AN INEQUALITY RELATED TO THE GEHRING–HALLENBECK THEOREM ON RADIAL LIMITS OF FUNCTIONS IN THE HARMONIC BERGMAN SPACES*

MIROSLAV PAVLOVIĆ

Faculty of Mathematics, Belgrade, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia e-mail: pavlovic@matf.bg.ac.yu

(Received 20 October 2006; accepted 26 February 2008)

Abstract. For a function u harmonic in the unit disk \mathbb{D} , there holds the inequality

$$\int_0^{2\pi} M_{p,\beta} u(e^{i\theta}) \, d\theta \leq C_{p,\beta} \int_{\mathbb{D}} |u(z)|^p (1-|z|)^\beta \, dm(z),$$

where p > 0 and $\beta > -1$, and

$$M_{p,\beta}u(e^{i\theta}) = \sup_{0 < r < 1} |u(re^{i\theta})|^p (1-r)^{\beta+1}.$$

2000 Mathematics Subject Classification. 30D55, 46E15.

Let \mathbb{D} be the open unit disk of the complex plane. The following theorem was proved by Gehring [2] for p > 1 and by Hallenbeck [3] for 0 .

THEOREM A. If u is a function harmonic in \mathbb{D} such that

$$I(u) := \int_{\mathbb{D}} |u(z)|^{p} (1 - |z|)^{\beta} \, dm(z) \, < \infty \tag{1}$$

where p > 0, $\beta > -1$, then

$$\lim_{r \to 1^{-}} |u(re^{i\theta})|^p (1-r)^{\beta+1} = 0, \quad \text{for almost all } \theta \in [0, 2\pi].$$
(2)

Here dm stands for the Lebesgue measure in the plane. The class of harmonic functions satisfying (1) is called the harmonic Bergman space a_{β}^{p} . Various generalizations of this result can be found in [5–8].

Here we prove that the convergence in (2) is dominated. In order to state the result we define the maximal function $M_{p,\beta}u$ by

$$M_{p,\beta}u(e^{i\theta}) = \sup_{0 < r < 1} |u(re^{i\theta})|^p (1-r)^{\beta+1}.$$

THEOREM 1. If u is a function harmonic in \mathbb{D} satisfying (1), where p > 0, $\beta > -1$, then

$$J(u) := \int_0^{2\pi} M_{p,\beta} u(e^{i\theta}) \, d\theta \quad < \infty.$$
(3)

^{*}Supported by MNZŽS Serbia, Project No. ON144010.

MIROSLAV PAVLOVIĆ

Moreover, there is a constant $C = C_{p,\beta}$ such that $J(u) \leq CI(u)$.

Before proving this theorem, we show how it can be used to prove Theorem A. Namely, let u satisfy (1), and let

$$Tu(e^{i\theta}) = \limsup_{r \to 1^{-}} |u(re^{i\theta})| (1-r)^{(\beta+1)/p},$$

and $u_{\rho}(e^{i\theta}) = u(\rho e^{i\theta}), \ 0 < \rho < 1$. Since $T(u_{\rho})(e^{i\theta}) = 0$ for all θ , and $Tu \leq T(u_{\rho}) + T(u - u_{\rho})$, we have, by Theorem 1,

$$\int_{0}^{2\pi} \{Tu(e^{i\theta})\}^{p} d\theta \leq \int_{0}^{2\pi} \{T(u-u_{\rho})(e^{i\theta})\}^{p} d\theta \\\leq CI(u-u_{\rho}), \qquad 0 < \rho < 1$$

Since $\lim_{\rho \to 1} I(u - u_{\rho}) = 0$ (this is well known and easy to see), we have $Tu(e^{i\theta}) = 0$ for almost all θ .

For the proof of Theorem 1, we need the inequality

$$\sup_{|z-a|<\varepsilon} |u(z)|^p \le \frac{C_p}{\varepsilon^2} \int_{|z-a|<2\varepsilon} |u(z)|^p \, dm(z) \tag{4}$$

due to Hardy and Littlewood [4] and Fefferman and Stein [1], in the case 0 . $In the case <math>p \ge 1$, this is a consequence of the sub-harmonicity of $|u|^p$.

