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Abstract  We present a systematic method for proving non-terminating basic hypergeometric identi-
ties. Assume that k is the summation index. By setting a parameter x to xq™, we may find a recurrence
relation of the summation by using the g-Zeilberger algorithm. This method applies to almost all non-
terminating basic hypergeometric summation formulae in the work of Gasper and Rahman. Furthermore,
by comparing the recursions and the limit values, we may verify many classical transformation formu-
lae, including the Sears—Carlitz transformation, transformations of the very well-poised g¢7 series, the
Rogers—Fine identity and the limiting case of Watson’s formula that implies the Rogers—Ramanujan
identities.
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1. Introduction

The aim of this paper is to develop a systematic method for proving non-terminating
basic hypergeometric series summation and transformation formulae. The idea of finding
recurrence relations and proving basic hypergeometric series identities by iteration has
been used very often (see [9-11,23]). However, a systematic method does not seem to
exist within the scope of computer algebra for proving non-terminating hypergeometric
summation and transformation formulae. One obstacle lies in the infinities of the sum-
mation ranges. In this paper, we find that the g-Zeilberger algorithm can be used as a
mechanism for proving many basic hypergeometric summation and transformation for-
mulae. To prove transformation formulae by using our approach, we show that, subject
to certain conditions, a series is uniquely determined by a recurrence relation and a limit
value (Theorem 3.1).

Wilf and Zeilberger developed an algorithmic proof theory for identities on hyper-
geometric series and basic hypergeometric series [42, 48, 49]. For the purpose of this
paper, we are concerned with the g-Zeilberger algorithm. Koornwinder [37], Paule and
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Riese [41] and Boéing and Koepf [18] studied further algorithmic proofs of basic hyperge-
ometric identities. Most of the theory and implementations are restricted to the case of
terminating identities. For non-terminating identities, Gessel [26] and Koornwinder [38]
provided computer proofs of Gauss’s summation formula and Saalschiitz’s summation
formula by means of a combination of Zeilberger’s algorithm and asymptotic estimates.
Vidunas [46] (see also [36,39]) presented a method to evaluate o Fy(%?|—1) series for
the case when ¢ —a + b is an integer and developed the MAPLE program infhsum.mpl for
the extension of Zeilberger’s algorithm to non-terminating series.
Our method can be described as follows. Let

f(a,...,c)zZtk(a,...,c)
k=0

be a basic hypergeometric series with parameters a, ..., c, which are chosen for the pur-
pose of establishing a recurrence relation of the form

po(a,....c)fla,....c)+pi(a,...,c)f(aq, ... ,cq)+---+pala,... ,c) f(ag?, ... cq?) =0,

(1.1)
where d is a positive integer and pg, ..., pq are polynomials. To this end, we try to find
polynomials po, . ..,ps and a sequence (go, g1, - - - ) such that

pola,...,o)tk(a,...,c)+pi(a,...,c)txlaq,...,cq)+---
+pala,...,o)tk(ag, ... cq?) = gpi1 — gr. (1.2)

Assume that go = limg_00 gx = 0. Then (1.1) follows immediately by summing over k
in (1.2).

The main idea of this paper is to use the ¢-Zeilberger algorithm [18,35,37,41, 48]
to find p; and gi. The bridge to the g-Zeilberger algorithm is the introduction of a
new variable n by setting the parameters a,...,c to aq”,...,cq". Then the summand
tr(ag™,...,cq™) becomes a bivariate g-hypergeometric term. Applying the g-Zeilberger
algorithm, we can always obtain an equation of the form (1.2).

When the recurrence relation (1.1) is of first order (i.e. d = 1) or involves only two
terms, f(a,...,c) equals its limit value limy_,~ f(aq",...,cq"V) multiplied by an infi-
nite product. Using this approach, we can derive almost all non-terminating summation
formulae listed in the appendix of [25], including bilateral series formulae.

When the recurrence relation involves at least three terms, we show that f(a,...,c)
is determined uniquely by the recurrence relation and its limit value under suitable
convergence conditions (Theorem 3.1). Therefore, to prove an identity, it suffices to verify
that both sides satisfy the same recurrence relation and that the identity holds for the
limiting case. Using this method, we can prove many classical transformation formulae.

Let us introduce some basic notation. The sets of integers and of non-negative integers
are denoted by Z and N, respectively. Throughout the paper, ¢ is a fixed non-zero complex
number with |¢| < 1.
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The g¢-shifted factorial is defined for any complex parameter a by

)
(ai¢)oo = [[(1 —ag®) and (a;q)n = wnﬂ Vn € Z.
o (aq"; q)oo
For notational brevity, we write
(a1, s ami On = (a15@)n -+ (@i @)n,
where n is an integer or infinity. Furthermore, the basic hypergeometric series are defined

by

o0 k _

ai,...,0a, (a1, yar;Q)k 2 K (5))° T+1

r®Ps 14,2 = —1 2 s
¢ [b17~"7b8 1 ‘| ]fg:o(blv"'vbs;q)k (Q7q)k(( )q )

and the bilateral basic hypergeometric series are defined by

agy ..., ar G (al7"'7ar;Q)k k k (k) s=r
r¥s 74, = -5~ -1 .
QZJ‘ [bl,...,bs qz] Z (bl,...,bs;q)kz (( )qQ)

k=—o0

2. Summation formulae

In this section, we present a method of proving non-terminating basic hypergeometric
identities by using the g-Zeilberger algorithm. Given a term of the form

