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A Characterization of the Quantum
Cohomology Ring of G/B and
Applications

Augustin-Liviu Mare

Abstract. We observe that the small quantum product of the generalized flag manifold G/B is a prod-

uct operation ⋆ on H∗(G/B) ⊗ R[q1, . . . , ql] uniquely determined by the facts that it is a defor-

mation of the cup product on H∗(G/B); it is commutative, associative, and graded with respect to

deg(qi ) = 4; it satisfies a certain relation (of degree two); and the corresponding Dubrovin con-

nection is flat. Previously, we proved that these properties alone imply the presentation of the ring

(H∗(G/B) ⊗ R[q1, . . . , ql], ⋆) in terms of generators and relations. In this paper we use the above ob-

servations to give conceptually new proofs of other fundamental results of the quantum Schubert cal-

culus for G/B: the quantum Chevalley formula of D. Peterson (see also Fulton and Woodward) and the

“quantization by standard monomials” formula of Fomin, Gelfand, and Postnikov for G = SL(n,C).

The main idea of the proofs is the same as in Amarzaya–Guest: from the quantum D-module of G/B

one can decode all information about the quantum cohomology of this space.

1 Introduction

Let us consider the complex flag manifold G/B, where G is a connected, simply con-

nected, simple, complex Lie group and B ⊂ G a Borel subgroup. Let t be the Lie
algebra of a maximal torus of a compact real form of G and Φ ⊂ t

∗ the correspond-
ing set of roots. Consider an arbitrary W -invariant inner product 〈 , 〉 on t. To any
root α corresponds the coroot

α∨ :=
2α

〈α, α〉

which is an element of t (by using the identification of t and t
∗ induced by 〈 , 〉).

If {α1, . . . , αl} is a system of simple roots, then {α∨
1 , . . . , α

∨
l } is a system of sim-

ple coroots. Consider {λ1, . . . , λl} ⊂ t
∗, the corresponding system of fundamental

weights defined by λi(α
∨
j ) = δi j . The Weyl group W is the subgroup of O(t, 〈 , 〉)

generated by the reflections about the hyperplanes kerα, α ∈ Φ
+. It can be shown

that W is in fact generated by the simple reflections s1 = sα1
, . . . , sl = sαl

about the
hyperplanes kerα1, . . . , kerαl. The length l(w) of w is the minimal number of factors
in a decomposition of w as a product of simple reflections.

Let B− ⊂ G denote the Borel subgroup opposite to B. To each w ∈ W we as-

sign the Schubert variety Xw = B−.w. The Poincaré dual of [Xw] is an element of1
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1All homology and cohomology groups in this paper will be with coefficients in R (unless otherwise
specified).
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H2l(w)(G/B), which is called the Schubert class. The set {σw | w ∈ W} is a basis of
H∗(G/B) = H∗(G/B,R), hence {σs1

, . . . , σsl
} is a basis of H2(G/B). A theorem of

Borel [Bo] says that the map

(1.1) H∗(G/B) → S(t
∗)/S(t

∗)W
= R[{λi}]/IW

described by σsi
7→ [λi], 1 ≤ i ≤ l, is a ring isomorphism (we are denoting by

S(t
∗)W

= IW the ideal of S(t
∗) = R[{λi}] generated by the non-constant W -invar-

iant polynomials).

To any l-tuple d = (d1, . . . , dl) with di ∈ Z, di ≥ 0 corresponds a Gromov-Witten

invariant 〈 · | · | · 〉d. To define it, we make the identification H2(G/B,Z) = Z
l via the

basis consisting of the two-dimensional Schubert classes, that is, the classes whose
Poincaré duals are σw0s1

, . . . , σw0sl
, where w0 denotes the longest element of W . We

denote by
( · , · ) : H∗(G/B) × H∗(G/B) → R

the Poincaré pairing of G/B. To any three Schubert classes σu, σv, σw one assigns

the number, denoted by 〈σu|σv|σw〉d, that counts the holomorphic curves ϕ : CP1 →
G/B such that ϕ∗([CP1]) = d in H2(G/B) and ϕ(0), ϕ(1) and ϕ(∞) are in gen-
eral translates of the Schubert varieties dual to σu, σv, respectively σw. Let us con-
sider the variables q1, . . . , ql. The quantum cohomology ring of G/B is the space

H∗(G/B) ⊗ R[{qi}] equipped with the product ◦ which is R[{qi}]-linear and for
any two Schubert classes σu, σv, u, v ∈ W we have

σu ◦ σv =

∑

d=(d1,...,dl)≥0

qd
∑

w∈W

(σu ◦ σv)dσw,

u, v ∈ W . Here qd denotes qd1

1 · · · qdl

l , and the cohomology class (σu ◦ σv)d is deter-
mined by

(1.2)
(

(σu ◦ σv)d, σw

)

= 〈σu|σv|σw〉d,

for any w ∈ W . It turns out that the product ◦ is commutative, associative and

it is a deformation of the cup product (by which we mean that if we formally set
q1 = · · · = ql = 0, then ◦ becomes the same as the cup product). If we assign

deg qi = 4, 1 ≤ i ≤ l,

then we also have the grading condition deg(a ◦ b) = deg a + deg b for any two
homogeneous elements a, b of H∗(G/B)⊗R[{qi}]. For more details about quantum

cohomology we refer the reader to Fulton and Pandharipande [FP].
The first goal of our paper is to prove the following characterization of ◦.

