
an explosion in a high density region is followed by (relatively) rapid heat 
loss, and much less dynamical effect. Any realistic calculation must strive to 
give an accurate description of the interstellar medium on quite small length 
scales. 
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