(alla .. 7a;7Q)OO (a17 e aaT‘;Q)k d(;)zk

O Vi @)ee (b1, b b
by setting some parameters a,...,c to aq”,...,cq", we get a bivariate g-hypergeometric
term ti(aq™,...,cq™) in n and k. By the g-Zeilberger algorithm, we obtain a bivariate
g-hypergeometric term g, 5 and polynomials p;(¢™, a,...,c) which are independent of k
such that

po(q"sa,....c)tklag™,....cq™) +pi(q™,a,...,)t,(ag" ™, ... cg™ ™)

+ - +pald™,a,... ,c)tk(a(]"""’l7 o 7cq"er) = Gnk+1 — Ink- (2.1)

Suppose that goo = limg_o0 go,x = 0. By setting n = 0 in (2.1) and summing over k, we

derive a recurrence relation of the form (1.1) for f(a,...,c) = > 7 ytr(a, ..., c).
When the recursion (1.1) involves only two terms, say f(a,...,c) and f(aq?,...,cq?),
we have

dN dN = pd(aqdi qui)
= 1i li — RS = .
f(a7 7C) Nljflo f(aq ) , Cq ) NLI}lo bl ( po(aqdz, R chl))

Therefore, the evaluation of f(a,...,c) becomes the evaluation of its limit value

lim f(aq™™,...,cq™)

)
N —o0

which is much simpler and is usually an infinite product.
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2.1. Unilateral summations

We now present an example to show how to obtain an infinite product expression from
an infinite summation.

Example 2.1. The g-binomial theorem:

_ a _ (az19)
fla,z) =160 [ ,q,z] = e |2] < 1.

The g¢-binomial theorem was derived by Cauchy [20], Jacobi [32] and Heine [29].
Heine’s proof consists of using series manipulations to derive the recurrence relation

(1=2)f(a,2) = (1 - az)f(a, ¢2). (2.2)

Gasper [24] provided another proof using a recurrence relation with respect to the param-
eter a:
fla,z) = (1 —az)f(aq, 2).
Our computer-generated proof is similar to Heine’s proof. The recurrence relation
generated by the g-Zeilberger algorithm turns out to be (2.2). Let uy(z) be the summand

(@ @)k 4
ug(z) = z
) (@)
and let u, ; = uk(z¢™). By the ¢-Zeilberger algorithm, we obtain
(—azq" + Dupi1x + (2¢" = Dk = Gnks1 — Inks (2.3)
where g, r = (1 — ¢")uy x. Denote the left-hand side of (2.3) by ¢, ;. Then

o
Ztn,k = —9n,0 + lim In,k = 0 Vn > 07
k—o0

k=0
implying that
1— n
flazq") = %ﬂa,zq”*l) Wn > 0.
Hence,
1—
fa,2) = === f(a, zq)
1—azl—azq 9
. (azmgn N
= lim ——f(a,z2
N—oo (2;9)N fa,zq%)
_ (az9)
(21 @)os

where limy o f(a,2¢") = 1 holds by Tannery’s theorem [45, p. 292].
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Theorem 2.2 (Tannery’s theorem). Suppose that s(n) =3, fr(n) is a conver-
gent series for each n. If there exists a convergent series Zk20 My, such that | fr(n)| < My,
then

(o)
lim s(n) = lim fr(n).
Jim_s(n) kZ:o"*‘” (n)
The following summation formulae (most of which come from the appendix of [25]) can
be verified by the above method. We list in Table 1 only the recursions and the limit values
limy o0 flag?™, ..., cq). The recursions are computed by using the MAPLE package
hsum6.mpl developed by Koepf [35]. The limit values are obtained by straightforward
estimations and Tannery’s theorem. Notice that most of the summands are of the form
anx™ with a, being bounded. Thus, Tannery’s theorem can be applied for |z| < 1.

2.1.1. More examples

A g-analogue of Watson’s 3F5 sum:

abq
Hy QM1/27 _qu1/27 a27 bQQ7 ¢, —C, _T

f(a,C):g(b7 4= |
b
:ul/27 7M1/27 - bcqa 7%7 7Qb(]a abq7 C2 ¢
a b
where p = —abc.

By the ¢-Kummer sum, we have

¢ o (600 *q/a% )
4, —7 | = .
beq ab (¢/ab, —beq/a; Q) oo

lim f(ag",cq") = 2¢1
N— o0

By computation, one derives that

(1 + abeq) (1 + ¢/b)(1 + abeg?®) (1 — a?q)(1 — ¢/b) flag, cq)
(1 —¢2¢)(1 — abq)(1 + abq)(1 + acq/b)(1 + ac/b) T

.f(a” C) =

Thus, we have

f(a C) = (*chq, 7C/ba C/ba —dq; Q)OO(CLQ(], b2q2’ C2Q/a2; q2)oo
| (abq, —abg, —ac/b,c/ab, —=bcq/a; q)oo (20 4% oo

A g-analogue of Whipple’s 3F5 sum:

—C, Q(_C)l/Qa —q(—C)1/27 a, %7 C, —d, _%
f(c) =s¢7 e g DC
(_0)1/27 _(_0)1/23 —-——,—ac—gq, Z? cd
a
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Table 1. Recursions and the limit values limy_s o f(ag®,...,cq®)
name summation recurrence relation limit value
. 2k 1
-exponential z) = z 1
g-exp ,;(q;q)k F(z) = T—f(z0)
tial S F(z) = (14 2)f(zq) 1
g-exponentia, z) = 2)f(zq
Pl G
= (2;q)rq 2 )
Lebesgue [7, p. 21] Z f(x) = (1 —zq)f(xq?) (—¢; @)oo
= (@
o k+1
Lebesgue (a,b3q)rg! "2 ) (1—ag)(1=bg) . 5, ,
. . b = b —
generahzatlon [5] ];) (Q7 q)k(abq7 q2)k f(a’a ) (1 _ abq)(l _ abq3)f(aq , 0q ) ( q; q)oo
a ¢ 1—c¢/a
191 191 lc, q, a] fle) = - f(cq) 1
b ¢ 1—c/a)(1—1c/b
g-Gauss 201 [a 14, ] (1~ c/a)(1 ¢/ )f(cq) 1

¥19
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name sumimation recurrence relation limit value
[a,b a2 /B2 (1 — e
b g (1 —aq”/b%)(1 — aq) 2 (69
¢-Kummer 201 | 04, _b] fla) = (1—ag®/b)(1 — aq/b)f(aq ) W
(Bailey-Daum) sum L b 1o
r q
a, — 1—ab)(1—-"0bg/a
a g-analogue of 262 | “asa, —b] 7y =+ = 2 (><1 _qb/) ) 5 og?) 1
Bailey’s o F1(—1) | —a:b 9
R (1 —a2q)(1—b?q)
a g-analogue of ¢ ’ ¢, —q|  fla,b) = f(ag, bq (~¢ @)oo
e 2F1(_1) 292 i abq1/2, —abq1/2 ] ( ) (1- a2b2q)(1 _ a2b2q3) ( ) )
[ a2 —qa, b, c 2 2.2
. AR qa (1 —a%q/bc)(1 — a®q”/bc)(1 + aq)
-D 2 2 g, 2= —
a-Dixon sum Al R i 7 B e ey e
L c
1-— 1-— 1—a?
(1 —ag/b)(1 —ag/c)(1 —a q)f(aq) 1

(1 —a?q/c)(1 —a?¢?/c)

wWyL00)p 42bu2q)roz-b oy,

q19
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By computation we have the recurrence relation

(14 cq®)(1 + ¢)(1 — cg*/ad)(1 — acq/d)
(14 acq)(1 — cdq)(1 + cq?/a)(1 — cq?/d)
(1 —acd)(1 — cdq/a)(1 + cq)?
(1+ac)(1 —cd)(1+cq/a)(l —cq/d)

fle)=
fleq®).

Since f(0) = 1, we obtain

(—¢, —cq; @)oo (acd, acq/d, cdg/a, cq? /ad; ¢*)

fle) = (cd,cq/d, —ac, —cq/a; q)oo

The sum of a very well-poised g¢5 series:

1/2 _,,1/2
a7qa‘ 9 qa 7b7c7d. aq
2 _ 172 94 aq aqg D peg
a b) a b) ) b
b’ ¢’ d

fla) =605

By the g-Zeilberger algorithm, we find

(1 —ag/ed)(1 — aq/bc)(1 — agq/bd)(1 — agq)
(1 —aq/bed)(1 — ag/b)(1 — agq/c)(1 — agq/d)

Since f(0) = 1, we obtain

fla) = f(ag).

fla) = (ag, aq/bc, aq/bd, aq/cd; q)o
(ag/b,aq/c,aq/d, aq/bed; q)oo’

2.2. Two-Term summation formulae

Many classical two-term non-terminating summation formulae can be dealt with by

using the same method as single summation formulae. It turns out that, for many two-
term summation formulae, the two summands share the same recurrence relation. More-
over, the boundary values limy_,o go . for the two summands cancel out. So we still

obtain homogeneous recurrence relations which lead to infinite products. We give three

examples from the appendix of [25] and present a detailed proof for the first example.

Example 2.3. A non-terminating form of the g-Vandermonde sum:

aq bq
a,b (¢/c,a,b;q)0 ¢’ c
fla,b,c) =21 [ ;q,q] + ~——¢1 14, q
¢ (c¢/q,aq/c,ba/c; @) e

c
Since imy o0 f(ag™,bg"™, cq"™) does not exist, we consider

fla,b,c)

9(0:0:€) = (o fer e
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Let
NONS 1 (aq"bq"; )k 4
R (q)eq™ @)oo (cq™, 43 )k
W@ (ad" 00" @) (ag/c,bg/ci@)r
R (g /g, aq/c,bq/ ¢ @)oo (6 /a5 @)k
We have _ _ _ '
(abg" Tt — C)“S-)s-l,k + cugfy)k = 97(:,)k+1 — gx)k, 1=1,2,
where

O U abg® ™)1 q") )
n,k qk(l _ aq")(l _ bq") n,k’

g2 = cled” ~ "1 ="
n,k qk'H(l _ aq")(l _ bq”) n,k*

Noting that g} = g’ = 0 and
lim ¢ = — lim ¢ = — (ag" ', bg" 5 @)oo
koo VR T kmoe TR T g (1 feqn, eq L g3 q) oo

we get g(a,b,c) = (1 — abg/c)g(ag, bq, cq). Since

1 1
lim g(ag™,bq"™,cq™) =0+ = ,
N 9(ag ™ ba ed) = 0 e (aaje b/ d)m

we get

Flasbic) = (afes )glab.c) = (L0 EAED (2.4

Example 2.4. A non-terminating form of the g-Saalschiitz sum:

b, c
1,9 +

fe) = 3¢ [aé,f

(q/e,a,b,c,qf /€;q) s p aq/e,bq/e,cq/e.qq
(e/q,aq/e,bqfe,cqle, [ - | @2Jesqfje "N

where f = abeg/e.
By computation, we have

(1 —beg/e)(1 —acq/e)