Theorem 1.1 Let ⋆ be a product on the space H∗(G/B) ⊗ R[{qi}] which is com-

mutative, associative, is a deformation of the cup product (in the sense defined above),

satisfies the condition deg(a ⋆ b) = deg a + deg b for a, b homogeneous elements of

H∗(G/B) ⊗ R[{qi}] with respect to the grading deg qi = 4.

Further assume:
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(i) The connection ∇~ on the trivial vector bundle

H∗(G/B) × H2(G/B) → H2(G/B)

given by ∇~
= d + 1

~
ω, where ω(X,Y ) = X ⋆ Y , X ∈ H2(G/B),Y ∈ H∗(G/B), is flat

for all ~ 6= 0. Equivalently, if ωk is the matrix of the R[{qi}]-linear endomorphism σsk
⋆

of H∗(G/B) ⊗ R[{qi}] with respect to the Schubert basis, then we have

∂

∂ti

ω j =
∂

∂t j

ωi

for all 1 ≤ i, j ≤ l (the convention qi = eti is in force).

(ii) We have
l

∑

i, j=1

〈α∨
i , α

∨
j 〉σsi

⋆ σs j
=

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.

Then ⋆ is the quantum product ◦.

It is known that the conditions (i) and (ii) are satisfied by the quantum product ◦.
The connection ∇~ corresponding to ◦ is known as the Dubrovin connection, after B.
Dubrovin, who introduced it and proved that it is flat (see [Du]). As for (ii), a proof

of it can be found in [Ki]. For the reader’s convenience, we will include proofs of (i)
and (ii) for the product ◦ in the appendix. It is interesting to note that both properties
follow easily from the so-called divisor property of the three-point Gromov–Witten
invariants.

Remarks (i) The proof of Theorem 1.1 will be given in Section 2. The main tool

we will be using is the notion of D-module, in the spirit of B. Kim [Ki], Guest [Gu],
Amarzaya and Guest [AG], and Iritani [Ir]. Here is a brief outline of the proof: D

denotes the differential operator algebra generated by et1 , . . . , etl , ~ ∂
∂t1
, . . . , ~ ∂

∂tl
. We

will show that the D-modules associated in Iritani’s manner to the products ◦ and ⋆
are isomorphic by using techniques developed by B. Kim (actually a result we have
proved in our previous paper [Ma3]). More precisely, we obtain the quantum Toda

D-module, determined by the integrals of motion of the quantum Toda lattice inte-
grable system. Amarzaya and Guest [AG] have found a concrete method of decoding

the quantum cohomology of G/B out of the latter D-module by solving a certain
PDE system. At the last step of our proof we will be applying their method.

(ii) Theorem 1.1 (more precisely, its hypotheses) can be considered as an alter-

native definition of the (small) quantum cohomology ring of G/B. The reader will
decide whether this is more convenient than the original definition, given in terms of
rational curves (see [FP]). The following question arises: can one prove the main re-
sults of the quantum Schubert calculus for G/B starting from the new definition? We

have already proved in [Ma3] that if ⋆ is a product as in Theorem 1.1, then the ring
(H∗(G/B) ⊗ R[{qi}], ⋆) has the expected presentation in terms of generators and
relations, namely the one determined by Kim [Ki]. We will explain in what follows
(see the remaining part of this section) how one can prove the quantum Chevalley
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and quantum Giambelli formulas for the abstract ring (H∗(G/B) ⊗ R[{qi}], ⋆). An
important ingredient of the proof is the combinatorial quantum cohomology ring

of G/B, which is a purely combinatorial object defined and investigated by us [Ma4].
Then in Section 3 we will address the case G = SL(n,C) and give a direct proof of the
“quantization via standard monomials” formulas of Fomin, Gelfand and Postnikov
[FGP], but this time without using the combinatorial quantum cohomology ring of

[Ma4]. It is important to note that in this way we obtain conceptually new proofs of
all the main results of quantum Schubert calculus for G/B (simply because the actual
quantum product ◦ satisfies the hypotheses of Theorem 1.1, as we explained above).

The second main goal of our paper is to give new proofs of the quantum Cheval-

ley, quantum Giambelli, and the “quantization via standard monomials” formulas.
To this end, we need a characterization of the quantum Giambelli polynomials in
terms of the flatness of the Dubrovin connection. Let us denote by QH∗(G/B) the
quotient ring R[{λi}, {qi}]/〈R1, . . . ,Rl〉, where R1, . . . ,Rl are the quantum defor-

mations in the quantum cohomology ring (H∗(G/B) ⊗ R[{qi}], ◦) of the funda-
mental homogeneous generators of S(t

∗)W (R1, . . . ,Rl have been determined explic-
itly by B. Kim [Ki]; we will present in Section 2 a few more details about that). For
any c ∈ R[{λi}, {qi}] we denote by [c]q the coset of c in QH∗(G/B). The map

σsi
7→ [λi]q induces a tautological isomorphism

(1.3) (H∗(G/B) ⊗ R[{qi}], ◦) ≃ QH∗(G/B).

Finding for each w ∈ W a polynomial ĉw ∈ R[{λi}, {qi}] whose coset in QH∗(G/B)
is the image of σw, in other words, solving the quantum Giambelli problem, would
lead to a complete knowledge of the quantum cohomology of G/B. We are looking

for conditions which determine the polynomials ĉw. First of all, let us consider for
each w ∈ W a polynomial2 cw ∈ R[{λi}] whose coset corresponds to σw via the
isomorphism (1.1). There are two natural conditions that we impose on the polyno-
mials ĉw:

(1.4) deg ĉw = deg cw

with respect to the grading degλi = 2, deg qi = 4, and

(1.5) ĉw|( all qi=0) = cw.

