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If, in a large expanse of fluid such as air or water, an object that is heavier than the
fluid displaced is released from rest, it descends in a manner that can depend in a
complex way on its geometry and density (relative to that of the fluid), and on the
fluid viscosity, which, as in other fluid contexts, remains important no matter how
small this viscosity may be. A major numerical attack on this problem for the case in
which the object is a thin circular disc is presented by Auguste, Magnaudet & Fabre
(J. Fluid Mech., vol. 719, 2013, pp. 388–405).
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1. Introduction

Anyone who, following tradition or superstition, has dropped a light coin into
the Trevi Fountain in Rome will have noticed that the manner of its descent is
highly irregular. Fairground operators frequently exploit this irregularity as a means of
extracting money from their more gullible customers. To understand the dynamics
of descent of a body of this kind through a fluid medium is the subject of a
paper entitled ‘Falling styles of discs’ by Auguste, Magnaudet & Fabre (2013),
which makes significant progress towards such understanding, although for ranges
of parameters that do not as yet extend to the descent of coins in the Trevi Fountain.
The spinning descent of a samara (the winged seed of trees such as the sycamore,
Acer pseudoplatanus) is often cited as an example of this type of phenomenon,
although here of course the geometry of the seed is responsible for the particular
style of descent that is observed (Norberg 1973). At another extreme, the free fall of a
spacecraft through a rarified atmosphere is governed essentially by the same principles
of fluid and rigid-body dynamics.

This type of problem attracted the attention of no less than James Clerk Maxwell,
who in 1853 (at the age of 22) published a paper whose opening paragraph reads:
Everyone must have observed that when a slip of paper falls through the air,

its motion, though undecided and wavering at first, sometimes becomes regular. Its
general path is not in the vertical direction, but inclined to it at an angle which
remains nearly constant, and its fluttering appearance will be found to be due to a
rapid rotation about a horizontal axis . . . .
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Any stairwell provides an appropriate setting for repetition of this experiment: some
height is needed for the ‘regular’ state to be established. Maxwell’s discussion of
the phenomenon and the physical insight that he thereby displayed was remarkable,
given that the effects of the viscosity of fluids such as air were then as yet but dimly
understood. It was his first venture into fluid mechanics, a field to which he later made
a number of seminal contributions that deserve to be better known (Moffatt 2013).

The motion of a rigid body through a fluid in fact provides one of the central
problems of fluid mechanics and aerodynamics, and as such has been studied
intensively over the past 150 years and more. Viscous effects are recognized to be
of crucial importance, even in the limit of vanishingly small fluid viscosity; without
viscosity, the flight of bats, birds, bees and aircraft would be impossible! A rigid
body such as a sphere or cylinder fixed in a uniform stream of air or water, or
any other fluid, experiences a drag force associated with the rotational flow (or the
‘vorticity’) in the downstream wake. This vorticity is created through the agency of
viscosity in a thin boundary layer on the surface of the body, and is then swept
into the wake through a physically self-evident, though mathematically complex,
‘separation’ mechanism (Stewartson 1974). The famous ‘von Kármán vortex street’
shed from a cylinder is perhaps the best-known example – for beautiful images of this
phenomenon, see Zdravkovich (1969), but there are many variants of this.

If the body is not fixed, but is free to move (as for the coin in the fountain)
in response to the net force and torque (generally time-dependent) exerted on it
by the fluid, together with the force of gravity, then there is a complex dynamical
interaction between the fluid and the the body, governed, on the one hand, by the
Navier–Stokes equations in the fluid, and, on the other, by the equations of rigid-body
dynamics determining the motion of the body (generally unsteady) in response to
the above force and torque. This problem, being fully three-dimensional, unsteady
and nonlinear, is far beyond the reach of purely theoretical analysis, and has only
recently become amenable to investigation through the use of powerful computational
techniques. Much experimental evidence is available in a wide range of circumstances;
the challenge is to reproduce experimental observations by computation, to investigate
by this means the detailed flow structures, particularly in the vortical wake, and to
extend such computations to regimes of parameter space where experimental results
are not available, or extremely hard to come by.

2. How thin is ‘thin’?

The three essential parameters of the disc problem are: (i) the ratio χ = d/h of the
diameter d of the disc to its thickness h; (ii) the inertia ratio I∗ = πρs/64ρχ , where
ρ and ρs are the fluid and solid densities, respectively; and (iii) the ‘Archimedes’
number defined by Auguste et al. (2013) as Ar =