7€) = T cq/e)(1 = abeg/e)T 0
and, by (2.4),
~ vy _ (a/e,aba/e;q)oo
o fled™) = (ag/e,bq/e;q)oc”
Thus, we get
fle) = (beq/e,acq/e, q/e, abq/e; q)oo (2.5)

(cq/e,abcq/e, aq/e,bq/e; @)oo
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Example 2.5. Bailey’s non-terminating extension of Jackson’s g¢7 sum:

a, qa1/27 _qa1/27 ba ) da e, f
f(aab):8¢7 J/2 _al/? aq aq aq aq %E‘Lq
b (ag,c,d,e, f,bq/a,bq/c,bq/d,bg/e,bq/ [; q) o

a (aq/b,aq/c,aq/d,aq/e,aq/ f,bc/a,bd/a,be/a,bf [a,b%q/a; q)co

2
] qba_l/Qa _qba_1/27 b7 @
a

b be bf
X g7 ’a7a7a'qq
ba*l/Q 7ba*1/2 @ b7q bﬁ bﬁ bﬂ - ’
3 ) a 7 c ) d ) e ) f
where f = a?q/bede.
By computation, we have
(1 —aq)(1 — ag/cd)(1 — agq/ce)(1 — ag/de)
a,b) = aq, bq),
J0) = 0 ag/ede)(1 — ag/e)(1 - ag/a)(1 — agfe)’ "0
and, by (2.5),

, b/a,aq/cf, aq/df aq/ef;q)s
1 N p Ny _ (

Ngnoof(aq ba) (aq/f,bc/a,bd/a,be/a;q)oo
Finally, we have

Fab) = (aq,aq/cd,aq/ce,aq/de,b/a,aq/cf,aq/df,aq/ef; q) o

(ag/cde,aq/c,aq/d,aq/e,aq/ f,bc/a,bd/a,be/a;q) oo

2.3. Bilateral summations

Bilateral summations [25, Chapter 5] can also be dealt with by using the g-Zeilberger
algorithm approach. We need the following special requirement for the recurrence rela-
tion (2.1):

lim gpr = lim g, =0.
k——o0 k— o0
Here are some examples.

Example 2.6. Jacobi’s triple product:

(oo}

kzooq(g)zk = (q, -z, Z;q)oo- (2.6)

This well-known identity is due to Jacobi (see [8] and [25, p. 12]). Cauchy [20] gave a
simple proof using the ¢-binomial theorem. For other proofs, see [1,22,33].

We give a g-Zeilberger style proof through a semi-finite form of the left-hand side
of (2.6) [21]:

o (85
=3 e
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Let u, ; be the summand. Applying the g-Zeilberger algorithm, we obtain

m+1)

Utk — (@ 2) (1 — " TUmk = Gkt — Gk

where gy = (1 — ¢™ 1) g™ up, k. Since

lim Im.k = lim gmk =0,
k—o0 ’ k——o0 ’

we have
qurl 1
1) = (14 T ) 1= ) m)
It follows that
= (’“) k _ = . _ 1
k; ¢z k; n}gnooum’k W%E)noo f(m)

=f(0)<Q>—Z;Q> = (—zq,—z;q) -

Example 2.7. Ramanujan’s 11 sum:

f(b) =191 lZ;Q,Z] _ (@b/a,az,4/az q)o 2|,

b
—| <1
(b,q/a,z,b/az;q) GZ‘
This formula is due to Ramanujan. Andrews [3,4], Hahn [27], Jackson [31], Ismail [30],
Andrews and Askey [12] and Berndt [17] have found different proofs.
The proof of Andrews and Askey [12] is based on the following recursion:

1-b/a
(1-0)(1—-0b/az)

fb) = [f(bg). (2.7)

We now derive the recursion (2.7) by using the ¢-Zeilberger algorithm. Let

(k4
Unfp = 72"
" (bam )
Then
2(bq" — a)uni1k + (az —bg")(1 = bq" )un k = Gn,k+1 — In.k> (2.8)
where

Ine = (1 = 0q")bq" un k.
Notice that (2.8) holds for any k € Z. Furthermore, when |z| < 1 and |b/az| < 1, we have

i e = (00" i =0

Summing over k € Z on both sides of (2.8), we immediately get (2.7), implying that

(b/a;q)oo

1) = G bjaz )

f(0).
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By the g-binomial theorem,

Therefore,

_ (ba;q@)ee (4,9/025q)s0 _(bla,q,q/az,a2;q) 0
IO = Gbfaziom @adwe 1P Gobjaz gja 5 0)m

Example 2.8. A well-poised 215 series:

b,c a a
f(b’c):2¢2 lw aq;qa_bg‘|a ?Z <1
b’ ¢
By computation, we have
fbey— (= 0a/be)(1—ag*/be) (1 —ag?/b)(1 — ag?/c?) ( b )
’ (1 +aq/be)(1 + ag?/be) (1 —q/b)(1 —q/e)(1 — aq/b)(1 —ag/c)” \q q)

By Jacobi’s triple product identity, we obtain
b ¢ > q
2
lim f<7 ) = qk <_a)k = <q27qaa =3 q2> .
Nooo” \ gV’ gV k;m a o