Whenever the conditions (1.4) and (1.5) are satisified, the cosets [ĉw]q, w ∈ W , are a
basis of QH∗(G/B) over R[{qi}]. Consider the 1-form

ω =

l
∑

i=1

ωidti,

where ωi is the matrix of multiplication of QH∗(G/B) by [λi]q with respect to the

latter basis. We can prove the following.

2These are solutions of the classical Giambelli problem for G/B. Such polynomials have been con-
structed, for instance, by Bernstein, I. M. Gelfand and S. I. Gelfand [BGG].
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Corollary 1.2 Let ĉw, w ∈ W , be polynomials in R[{λi}, {qi}] which satisfy the

properties (1.4) and (1.5). Then the image of σw by the isomorphism (1.3) is [ĉw]q for

all w ∈ W if and only if the connection

∇~
= d +

1

~
ω

is flat for all ~ ∈ R \ {0}. The latter condition reads

∂

∂ti

ω j =
∂

∂t j

ωi ,

for all 1 ≤ i, j ≤ l.

Proof Consider the R[{qi}]-linear isomorphism3

δ : QH∗(G/B) → H∗(G/B) ⊗ R[{qi}] = R[{λi}, {qi}]/(IW ⊗ R[{qi}])

determined by

(1.6) δ[ĉw]q = [cw],

for all w ∈ W . Define the product ⋆ on H∗(G/B) ⊗ R[{qi}] by

x ⋆ y = δ(δ−1(x)δ−1(y)),

x, y ∈ H∗(G/B) ⊗ R[{qi}]. The product is commutative and associative; it is a
deformation of the cup product on H∗(G/B); and it satisfies deg(a⋆b) = deg a+deg b,
where a, b ∈ H∗(G/B)⊗R[{qi}] are homogeneous elements. The map δ is obviously
a ring isomorphism between QH∗(G/B) and (H∗(G/B) ⊗ R[{qi}], ⋆). In particular,

the following degree two relation holds:

l
∑

i, j=1

〈α∨
i , α

∨
j 〉[λi] ⋆ [λ j] =

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.

Moreover, the matrix of [λi]⋆ on H∗(G/B) ⊗ R[q1, . . . , ql] with respect to the Schu-

bert basis {[cw] : w ∈ W} is just ωi . So if the connection ∇~ is flat for all ~, then
by Theorem 1.1 the products ⋆ and ◦ are the same. This implies that δ is just the
isomorphism (1.3). The conclusion follows from the definition (1.6) of δ.

Corollary 1.2 will be used in Section 3 in order to recover the “quantization via
standard monomials” theorem of Fomin, Gelfand, and Postnikov for G = SL(n,C)

(see [FGP, Theorem 1.1]). It is important to note that the proof does not make
use of the combinatorial quantum cohomology ring, as in the case of the quantum
Chevalley formula (see below).

3This is what Amarzaya and Guest [AG] call a quantum evaluation map.
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Our strategy for proving the quantum Chevalley formula involves using the com-
binatorial quantum product, which has been constructed in [Ma4]. By definition,

this is a product ⋆ on H∗(G/B) ⊗ R[{qi}] which does satisfy the quantum Chevalley

formula, namely:

σsi
⋆ σw = σsi

σw +
∑

λi(α
∨)σwsαqα

∨

,

for 1 ≤ i ≤ l, w ∈ W . Here the sum runs over all positive roots α with the property
that l(wsα) = l(w) − 2 height(α∨) + 1, where we consider the expansion α∨

=

m1α
∨
1 + · · · + mlα

∨
l , m j ∈ Z, m j ≥ 0 and denote

height(α∨) = m1 + · · · + ml, qα
∨

= qm1

1 · · · qml

l .

We have also shown [Ma4] that ⋆ satisfies all hypotheses of Theorem 1.1. We deduce
the following.

Corollary 1.3 The combinatorial and actual quantum products coincide. Conse-

quently, the actual quantum product ◦ satisfies the quantum Chevalley formula:

(1.7) σsi
◦ σw = σsi

σw +
∑

l(wsα)=l(w)−2 height(α∨)+1

λi(α
∨)σwsαqα

∨

,

for 1 ≤ i ≤ l, w ∈ W .

Remark Formula (1.7) plays a crucial role in the study of the quantum cohomology

algebra of G/B, as this is generated over R[q1, . . . , ql] by the degree 2 Schubert classes
σs1
, . . . , σsl

. The formula was announced by D. Peterson. A rigorous intersection-
theoretic proof has been given by W. Fulton and C. Woodward [FW]. Our proof of
this formula is conceptually different from theirs.

A quantum Giambelli formula, i.e., a formula for representatives of Schubert
classes via the isomorphism (1.3), for the combinatorial quantum product has been
proved in [Ma4]. Consequently, the same formula holds true for the actual quantum

product ◦.

2 D-Modules and Quantum Cohomology

The goal of this section is to give a proof of Theorem 1.1.