√
3|ρs/ρ − 1|gh(d/4ν), where ν is

the kinematic viscosity of the fluid. The Archimedes number, like a Reynolds number,
here provides the relevant measure of inertial, as compared with viscous, forces. (The
disc, of course, rises rather than falls if ρs < ρ.) Auguste et al. focus for the most part
on thin discs (χ > 10), and on the parameter ranges 0.0015 < I∗ < 0.5 and 0 < Ar <
110. For a one-pound (UK) coin falling through water, χ ≈ 10 and I∗ ∼ 0.35; however,
Ar ∼ 3 × 103, and this, as indicated above, is well beyond the range covered by the
computations. (A deep ocean rather than the Trevi Fountain would in fact be required
for the coin to reach anything like Maxwell’s ‘regular’ state of motion.) At the much
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smaller Archimedes number Ar = 80 (i.e. much increased viscosity, other things being

ya

xa

za

FIGURE 1. Zig-zag
mode (Auguste 2010).

equal), the rise of a buoyant disc for which ρs/ρ = 0.99
and χ = 3, as computed by Auguste (2010), is shown in
figure 1. This rise is periodic in character, and is described,
for obvious reasons, as the ‘zig-zag’ mode. The first question
addressed by Auguste et al. (2013) is this: How large must χ
be for the disc to be treated as ‘infinitely thin’? In comparing
computed results for χ = 10 and χ =∞ (again, other things
being equal), significant differences are found. For example,
when χ = 10, the zig-zag mode appears only for Ar > 63.5,
whereas when χ = ∞, the zig-zag mode is present for
33 6 Ar 6 45, and for Ar > 46, a ‘hula-hoop’ mode (a
combination of zig-zag and precession about a vertical axis)
takes over. Thus, contrary to previous beliefs, it would appear
that χ must be considerably greater than 10 before the
behaviour becomes ‘χ -independent’. A possible reason for
this, as argued by the authors, is that the low-Reynolds-
number flow round a sharp disc edge (when χ =∞) is quite
different from that round the 90◦ corner encountered when
χ <∞. Just how large χ has to be before the ‘infinitely thin’
idealization becomes accurate remains an intriguing problem.

3. From zig-zag to hula-hoop

The next questions addressed are these: For the infinitely thin disc (χ =∞), what
‘mode of motion’ is realized for given values of Ar and I∗? And what transitions
between different modes are possible as we change these parameters continuously?
It appears that there are at least six distinct modes, the first four of which have
been identified experimentally in previous work (e.g. Field et al. 1997): (i) the
straight vertical (SV) mode, realized at sufficiently small Ar , in which the disc is
horizontal and the centre descends on a straight vertical path; (ii) the zig-zag (ZZ)
mode shown in figure 1; (iii) an autorotation (AR) mode, for which the disc rotates
about a horizontal axis and drifts on an inclined path (this is apparently the mode
discovered by Maxwell with his slip of paper); (iv) an intermediate chaotic regime
(ZZ/AR), being a mixture of periods of ZZ and AR; (v) a hula-hoop mode (HH),
as described above; and (vi) a ‘helical autorotation’ (HA) mode. These last two
have been discovered computationally and described by Auguste et al. (2013) as
characterized by a slow precession of the plane within which the disc falls, while
zig-zagging in the former case or tumbling in the latter. Auguste et al. (2013) have
explored the (Ar, I∗) plane, mapping out the regions in which each of the above
six modes is realized. For example, if Ar is increased at constant I∗ ≈ 0.03, the
disc undergoes the successive mode transitions SV→ ZZ→ ZZ/AR→ AR. Moreover,
the first of these transitions SV→ ZZ is subcritical in character: it occurs for finite-
amplitude perturbations, and the SV mode remains stable to infinitesimal disturbances
for a range of Ar beyond the bifurcation value Arc.

A major conclusion of Auguste et al. (2013) is that the coupled disc–fluid system is
much more unstable than the flow system in which a disc is fixed, and that there is a
great richness and diversity in the various mode changes that can occur as either the
inertia parameter I∗ or the Archimedes number Ar increases. (Incidentally, one may
question the attribution of this number to Archimedes, who was aware of buoyancy
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FIGURE 2. Three coins: 1 pound (UK); 5 Yen (Japan); and 20 cents (Hong Kong, 1977).

but not of viscosity! The number is really a Reynolds number, Reg say, based on the
diameter d and a gravitational velocity Ug proportional to

√
gh.)

4. Why three? ‘Disc’ussion

The song ‘Three coins in a fountain’ was a top hit, sung by Frank Sinatra, in 1954
(the lyrics may still be found on YouTube). The three coins illustrated in figure 2,
representative of those that can be found in the Trevi Fountain, perhaps suggest three
questions for future investigation. (i) Do the roughness of a disc and of its rim (if
serrated) influence its mode of descent in a tank of water? (ii) What if the disc has
a hole in it? It is to be expected that this may modify the wake, and so the various
instabilities, quite dramatically. (iii) What if the disc has a wavy edge? Since the
vortex shedding process occurs at the edge, this also may be expected to have a strong
effect. Are there additional modes as yet undiscovered? That seems more than likely!
With increasing Reynolds number, does the wake become fully turbulent? If so, does
the disc respond perceptibly to this turbulence. Much work remains for continuing
investigation of these variations on a fascinating theme!
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