Thus, we get

F(b. ) = (0906 oo (a8 /17, 007/, 4%, 40, 4/ 058 )oc
P (704(]/1)0,q/b,q/c7aq/b7aq/c;q)oo

Example 2.9. Bailey’s sum of a well-poised 31)3:

b,c,d q
f(bacad):?)w?) gg g7q7@
b'c'd

We notice that applying the ¢-Zeilberger algorithm directly to

k
(bv ) da q)k (q)
(q/bq/c.q/d:q)x \bed )’
does not give a simple relation. Using Paule’s idea [40] of symmetrizing a bilateral sum-
mation, we replace k by —k to get a summation

q2

b,c,d
313 q g§q,@
b'c'd

oI O
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Now we apply the g-Zeilberger algorithm to the average of the above summands,

1+4¢*  (be,d;qn (q)k
2 (a/b.q/c,q/d;q)x \bed )

and obtain that

(1= q/bc)(d — ¢*/be)(1 — q/bd)(1 — ¢*/bd)

f(b,c,d) = (1—q/b)(1 = q/c)(1 — q/d)

(1 —g/cd)(1 = ¢°/cd)

b c d
- (1—Q/bcd)(l—q2/bcd)(1—q3/bcd)f<Q’Q’(J)"

By Jacobi’s triple product identity, we have

So we get
(q,q/bc, q/bd, q/cd; q) oo

(¢/b.q/c,q/d,q/bed; @)oc
Example 2.10. A basic bilateral analogue of Dixon’s sum:

f(b,e,d) =

By computation, we get

fb,e.d) =

(1 — aq/be)(1 — a?¢?/be)(1 — aq/bd) (1 —

lim f(%;i) = Y PR ()" = (6% 4. 4% D) = (40) -

a*q” /bd)

. (L—a?q/cd)(1 —a’q?/cd)
(1—q/b)(1 —q/c)(1 —q/d)
(1 —aq/b)(1 —agq/c)(1 — aq/d) f<
(1 —a2q/b)(1 — a?q/c)(1 — a?q/d)

Hence,

(1 —a3q/bed)(1 — a3q?/bed)(1 — aq3 /bed)

bcd)
aq)

(a?q/be, a*q/bd,a*q/cd, aq/b,aq/c,aq/d; q) oo

f(bye,d) =

where

(a3q/bed, q/b,q/c,q/d,a%q/b,a%q/c,a?q/d; q)s

S(a), (2.9)

S(a) = lim f(llj\f’;\r’chlv) _ Z (_qa;q)kq3(g)(—qa3)k.

(—a; )k

N—o0

q

k=—o0

In particular, replacing b, ¢, d in (2.9) by —a,c/q", d/¢" and taking the limit N — oo,

we get

N—oo Vg —q/a,—aq; )
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By Jacobi’s triple product identity, we have

c d\ — k2 Nk _ q.
(oo )~ 5 o= (R ).

q k=—o00

which implies that

S(a) = (2,0%¢,9/0%; @)
(aq,q/a; @)oo
Therefore, we obtain
(a*q/bc, a*q/bd, a*q/cd, aq/b, aq/c,aq/d; @) (4,0, q/0%; @)oo
(aq/bed, q/bq/c,q/d, a*q/b,a?q/c,a®q/d;q)oe  (aq,q/a;q)so
Example 2.11. Bailey’s very well-poised gg series:
qa'/?, —qa'’? b, c,d, e qa?
f(b,C,d,e)Zfﬂ/)G 412 1/2 aq aq aq aqvqybcde

f(b,e,d) =

b e d e
_ (aq/bc,aq/bd,aq/be,aq/cd,aq/ce,aq/de, q,aq,q/a; q)oo
(aq/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e, qa*/bede; q) o
This identity is due to Bailey [16]. Other proofs have been given by Slater and Lakin [44],
Andrews [6], Schlosser [43] and Jouhet and Schlosser [34]. Askey and Ismail [15] gave
a simple proof using the g¢s sum and an argument based on analytic continuation.
Askey [14] also showed that it can be obtained from a simple difference equation and
Ramanujan’s 117 sum.
Using our computational approach, we obtain

(1 —aq/bc)(1 — aq?/bc)(1 — aq/bd)(1 — ag®/bd)
(1 —aq/b)(1 —aq/c)(1 — aq/d)(1 — aq/e)
(- ag/be)(1 — ag? /be)(1 — ag/ed)(1 — ag?/ed)
(1—q/b)(1 = q/c)(1 —q/d)(1 —q/e)

(1 —ag/ce)(1 — ag®/ce)(1 — aq/de)(1 — aq?/de)
(1 — a%q/bede)(1 — a?q? /bede) (1 — a2q3 /bede) (1 — a2q* /bede)

fb,c,de) =

X

By Jacobi’s triple product identity, we have

b ¢ d
Nh—r>noof( qNan7q) a £

T
Y

(1 — ag®)q*(2) (qa?)*

q\?
—a,

q.
q,aq,—34 .
a 00
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Hence, we get

(aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q,aq, q/a; q)so
(aq/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e,qa?/bcde; @)oo

Example 2.12. The Askey beta integral [13]:

* (at,bt; q) 0o
Hobdo= [ Gt

f(b,ye,d,e) =

where
| tdi=-0 3 f@E0-a0 3 fd
- k=—o0 k=—o0

Applying the ¢-Zeilberger algorithm to the two infinite sums of I(aq™, bq™, d, e) respec-
tively, we obtain a homogenous recurrence for I(a,b,d,e):

1—a/e)(1+a/d)(1—b/e)(1+b/d)

_
I(a,b,d.e) = (1 + ab/deq)(1 + ab/de)

I(a'q7 bCL dv 6),

implying that

Iasb,d,e) = Y zfé Cbl/l;/e Z ;)bci EDee 10,0,d,0).