We denote by D the Heisenberg algebra, by which we mean the associative
R[~]-algebra generated by Q1, . . . ,Ql, P1, . . . , Pl, subject to the relations

(2.1) [Qi,Q j] = [Pi , P j] = 0, [Pi ,Q j] = δi j~Q j ,

1 ≤ i, j ≤ l. It becomes a graded algebra with respect to the assignments

(2.2) deg Qi = 4, deg Pi = deg ~ = 2.

https://doi.org/10.4153/CJM-2008-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-037-8


The Quantum Cohomology Ring of G/B 881

Note that any element D of D can be written uniquely as an R[~]-linear combination
of monomials of type QIP J .

A concrete realization of D can be obtained by putting Qi = eti and Pi = ~
∂
∂ti

,
1 ≤ i ≤ l. We will be interested in certain elements of D which arise in connection
with the Hamiltonian system of Toda lattice type corresponding to the coroots of G,
namely the first quantum integrals of motion of this system. Those are homogeneous

elements Dk = Dk({Qi}, {Pi}, ~) of D, 1 ≤ k ≤ l, which commute with

D1 =

l
∑

i, j=1

〈α∨
i , α

∨
j 〉PiP j −

l
∑

i=1

〈α∨
i , α

∨
i 〉Qi

and also satisfy the property that Dk({0}, {λi}, 0), 1 ≤ k ≤ l, are just the fun-
damental homogeneous W -invariant polynomials (for more details concerning the
differential operators D1, . . . ,Dl we address the reader to [Ma3]). We will denote by

I the left-sided ideal of D generated by D1, . . . ,Dl.
Let ⋆ be a product on H∗(G/B) ⊗ R[{qi}] which satisfies the hypotheses of The-

orem 1.1. Let us denote by E the D-module (i.e., vector space with an action of the
algebra D) H∗(G/B) ⊗ R[{qi}, ~] defined by

Qi.a = qia, Pi.a = σsi
⋆ a + ~qi

∂

∂qi
a,

1 ≤ i ≤ l, a ∈ H∗(G/B) ⊗ R[{qi}, ~]. The isomorphism type of the D-module E

corresponding to ⋆ is uniquely determined by the hypotheses of Theorem 1.1, as the
following proposition shows.

Proposition 2.1 If ⋆ is a product with the properties stated in Theorem 1.1, then the

map φ : D → H∗(G/B) ⊗ R[{qi}, ~] given by

f ({Qi}, {Pi}, ~)
φ
7→ f ({Qi}, {Pi}, ~) · 1 = f

(

{qi},
{

σsi
⋆ +~qi

∂

∂qi

}

, ~
)

· 1

is surjective and induces an isomorphism of D-modules

(2.3) D/I ≃ E,

where I is the left-sided ideal of D generated by the quantum integrals of motion of the

Toda lattice (see above).

Proof We will use the grading on H∗(G/B) ⊗ R[{qi}, ~] induced by the usual grad-
ing on H∗(G/B), deg qi = 4 and deg ~ = 2. Combined with the grading de-

fined by (2.2), this makes φ into a degree preserving map (more precisely, it maps
a homogeneous element of D to a homogeneous element of the same degree in
H∗(G/B) ⊗ R[{qi}, ~]).

Let us prove first the surjectivity stated in our theorem. It is sufficient to show that

any homogeneous element a ∈ H∗(G/B) ⊗ R[{qi}, ~] can be written as

f ({Qi}, {Pi}, ~) · 1.
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We proceed by induction on deg a. If deg a = 0, everything is clear. Now consider
a ∈ H∗(G/B)⊗R[{qi}, ~], a homogeneous element of degree at least 2. By a result of

Siebert and Tian [ST], we can express a = g({qi}, {σsi
⋆}, ~) for a certain polynomial

g. We have

a − g({Qi}, {Pi}, ~) · 1 = a − g({qi},
{

σsi
⋆ +~qi

∂

∂qi

}

, ~) · 1 = ~b,

where b ∈ H∗(G/B) ⊗ R[{qi}, ~] is homogeneous of degree deg a − 2 or it is zero.
We use the induction hypothesis for b.

We proved [Ma3, proof of Lemma 4.5] that the generators Dk = Dk({Qi}, {Pi}, ~),
1 ≤ k ≤ l, of the ideal I satisfy

(2.4) Dk({Qi}, {Pi}, ~) · 1 = 0.

If we let ~ approach 0 in (2.4), we obtain the relations

(2.5) Dk({qi}, {σsi
⋆}, 0) = 0,

1 ≤ k ≤ l. They generate the whole ideal of relations in the ring (H∗(G/B) ⊗
R[{qi}], ⋆).

We need to show that if D is an element of D with the property that

(2.6) D({Qi}, {Pi}, ~) · 1 = 0,

then D ∈ I. Because the map φ is degree preserving, we may assume that D is
homogeneous and proceed by induction on deg D. If deg D = 0, i.e., D is constant,

then (2.6) implies D = 0, hence D ∈ I. It now follows the induction step. From

D.1 = D({qi},
{

σsi
⋆ +~qi

∂

∂qi

}

, ~) · 1 = 0,

for all ~, we deduce the relation D({qi}, {σsi
⋆}, 0) = 0 in the ring (H∗(G/B) ⊗

R[{qi}], ⋆). Consequently we have the following polynomial identity

D({qi}, {λi}, 0) =

∑

k

fk({qi}, {λi})Dk({qi}, {λi}, 0),

for certain polynomials fk. By using the commutation relations (2.1), we obtain the
following identity in D:

D({Qi}, {Pi}, 0) ≡
∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, 0) mod ~

≡
∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, ~) mod ~.
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In other words,

D({Qi}, {Pi}, ~) =

∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, ~) + ~D ′({Qi}, {Pi}, ~),

for a certain D ′ ∈ D, with deg D ′ < deg D. From (2.5) and (2.6) we deduce that

D ′({Qi}, {Pi}, ~) · 1 = 0.