Proof of Theorem 1. Let $r_j = 1 - 2^{-j}, j \ge 0$. Then

$$J(u) \le \int_0^{2\pi} d\theta \sum_{j=0}^\infty 2^{-j(\beta+1)} \sup_{r_j \le r \le r_{j+1}} |u(re^{i\theta})|^p.$$
(5)

For a fixed θ , let $a_j = (r_j + r_{j+1})e^{i\theta}/2$ and $\varepsilon_j = (r_{j+1} - r_j)/2 = 2^{-j-2}$. From (4), we conclude that

$$2^{-j(\beta+1)} \sup_{r_j \le r \le r_{j+1}} |u(re^{i\theta})|^p \le C 2^{-j(\beta+1)} 2^{2j} \int_{|z-a_j| < 2^{-j-1}} |u(z)|^p \, dm(z). \tag{6}$$

On the other hand, simple calculation shows that $|z - a_i| \le 2^{-j-1}$ implies

$$2^{-j-2} \le 1 - |z|$$
 and $|z - e^{i\theta}| \le 3 \times 2^{-j-2} \le 2^{-j-1}$.

Hence,

$$2^{-j}2^{2j} \le 2^4 P(z, e^{i\theta}), \text{ for } |z - a_j| < 2^{-j-1},$$

where $P(z, e^{i\theta})$ denotes the Poisson's kernel

$$P(z, e^{i\theta}) = \frac{1 - |z|^2}{|z - e^{i\theta}|^2}.$$

From this and (6), we get

$$2^{-j(\beta+1)} \sup_{r_j \le r \le r_{j+1}} |u(re^{i\theta})|^p \le C 2^{-j\beta} \int_{r_{j-1} \le |z| \le r_{j+2}} P(z, e^{i\theta}) |u(z)|^p dm(z)$$
$$\le C \int_{r_{j-1} \le |z| \le r_{j+2}} (1 - |z|)^\beta P(z, e^{i\theta}) |u(z)|^p dm(z)$$

434

where $r_{-1} = 0$ and we have used the inclusion

$$\{z: |z-a_j| \le 2^{-j-1}\} \subset \{z: r_{j-1} \le |z| \le r_{j+2}\}.$$

Hence, by summation from

j = 0 to ∞ , we get

$$\sum_{j=0}^{\infty} 2^{-j(\beta+1)} \sup_{r_j \le r \le r_{j+1}} |u(re^{i\theta})|^p \le C \int_{\mathbb{D}} (1-|z|)^{\beta} P(z,e^{i\theta}) |u(z)|^p \, dm(z).$$

Now we integrate this inequality over $\theta \in [0, 2\pi]$ and use the formula

$$\int_0^{2\pi} P(z, e^{i\theta}) \, d\theta = 2\pi$$

together with (5) to get $J(u) \leq CI(u)$, which was to be proved.

REMARK 1. If p > 1 or if p > 0 and u is holomorphic, then the proof can be made shorter. Namely, we can apply the Hardy–Littlewood maximal theorem to get

$$\int_0^{2\pi} \sup_{r_j \le r \le r_{j+1}} |u(re^{i\theta})|^p \, d\theta \le C_p \int_0^{2\pi} |u(r_{j+1}e^{i\theta})|^p \, d\theta.$$

From this and (5), it follows that

$$J(u) \le C_p \sum_{j=0}^{\infty} 2^{-j(\beta+1)} \int_0^{2\pi} |u(r_{j+1}e^{i\theta})|^p d\theta,$$

$$\le C_p \int_0^1 (1-r)^\beta r \, dr \int_0^{2\pi} |u(re^{i\theta})|^p \, d\theta,$$

where we have used the 'increasing' property of the integral means.

REFERENCES

1. C. Fefferman and E. M. Stein, H^p spaces of several variables, *Acta Math.* **129** (1972), 137–193.

2. F. W. Gehring, On the radial order of subharmonic functions, J. Math. Soc. Jpn. 9 (1957), 77–79.

3. D. J. Hallenbeck, *Radial growth of subharmonic functions*, Partial differential equations with complex analysis, Pitman Res. Notes Math. Ser. **262** (1992), pp. 113–121.

4. G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405–423.

5. J. Riihentaus, Subharmonic functions: Non-tangential and tangential boundary behavior, in *Function spaces, differential operators and nonlinear analysis* (Pudasjärvi, 1999), Acad. Sci. Czech Repub., Prague, 2000, pp. 229–238.

6. M. Stoll, Invariant potential theory in the unit ball of \mathbb{C}^n , in *London mathematical society lecture note series, vol. 199* (Cambridge University Press, Cambridge, 1994).

7. M. Stoll, Boundary limits and non-integrability of *M*-subharmonic functions in the unit ball of \mathbb{C}^n ($n \ge 1$), *Trans. Amer. Math. Soc.* **349**(9) (1997), 3773–3785.

8. M. Stoll, Weighted tangential boundary limits of subharmonic functions on domains in \mathbb{R}^n ($n \ge 2$), Math. Scand. 83(2) 1998), 300–308.