By the non-terminating form of the ¢g-Vandermonde sum (2.4), we obtain

I(‘L q>d7e) (Q7_Q5Q)oo —d,e (_dve§Q)oo d,—e
= 1,9 + 7/ i
1—q (—d,e;q)0 261 —q 1 (d7_€§Q)o<>2¢1 —q 1
_ (q7 _q;q)oo (_1>de;Q)oo
(—=d,e;9)00 (d,—€;q)c0
Therefore,
de; q)oo
10,0,d,e) = — WDy g )

(?/d?,¢%/e?;4°) oo
_ 201 q)(¢*¢%)3(de, q/de; )
(45 @)oo (d?,€2,¢%/d?, 42 /€25 4% ) o

Finally, we get

2(1 - Q)(q27 QQ)ZO(de, Q/de7 a/e, _a’/d7 b/€7 _b/d; Q)oo
(45 @)oo (d?,€2,¢%/d?, ¢ /€25 ¢%) oo (—ab/deq; q) oo

I(a,b,c,d) =
3. Transformation formulae

In this section, we show that many classical transformation formulae of non-terminating
basic hypergeometric series can be proved by using the g-Zeilberger algorithm. The basic
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idea is to find the same recurrence relations and limit values of two summations f(a, ..., c)
and ¢g(a,...,c). Suppose we have obtained a recurrence relation of second order or higher
order of the form (1.1) for both f(a,...,c) and g(a,...,c). Then the following theorem
ensures that f(a,...,c) and g(a,...,c) must be equal as long as limy o f(ag",...,cq")
coincides with the limit limy_ o g(ag”, ..., cq"V).

Theorem 3.1. Let f(z) be a continuous function defined on the disc |z| < r and let
d > 2 be an integer. Suppose that we have a recurrence relation

f(2) = a1(2)f(2q) + as(2) f(20%) + - - + aa(2) f(2¢%). (3.1)
Fori=1,...,d, we denote a;(0) by w;. Suppose that there exists a real number M > 0
such that
lai(2) —wi| < Mlz|, 1<i<d,
and

|wa| + |wa—1 +wa| + -+ Jwa + - +wy| < 1,
wp +we+ - Fwg =1.
Then f(z) is uniquely determined by f(0) and the functions a;(z).

Proof. By the recurrence relation (3.1), we have

d

f(2) =) AV ("),

i=1

where A(()i) = a;(z) and

AD L = ai(2q"HAD + ATD 1<i<d, 5
3.2
AL = aa(zq)AD
Let
d d
Az) = a7t — Z Zw] P

By the assumption, A(1) > 0. Hence, we may choose a real number p such that |¢| < p < 1

and A(p) > 0, namely,
d

d
i=2 j=i
Let
1 1
A =max{|A]],..., 1AV},
1 1 (1) (1)
A = maX{AdMT, |Ag - Aé )|,..., |Ad _dAdil‘ }7
Alp) P p
dMr A'p
B = .
pd—2 + A
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We will use induction on n to show that

|AD] < A(=B; p)n, (3.3)
AL — AV | < A" (= Bip). (3.4)

By definition, the inequalities (3.3) and (3.4) hold for n = 1,...,d. Suppose that n > d
and the inequalities hold for 1,2,...,n. From (3.2) we have that

n+2 1 (1)
n—i—l - E a An+1 7

d d
= Z n+2 Z )AgzlJrl ’L +Z< n+1 i 'ELIJ)rQ z)zw3>

=2

By the inductive hypotheses, it follows that

d
IASL < M| 27 A(=Bi p)nga—i + A(=Bip)n

i=1
d 4 d
+ A/an+2_l(_3§p)n+2—i ij
i=2 j=i
dMr d |
A(1+ —5D )(B;p)n+A'(B;p)an"”Z > w
i=2 =i

dMr  A'p\ , _
< A(l—i— (pd2 + 1 )p )(—B,p)n
= A(—B;P)n+1~

Similarly, by the inductive assumptions we have

A — A
d d d
n z 1 1 (1
Z |az 2 wz| ‘A£1.~)_1_1‘ + ((AEH)-l —i An—i)-Q 1) ij>
i=2 j=i
d
dMr )
S S S s
=2 j=i
AdMr Ap)
_ A/ _ n+1 —B: n
((A’pd‘l) +1 pd‘1>p (=B:p)

< AP (=Bip)ns1.
Therefore, the inequalities (3.3) and (3.4) hold for n+1. Using (3.4) we reach the following

inequality:
AL — A | < AP (—B;p) s
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So the limit lim,,— oo Aﬁ}) exists. By (3.2), for any 1 < 4 < d, the lim, ASP exists.

Thus, we get
d
— ; (4)
1(2) f(O);nlgr;o A,
which completes the proof. ([l
Remarks 3.2.

(i) The condition that f(z) is continuous in |z| < 7 can be replaced by the assumption
that limy o f(2q") exists.

(ii) The above theorem can be easily generalized to multi-variables.

We now give some examples. The first five are adopted from the appendix of [25].