Since deg D ′ < deg D, we only have to use the induction hypothesis for D ′ and get to
the desired conclusion.

Note that (2.3) is also an isomorphism of R[{Qi}, ~]-modules. Since the actual
quantum product ◦ satisfies the hypotheses of Theorem 1.1, we deduce that the di-
mension of D/I as an R[{Qi}, ~]-module equals |W |. Let us consider the “standard

monomial basis” {[Cw] : w ∈ W} of D/I over R[{Qi}, ~] with respect to a choice
of a Gröbner basis of the ideal I (for more details, see Guest [Gu, §1] and the refer-
ences therein). Any Cw is a monomial in P1, . . . , Pl and the cosets of the monomials
cw = Cw(λ1, . . . , λl), w ∈ W in H∗(G/B) = S(t

∗)/S(t
∗)W

= R[{λi}]/IW are a basis.

We will need the following result.

Proposition 2.2 There exists a unique basis {[C̄w] : w ∈ W} of D/I over R[{Qi}, ~]

with the following properties:

(i) For all w ∈ W the element C̄w = C̄w({Qi}, {Pi}, ~) of D is homogeneous of

degree 2 deg cw with respect to the grading defined by (2.2).

(ii) For all w ∈ W we have

C̄w({0}, {λi}, ~) ≡ cw mod IW ;

in particular C̄w({0}, {λi}, ~)mod IW is independent of ~.

(iii) The elements (Ω̄i
vw)1≤i≤l

v,w∈W of R[Q1, . . . ,Ql, ~] determined by

Pi[C̄w] =

∑

v∈W

Ω̄
i
vw[C̄v],

are independent of ~.

Proof In order to show that such a basis exists, we consider the isomorphism

φ : D/I → H∗(G/B) ⊗ R[{qi}, ~]

induced by the actual quantum product ◦ via Proposition 2.1. The basis {[cw] : w ∈
W} of the right-hand side induces the basis {[C̄w] = φ−1([cw]) : w ∈ W} of D/I
over R[{Qi}, ~]. It is obvious that the latter basis satisfies (i) and (iii). In order to
show that it also satisfies (ii), we consider the following commutative diagram:

D/I
φ

//

ψ1 &&M
M

M
M

M
M

M
M

M
M

M

H∗(G/B) ⊗ R[{qi}, ~]

ψ2uulllllllllllllllll

H∗(G/B) ⊗ R[~]

https://doi.org/10.4153/CJM-2008-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-037-8


884 A.-L. Mare

where ψ2 is the canonical projection and

ψ1 : D/I → H∗(G/B) ⊗ R[~] = (R[{λi}]/IW ) ⊗ R[~]

is given by [D({Qi}, {Pi}, ~)] 7→ [D({0}, {λi}, ~)]. Note that ψ1 is well defined, as
for any k = 1, 2, . . . , l, the polynomial Dk({0}, {λi}, ~) is independent of ~, being
equal to uk, the k-th fundamental W -invariant polynomial (see [Ma2, §3]). We ob-

serve that [C̄w({0}, {λi}, ~)] = ψ1[C̄w] = ψ2[cw] = [cw], hence condition (ii) is
satisfied.

In order to show that there exists at most one such basis, one can use the method of
[AG, §2]. More precisely, we only need to note that the PDE system presented there

has at most one “admissible” solution.

Now we can prove our main result.

Proof of Theorem 1.1 Let ⋆ be a product with the properties stated in Theorem 1.1.

Consider the isomorphism of D-modules φ : D/I → H∗(G/B) ⊗ R[{qi}, ~] given
by Proposition 2.1. The basis {[cw] : w ∈ W} of the right-hand side induces the basis
{[C̄w] = φ−1([cw]) : w ∈ W} of D/I over R[{Qi}, h]. It is obvious that the latter

satisfies hypotheses (i) and (iii) of Proposition 2.2. We show that it also satisfies (ii) by
using the argument already employed in the first part of the proof of Proposition 2.2.
Now from Proposition 2.2, we deduce that [C̄w] = [Ĉw], for w ∈ W , where the basis
{[Ĉw] : w ∈ W} is induced by the actual quantum product ◦. Now, since φ is an

isomorphism of D-modules, φ([C̄w]) = [cw] and φ(Pi) = [λi], we deduce that the
matrix of [λi]⋆ with respect to the basis {[cw] : w ∈ W} is the same as the matrix of
Pi with respect to the basis {[C̄w] : w ∈ W}. Consequently we have [λi]⋆a = [λi]◦a

for all a ∈ H∗(G/B) ⊗ R[q1, . . . , ql]. Hence the products ⋆ and ◦ are the same.

3 Quantization Map for Fln

In the case G = SL(n,C), the resulting flag manifold is Fln, which is the space of all

complete flags in C
n. Borel’s presentation (see (1.1)) in this case reads

H∗(Fln) = R[λ1, . . . , λn−1]/(In)≥2,

where (In)≥2 denotes the ideal generated by the nonconstant symmetric polynomials

of degree at least 2 in the variables

x1 := λ1, x2 := λ2 − λ1, . . . xn−1 := λn−1 − λn−2, xn := −λn−1.