Example 3.3. Heine’s transformations of 5¢; series:

C
201 [a,cb;qu] = Wz% ll;j;%b] (3.5)
abz
b, bz; 0o 77b
gz | < e .
(g oo yA
rc ¢
- Wz% 5;53(17 abz} ~ (3.7)
Let 7
f(z) =261 la’cbm,z
We have b | b
o) = LIS g 4 S ) (38)

By Theorem 3.1, for |¢/q| < 1, f(z) is uniquely determined by f(0) and the recurrence
relation (3.8). Let

(b,az;q) 0o E,z
g(2) = ~——=2d1 | b ;q,b| .

(Cvz;Q)oo az

Then g(z) satisfies the same recursion as (3.8). By the g-binomial theorem, we have

o(0) = L2 g, [b;q,b] = 1= /(0).

(¢ @)oo

Therefore, (3.5) holds for |¢/q| < 1. By analytic continuation, (3.5) holds for all a, b, ¢, z €
C, provided that both sides are convergent. Similar arguments can justify (3.6) and (3.7).
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Example 3.4. Jackson’s transformations of 2¢1, oo and 3¢ series:

C
a,b az;q)co a, -
2¢1 14,2 :¢2¢2 bvqabz (39)
c (23 @)oo c,az
C
-0
(abz/c;q)so “p
=30 1,41 5 3.10
b2/ q)0 e (3.10)

where (3.10) holds, provided that the series terminates.

Let f(z) be the left-hand side (3.9). Thus, we have the recurrence relation (3.8) and
limy o0 f(2¢"Y) = 1. By using the g-Zeilberger algorithm, one can verify that the right-
hand sides of (3.9) and (3.10) also satisfy the same recurrence relation. Moreover, for
the summation (3.10), the terminating condition is required to ensure limg_yo0 gnx = 0
n (2.1). By considering the limit values, we get the transformation formulae (3.9) and

(3.10).
A similar discussion implies the following transformation formula for terminating o¢;
series:
. Wb abz
ab 1 (e/bc/aig) e
2¢1[ 1QaZ] (c/ab,c;q)oog 2 LI%]O?q,q ’
provided that the right-hand side summation terminates.
Example 3.5. Transformations of 3¢9 series:
d d
a,bec.de | (e/a,de/bc;q)oo “pe e
g, — | = AU tq, - 3.11
3¢2 [ d, e y 4, abc} (e,de/abc; q)oo 3¢2 @ 4, a ( )
b
d e de
(b,de/ab, de/bc; q) 0o b b abe
= ¢, b . 3.12
(d,e,de/abc; @)oo 392 de de s ( )
ab’ be

We take d as the parameter. Let f(d) be the series on the left-hand side of (3.11). We
have f(0) =1 and

_(+ q)ed? + (—abc — eb — ea — ec)d + abe + abce/q
f(d) = (—ed + abe)(—1 + d) f(da)
e(—c+dq)(—dq + b)(—dq + a)

q(—ed + abc)(—1 +dq)(—1+d)

f(dg?).

On the other hand, one can verify that both the series on the right-hand side of (3.11)
and in (3.12) have the same limit value and satisfy the same recurrence relation as the
left-hand side of (3.11).
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Example 3.6. The Sears—Carlitz transformation:

1/2 _1/2 1/2 172 24
a, b7 c ) aqz _ (az’ q)oo a / , —a / ’ (GQ) / 7_(aq) / ) E
3¢2 % %aQ7 be - (Zq)oo 5¢4 aq aq q 4,41,
b | DR

provided that the right-hand side terminates.
Let us take z as the parameter and denote the series by f(z). One can verify that both
sides have the same limit value limy_so, f(2¢") = 1 and satisfy the following recurrence

relation:
F(z) = r1(2) f(2q) + r2(2) [ (26%) + 73(2) [ (24°),
where
Q. ac C —a a C a2
()= P 06, me= "0 o6 k=L von).

Note that to comply with the conditions of Theorem 3.1, we only need the values r1(0),
r2(0) and r3(0). Therefore, we do not give the explicit formulae for 1 (2), r2(2) and r3(z).

Example 3.7. Transformations of very well-poised g¢7 series:

a,qa'/?, —qa'’? b, c,d, e, f 0202
. Nl
ST a1/2, g2, %0 40 04 04 040 1
b’ ¢’ d f

_ (ag,aq/ef, Aa/e, A/ f; @)oo
(ag/e,aq/f, g, Ag/ef; q)oo

A’qu/Q’_qA1/27&7&7M)€7 aq
a a a
X .q, — 3.14
o AL/2 172 %429 aq Ad Aq Ter (3.14)
b b b 9 c b d 9 e b f
_ (aq,b,bep/a, bdp/a, bep/a, bf 1/ a; @)oo
(aq/c,aq/d,aq/e,aq/ f, g, bi/a; q) oo
2 _, 172 %4 a9 aq aq by
ILL7Q/’L b) QN ’bc7bdﬂbe7bf7a/.
X8¢7 7q7b ) (315)

pl/2 /2, bCJ, bi“’ @7@7%
a’ a a a b
where \ = ga?/bed and p = ¢%a®/b?cdef.

We choose a, b, f as parameters for the series in (3.13) and (3.14) and denote the
series by H(a,b, f). It follows from (3.11) that both series have the same limit value
limy 00 H(ag™,bg", f¢V). By computation, one sees that they satisfy the following
recurrence relation:

H(aa bv f) = rl(a, bv f)H(aqa bQ7 fq) + ’]"2((1, ba f)H(ana bq2a qu)a

where

ri(a,b, f) =1+ O(a), ra(a,b, f) = O(a).
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Thus, we have verified the first transformation formula. To prove the second transforma-
tion formula, we choose a, ¢, f as the parameters and denote the series by H(a,c, f). By
computation, the series in (3.13) and (3.15) satisfy the following recurrence relation:

H(a,c, ) =ri(a,c, f)H(aq, cq, fq) + r2(a, ¢, f)H(aq®, cq®, fq°).