Equivalently, we have H∗(Fln) = R[x1, . . . , xn]/In where In denotes the ideal gener-
ated by the nonconstant symmetric polynomials of degree at least 1 in the variables
x1, . . . , xn. For any k ∈ {0, 1, . . . , n} we consider the polynomials ek

0, . . . , e
k
k in the

variables x1, . . . , xk which can be described by

det





















x1 0 · · · 0
0 x2 · · · 0
...

. . .
. . .

...

0 · · · 0 xk











+ µIk











=

n
∑

i=0

ek
i µ

k−i .
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For i1, . . . , in−1 ∈ Z such that 0 ≤ i j ≤ j, we define

ei1···in−1
= e1

i1
· · · en−1

in−1
.

These are called the standard elementary monomials. It is known (see [FGP, Proposi-
tion 3.4]) that the set {[ei1···in−1

] : 0 ≤ i j ≤ j} is a basis of H∗(Fln).
We also consider the polynomials4 êk

0, . . . , ê
k
k in the variables x1, . . . , xk, q1, . . . ,

qk−1, which are described by

det





























x1 q1 0 · · · 0
−1 x2 q2 · · · 0

...
. . .

. . .
. . .

...
0 · · · −1 xk−1 qk−1

0 · · · 0 −1 xk















+ µIk















=

k
∑

i=0

êk
i µ

k−i .

For i1, . . . , in−1 such that 0 ≤ i j ≤ j, we define the quantum standard elementary

monomials

êi1···in−1
= ê1

i1
· · · ên−1

in−1
.

By a theorem of Ciocan-Fontanine [Ci] (in fact Kim’s theorem for G = SL(n,C), see
Section 1), we have the following isomorphism of R[q1, . . . , qn−1]-algebras

(3.1) (H∗(Fln) ⊗ R[q1, . . . , qn−1], ◦) ≃ QH∗(Fln)

:= R[x1, . . . , xn, q1, . . . , qn−1]/〈ên
1 , . . . , ê

n
n〉,

which is canonical in the sense that [xi] is mapped to [xi]q. According to [FGP], we
will call this the quantization map. Since the conditions (1.4) and (1.5) are satisfied,
we deduce that {[êi1···in−1

]q : 0 ≤ i j ≤ j} is a basis of QH∗(Fln) over R[q1, . . . , qn−1].

We also point out the obvious fact that {[ei1···in−1
] : 0 ≤ i j ≤ j} is a basis of

H∗(Fln) ⊗ R[q1, . . . , qn−1] over R[q1, . . . , qn−1]. The goal of this section is to give a
different proof to the following theorem of Fomin, Gelfand, and Postnikov.

Theorem 3.1 ([FGP, Theorem 1.1]) The quantization map described by equation

(3.1) sends [ei1...in−1
] to [êi1...in−1

]q.

The main instrument of our proof is the D-module D/I defined in Section 2.
In this case (i.e., G = SL(n,C)) we can describe it explicitly, as follows: D is the

(noncommutative) Heisenberg algebra defined at the beginning of Section 2 where
l = n − 1. The left ideal I of D is generated by En

1, . . . ,E
n
n−1, where

det





























P1 Q1 0 · · · 0
−1 P2 − P1 Q2 · · · 0

...
. . .

. . .
. . .

...
0 · · · −1 Pn−1 − Pn−2 Qn−1

0 · · · 0 −1 −Pn−1















+ µIn















=

n
∑

i=0

E
n
i µ

n−i.

4These are the polynomials Ek
i of [FGP].
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In fact we will need more general elements of D, namely, for each k ∈ {1, . . . , n−1},
we consider the elements Ek

i of D, with 0 ≤ i ≤ k, given by

det





























P1 Q1 0 · · · 0
−1 P2 − P1 Q2 · · · 0

...
. . .

. . .
. . .

...

0 · · · −1 Pk−1 − Pk−2 Qk−1

0 · · · 0 −1 Pk − Pk−1















+ µIk















=

k
∑

i=0

E
k
iµ

k−i .

One can easily see that when we expand the determinant in the left-hand side of the

last equation we will have no occurrence of P jQ j or Q jP j , 1 ≤ j ≤ k−1. This means
that the lack of commutativity of Q j and P j creates no ambiguity in the definition of
En

1, . . . ,E
n
n−1. We can also deduce that each of Ek

1, . . . ,E
k
k is a linear combination of

monomials in the variables {P1, . . . , Pk,Q1, . . . ,Qk−1}, with no ocurrence of P jQ j or

Q jP j (i.e., the order of factors in each monomial is not important). As a consequence,
the following recurrence formula [FGP, (3.5)] still holds:

(3.2) E
k
i = E

k−1
i + XkE

k−1
i−1 + Qk−1E

k−2
i−2 ,

where Xk stands for Pk − Pk−1 and, by convention, Ek
j = 0, unless 0 ≤ j ≤ k. It is

worth mentioning the following commutation relations, which will be used later:

(3.3) [Xk,E
l
j] = 0, [Qk,E

l
j] = 0,

whenever l ≤ k−1. We also note that Ek
0 = 1 and Ek

1 = Pk (where Pn is by convention

equal to 0). We will prove the following result.

Lemma 3.2 The elements Ek
1, . . . ,E

k
k−1 of D commute with each other.

Proof Consider the coordinates s0, . . . , sk−1 on R
k. Following [KJ], we consider the

differential operators D j(~
∂
∂s0
, . . . , ~ ∂

∂sk−1
, es1−s0 , . . . , esk−1−sk−2 ) given by

det

































~
∂
∂s0

es1−s0 0 · · · 0

−1 ~
∂
∂s1

es2−s1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 ~
∂

∂sk−2
esk−1−sk−2

0 · · · 0 −1 ~
∂

∂sk−1

















+ µIk

















=

k
∑

i=0

Dk
iµ

k−i .

By [KJ, Proposition 1], we have [Dk
i ,D

k
j] = 0 for all 0 ≤ i, j ≤ k. In order to prove

our lemma, it is sufficient to note that if we make the change of coordinates

s1 − s0 = t1, · · · , sk−1 − sk−2 = tk−1,−sk−1 = tk,

we obtain

~
∂

∂s0
= −~

∂

∂t1
= −P1, ~

∂

∂s1
= ~

∂

∂t1
− ~

∂

∂t2
= P1 − P2, . . . ,

h
∂

∂sk−1
= ~

∂

∂tk−1
− ~

∂

∂tk

= Pk−1 − Pk,
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where we have used the presentation of D given by Pi = ~
∂
∂ti
,Qi = eti , 1 ≤ i ≤

n − 1.

The following technical result will be needed later.

Lemma 3.3 We have [Ek+1
j+1,E

k
i ] = [Ek+1

i+1 ,E
k
j].

Proof We prove this by induction on k ≥ 0. For k = 0, the equation is obvious (by

the convention made above, we have E
j
0 = 0). It follows the induction step. We use

the recurrence formula (3.2). This gives

[Ek+1
j+1,E

k
i ] = [Ek

j+1 + Xk+1E
k
j + QkE

k−1
j−1,E

k
i ] = [QkE

k−1
j−1,E

k
i ].

We continue by using again equation (3.2) and obtain

[QkE
k−1
j−1,E

k−1
i + XkE

k−1
i−1 + Qk−1E

k−2
i−2 ]

= [Qk,Xk]Ek−1
i−1 E

k−1
j−1 + [QkE

k−1
j−1,Qk−1E

k−2
i−2 ]

= [Qk,Xk]Ek−1
i−1 E

k−1
j−1 + Qk[Ek−1

j−1,Qk−1E
k−2
i−2 ]

= [Qk,Xk]Ek−1
i−1 E

k−1
j−1 + Qk[Ek−1

j−1,E
k
i − E

k−1
i − XkE

k−1
i−1 ]

= [Qk,Xk]Ek−1
i−1 E

k−1
j−1 + Qk([Ek−1

j−1,E
k
i ] − [Ek−1

j−1,XkE
k−1
i−1 ])

= [Qk,Xk]Ek−1
i−1 E

k−1
j−1 + Qk[Ek−1

j−1,E
k
i ].

Here we have used the commutation relations (3.3) several times. Similarly, we obtain

[Ek+1
i+1 ,E

k
j] = [Qk,Xk]Ek−1

j−1E
k−1
i−1 + Qk[Ek−1

i−1 ,E
k
j].

We use the induction hypothesis to finish the proof.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Let ωk denote the matrix of multiplication by [λk]q with re-
spect to the basis {[êi1···in−1

]q : 0 ≤ i j ≤ j} of QH∗(Fln) (see equation (3.1)). More
precisely, the entries of ωi are polynomials in q1, . . . , qn−1, determined by

[λk]q[êi1···in−1
]q =

∑

l1,...,ln−1

ω
i1···in−1,l1···ln−1

k [êl1...ln−1
]q.

According to Corollary 1.2, it is sufficient to show that

(3.4)
∂

∂ti

ω j =
∂

∂t j

ωi ,

for 1 ≤ i, j ≤ n − 1, where as usual, we use the convention qi = eti . For i1, . . . , in−1

such that 0 ≤ i j ≤ j, we consider

Ei1···in−1
:= E

1
i1
E

2
i2
· · ·En−1

in−1
.
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In order to prove equation (3.4), it is sufficient to prove the following claim.

Claim In D/I we have

(3.5) [Pk][Ei1···in−1
] =

∑

l1,...,ln−1

Ω
i1···in−1,l1···ln−1

k [El1···ln−1
],

where each Ω
i1···in−1,l1···ln−1

k is obtained from ω
i1···in−1,l1···ln−1

k by the modification
Qi 7→ qi .

Indeed, if we make the usual identifications Pk = ~
∂
∂tk

, Qk = etk , 1 ≤ k ≤ n − 1,
then (3.5) implies that the connection

d +

n−1
∑

k=1

1

~
Ωkdtk

is flat (see [Gu, Proposition 1.1]) for all values of ~, which implies (3.4). The proof
of the claim relies on a noncommutative version of the quantum straightening algo-
rithm of Fomin, Gelfand, and Postnikov [FGP]. The key equation is the following.

(3.6) E
k
i E

k+1
j+1 + E

k
i+1E

k
j + QkE

k−1
i−1 E

k
j = E

k
jE

k+1
i+1 + E

k
j+1E

k
i + QkE

k−1
j−1E

k
i .