Using the transformation formula (3.12), one sees that both sides have the same limit
value limy oo H(aq",cq", f¢™). Thus, we have obtained the second transformation
formula.

Example 3.8 (a limiting case of Watson’s formula). Watson [47] used the fol-
lowing formula to prove the Rogers—Ramanujan identities [28] (see also [25, §2.7]):

2

— (ag; )r—1(1 — ag**) k2b gh(5h=1)/2 _ o a¢*
E: (—1)%a (ag; @)oc D (3.16)
g (4 9k P L

We choose a as the parameter. Then we can verify that both sides of (3.16) have the
same limit value f(0) = 1 and satisfy the same recurrence relation

fla) = (1—aq) f(aq) + aq(1l — aq)(1 — ag®) f (ag®).

Setting ¢ = 1 and a = ¢ in (3.16), we obtain the Rogers—Ramanujan identities by
Jacobi’s triple product identity:

- qk2 = 2vk 5(5) 2 3 5.5
(Q;Q)OOZ(. = > )R = (6% 6% )
k=0 q;9)k k= —oo
and
[e’e] k2+k [e’e]
q k =4 =4
(@D Y = > (a9 ") = (0.¢%,¢% ")
“(Gar

Finite forms of the above identities have been proved by Paule [40] by using the ¢-Zeil-
berger algorithm.

Example 3.9 (a generalization of Lebesgue’s identity). The following transfor-
mation formula is due to Carlitz [19] (see [2]):
k
i 17qu()( a)* _ (a,7;0)o0
(¢, bx; q) (073 q)oo

oo

bqu
(q,a;q)

(3.17)

k=0 =0

We choose z as the parameter. Both sides of (3.17) have the same limit value f(0) =
(a;q) s and satisfy the same recurrence relation:

qgt+a

o) = (L2240 ) ea) + = 2+ 0@) ) fas?)
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Example 3.10 (three-term transformation formulae). Our approach also applies
to certain three-term transformation formulae. It is sometimes the case that the left-hand
side of the identity satisfies a homogenous recursion, and the two terms on the right-hand
side satisfy non-homogenous recursions respectively but their sum leads to a homogenous
recurrence relation.

The first example is

—,b,¢c
a,byc. de | (e/be/c;q)so e
3¢2 [ d,@ 74, G/bC‘| - (e,e/bc; q)oo 3¢2 d bﬂ7q7q
T e
e e de
(d/a,b,c,de/bc; q) s b’ ¢ abe
aq| . (318
(al,e,bc/e,de/abc;q)oog(z52 de eq 44 (3.18)
be’ be

Let us choose e as the parameter. Then both sides of (3.18) have the same limit value
limy o f(eg") = 1 and satisfy the same recurrence relation:

fle) =ri(e)f(eq) +ra(e) f(eq?),

where ny d
ri(e) = qT +0(), ra(e) == +0le),
The second example is
a, qa1/27 _qal/Q, b7 c, da €, f a2q2
8¢7 a‘l/27 _al/Qa %7 %7 %7 %7 &;7 ¢ W
aq
= d,e,
_ (aq,aq/de,aq/df,aq/ef;q) oo & e ¢ ! )
(aq/d aqfe,aq/f,aq/def;q)s *** | 00 aq def’®1
b ¢’ a

(ag,aq/be,d, e, f,a*q* /bdef, a*q /cde f; q) oo
(aq/b,aq/c,aq/d,aq/e,aq/f,a?q?[bedef, def [aq; q) oo

ag aq aq a’q?

de’ df " ef’ bedef
X 14, q] - 3.19
4¢3 2 P ad? 4,9 (3.19)

bdef’ cdef’ def

We take a, b, f as parameters and denote the series by H(a,b, f). By the trans-
formation formula (3.18), we see that both sides of (3.19) have the same limit value
limy s o0 H(ag™,bgY, fgV). Moreover, they satisfy the same recurrence relation:

H(CL, b7 f) = 7"1(@, b7 f)H(U'Qa bqa fQ) + T2(a'a ba f)H(GQQa bq2a fq2)7
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where

ri(a,b, f) =1+ O(a), r2(a,b, f)=0(a).

Example 3.11 (Rogers—Fine identity). To conclude this paper, we consider a
transformation formula that can be justified by using non-homogeneous recurrence rela-
tions. This is the Rogers—Fine identity [23]:

(b, 2z @) (1 — 2¢")

b

(@ Dk = (a,a2q/b;@)k(1 — azg®)g" F (b2)"
ZO bar” => . (3.20)

k= k=0

We choose z as the parameter. By computation, both sides of (3.20) satisty the following
recurrence relation:

(=b+azq)f(2q) + (=2 +q)f(2) =q—b.

The non-homogenous term g — b occurs because go,0 = —¢+b and limy_, go,x = 0 when
one implements the g-Zeilberger algorithm. Let d(z) be the difference of the two sides

of (3.20). Then we have
_bl- azq/bd

d(z) 1

(2q)-
Since d(0) = 0, equation (3.20) holds for |z| < 1 and |b| < |¢|. By analytic continuation,
it holds for |z| < 1.
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