We note that this is the same as [FGP, (3.6)]. The difference is that here we work
in the algebra D, which is not commutative, so it is not a priori clear that (3.6) still
holds. In order to prove it, we use equation (3.2) twice and obtain:

(Ek+1
j+1 − E

k
j+1)Ek

i = (Xk+1E
k
j + QkE

k−1
j−1)Ek

i ,

and

(Ek+1
i+1 − E

k
i+1)Ek

j = (Xk+1E
k
i + QkE

k−1
i−1 )Ek

j .

If we subtract the second equation from the first one, we obtain:

E
k+1
i+1 E

k
j − E

k+1
j+1E

k
i = E

k
i+1E

k
j − E

k
j+1E

k
i + Qk(Ek−1

i−1 E
k
j − E

k−1
j−1E

k
i ).

Now the left-hand side can be written as

E
k
jE

k+1
i+1 − E

k
i E

k+1
j+1 + [Ek+1

i+1 ,E
k
j] − [Ek+1

j+1,E
k
i ] = E

k
jE

k+1
i+1 − E

k
i E

k+1
j+1,

where we have used Lemma 3.3. Equation (3.6) has been proved. Now we can use
it exactly as in the commutative situation, described in [FGP], in order to obtain the
expansion of the product of Pk = Ek

1 and Ei1...in−1
= E1

i1
. . .En−1

in−1
. More precisely, we

begin with

PkEi1···in−1
= E

1
i1
· · ·Ek−1

ik−1
PkE

k
ik
E

k+1
ik+1

· · ·En−1
in−1

= E
1
i1
· · ·Ek−1

ik−1
E

k
1E

k
ik
E

k+1
ik+1

· · ·En−1
in−1

,

and then we use (3.6) repeatedly. The resulting coefficients in the final expansion will
be the same as in the commutative situation. This finishes the proof of the claim, and

also of Theorem 3.1.
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A Appendix

We will give simple proofs of properties (i) and (ii) in Theorem 1.1 for the actual
quantum product ◦. They are both straightforward consequences of the following
“divisor property” (see [FP, (40)] for a more general version of this formula):

(A.1) 〈σs j
|σw|σv〉d = d j〈σw|σv〉d,

for any 1 ≤ j ≤ l, d = (d1, . . . , dl) ∈ H2(G/B,Z), and v,w ∈ W . Here 〈σw|σv〉d is
the two-point Gromov–Witten invariant, which represents the number of holomor-

phic maps ϕ : P
1 → G/B with ϕ∗([P

1]) = d in H2(G/B) and such that ϕ(P
1) inter-

sects general translates of the Schubert varieties dual to σw and σv, modulo PSL(2,C)
(the latter group acts on ϕ by reparametrizing it).

First we prove condition (i), i.e., the flatness of the Dubrovin connection. This is

∇~
= d +

1

~
ω,

where ω is the 1-form on H2(G/B) with values in End(H∗(G/B)) given by

ωt (X,Y ) = X ◦Y,

for t = (t1, . . . , tl) ∈ H2(G/B), X ∈ H2(G/B) and Y ∈ H∗(G/B). Here the conven-
tion qi = eti , 1 ≤ i ≤ l is in force. Note that the ω can be expressed as

ω =

l
∑

i=1

ωidti,

where ωi denotes the matrix of the operator σsi
◦ on H∗(G/B) with respect to the

basis consisting of the Schubert classes.

Lemma A.1 The Dubrovin connection ∇~ is flat for any ~ ∈ R \ {0}, i.e., we have

dω = ω ∧ ω = 0.

Proof The fact that dω = 0 amounts to ∂
∂ti
ω j =

∂
∂t j
ωi , which is equivalent to

di(σs j
◦ σw)d = d j(σsi

◦ σw)d for any w ∈ W and any d = (d1, . . . , dl), hence, by

(1.2), to di〈σs j
|σw|σv〉d = d j〈σsi

|σw|σv〉d. The latter equation is an obvious conse-
quence of the divisor rule (A.1). The equality ω∧ω = 0 is equivalent to ωiω j = ω jωi ,
1 ≤ i, j ≤ l; this follows immediately from the fact that the product ◦ is commutative
and associative.

Next we turn to property (ii).

Lemma A.2 We have

(A.2)

l
∑

i, j=1

〈α∨
i , α

∨
j 〉σsi

◦ σs j
=

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.
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Proof The crucial point of the proof is the following equation.

(A.3) σsi
◦ σs j

= σsi
σs j

+ δi jq j .

In turn, by (1.2) this amounts to the fact that if ek := (0, . . . , 0, 1, 0, . . . , 0) (where 1
is in the k-th position), then the homology class (σsi

◦ σs j
)ek

∈ H0(G/B) satisfies

((σsi
◦ σs j

)ek
, PD[pt]) = δi jk,

where, by definition, δi jk is 1 if i = j = k and 0 otherwise, and PD[pt] denotes the

(top-dimensional) cohomology class which is Poincaré dual to a point. By (1.2) and
the divisor rule (A.1), we only need to prove that

〈σsi
|PD[pt]〉ei

= 1.

But this follows immediately from the fact that the Poincaré dual of the homology

class e j is σw0si
, and the intersection pairing of the latter with σsi

equals 1.
Now (A.3) implies (A.2), because

l
∑

i, j=1

〈α∨
i , α

∨
j 〉σsi

σs j
= 0,

which in turn follows from the fact that the polynomial
∑l

i, j=1〈α
∨
i , α

∨
j 〉λiλ j ∈ S(t

∗)

is W -invariant (being just the squared norm on t).

Remark Another proof of the last lemma can be found in [Ma1, §3].
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